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KUWABARA-KONO NUMERICAL DISSIPATION: A NEW METHOD TO SIMULATE

GRANULAR MATTER

GUILLAUME JAMES1,2, KIRILL VOROTNIKOV1,2, BERNARD BROGLIATO1,2

ABSTRACT. We introduce a new method for the simulation of multiple impacts in granular media de-

scribed by the Kuwabara-Kono (KK) model, a nonsmooth (not Lipschitz continuous) extension of Hertz

contact that accounts for viscoelastic damping. We use the technique of modified equations to construct

time-discretizations of the nondissipative Hertz law matching numerical dissipation with KK dissipation

at different consistency orders. This allows us to simulate dissipative impacts with good accuracy without

including the nonsmooth viscoelastic component in the contact force. This tailored numerical dissipa-

tion is developed in a general framework, for Newtonian dynamical systems subject to dissipative forces

proportional to the time-derivative of conservative forces. Numerical tests are performed for the simu-

lation of impacts in Newton’s cradle and on alignments of alternating large and small balls. Resulting

wave phenomena (oscillator synchronisation, propagation of dissipative solitary waves, oscillatory tails)

are accurately captured by implicit schemes with tailored numerical dissipation, even for relatively large

time steps.

1. INTRODUCTION

Analyzing the response of granular media to impacts and vibrations is a fundamental issue in many

contexts, e.g. to understand crater formation [1], model the response of ballast to moving loads [2], or to

design shock absorbers [3, 4] and more general granular metamaterials for impact redirection, acoustic

lensing or filtering [5, 6, 7]. In particular, one-dimensional granular media (such as the granular chain

depicted in figure 1) have been extensively studied. Despite their apparent simplicity, it is a difficult

problem to understand the dispersion and dissipation of energy in these systems [8] and to analyze

related wave effects [9], in particular the formation of solitary waves and breathers [10, 11, 12, 13, 14,

15].

FIGURE 1. Schematic representation of a granular chain, with an impulsive force ap-

plied to the first element.

Multiple impacts in multibody mechanical systems such as chains of balls can be studied using dif-

ferent types of models. Algebraic models that relate post- and pre-impact velocities under the assump-

tion of rigid body collisions and instantaneous impacts are widely used, due to their high numerical

tractability (see [8, 16, 17] for reviews). However, neglecting compliance and wave effects in multiple

impacts often leads to strong discrepancies with experimental results and more realistic models [8, 18].
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Another classical approach is based on second–order dynamics and compliant contact models. Ac-

cording to Hertz’s theory, the repulsive force f between two initially tangent spherical beads (or smooth

non-conforming surfaces) compressed with a small relative displacement δ is f(δ) = k δ
3/2
+ at leading

order in δ, where δ+ = max(δ, 0) (no force is present when beads are not in contact) and k depends on

the radii of curvature and elastic coefficients of the balls [19]. Moreover, energy loss arising from vis-

coelasticity (and from the excitation of elastic vibrations to some extent) is generally taken into account

through a contact law of the type

f(δ) = k

(

δ
3/2
+ + γ

d

dt
δβ+

)

(1)

depending on parameters γ > 0 and β ≥ 1 (see e.g. [17, 20, 21] for reviews). Classical choices

correspond to β = 1 (Hertzian spring with linear dashpot [22]), β = 5/2 (Simon-Hunt-Crossley

model [23, 24]), and β = 3/2 which leads to the Kuwabara-Kono (KK) model [25] (see also [26] for

a ball impacting a plate). This approach applies to small impact velocities and does not account for

energy loss due to plastic deformations (see [27, 28, 8, 29, 30] for impact laws incorporating plasticity

and their application to granular chains). The above compliant dissipative models agree reasonably

well with several experiments on binary collisions [21, 25, 31, 32] and impacts on granular chains

[33, 34], and an optimal choice of model seems to depend actually on the experimental configuration

[35]. However, the KK model has been put on a more rigorous footing compared to the other (more

phenomenological) impact laws because it can be derived from continuum mechanics (see [36, 37] and

references therein). In particular, the associated damping constant γ is determined by the elastic and

viscous coefficients of the materials and can be inferred from experiments.

The numerical simulation of compliant models can be delicate for large systems or if the dynam-

ical equations are numerically stiff. This situation arises for spatially inhomogeneous systems when

masses or stiffness constants vary strongly, or when strongly compressed regions coexist with loosely

compressed elements (or beads in free flight), leading usually to different time scales. Another diffi-

culty arises from the limited smoothness of the Hertz contact force, which is C1 but not C2 at the point

of contact breaking (i.e., δ = 0). The situation can be even worse for the viscoelastic impact laws, since

the contact force is discontinuous at δ = 0 for β = 1, and is not Lipschitz continuous for β ∈ (1, 2) (in

particular for the KK model). This lack of smoothness tends to limit the order of convergence of time-

integration methods, and some authors recommend to use at least 1000 discretization points during a

collision [17].

In this work, we introduce a new method for the numerical simulation of granular chains which al-

lows to approximate the KK model without explicitly including the nonsmooth viscoelastic term in the

contact force. Our approach, thereafter denoted as tailored numerical dissipation, applies more gener-

ally to Newtonian dynamical systems for which dissipative forces are given by the time-derivative of

conservative forces with some prefactor γ (as in the case β = 3/2 of (1)). Moreover, the method can

be declined within a variety of numerical schemes, in particular implicit ones allowing for relatively

large step sizes. Our approach is based on the technique of modified (or equivalent) equations (see

e.g. [38, 39] and references therein), in which effects induced by time-discretization (such as numer-

ical dissipation) are analyzed by considering suitable perturbations of the initial differential equation.

Considering a conservative Newtonian system approximated by a general two-stage Runge-Kutta (RK)

method [40] (including the θ method), we derive a dissipation condition under which the modified

equation coincides with the dissipative perturbation at leading order in the time step h. This condition

relates h and the scheme parameters to a small damping constant γ in the dissipative model. In par-

ticular, starting from a nondissipative granular chain with Hertzian interactions, one can tune scheme

parameters in order to correctly capture KK dissipation using numerical dissipation only, i.e., negle-

cling the viscoelastic component in the contact force. Furthermore, we construct a time-discretization

of the conservative system which is consistent at order 3 with the dissipative model and takes the form
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of an implicit Runge-Kutta (IRK) method with tailored numerical dissipation. This scheme corresponds

to a perturbed Gauss-Legendre (GL) scheme [40] and is far more precise than the second order schemes

that satisfy solely the above dissipation condition, a result that we observe even for relatively large step

sizes.

This approach can be generalized in order to combine different types of dissipation. As an illus-

tration, we consider a Newton’s cradle [34, 15] in which the granular chain of figure 1 is modified

by adding a local attachment to each bead, which induces a local (quadratic) potential. Using a two-

parameter additive θmethod (a particular additive RK method [41]), we show that numerical dissipation

can match arbitrary values of local (linear) and contact (KK) dampings. In particular, one can set the

scheme parameters to obtain a vanishing local damping. In that case, in the time-discretization of the

conservative Newton’s cradle, numerical dissipation is able to reproduce an asymptotic synchronisation

of the oscillators that occurs with the KK model [34].

Note that there exists another approach to quantify numerical dissipation, which is based on dis-

sipation equalities for suitable discrete energies, see e.g. [42] and references therein. However, our

approach has the advantage of estimating the consistency order and allows us to obtain error bounds.

As an illustration, for a spatially homogeneous granular chain with Hertz contact law, we prove the

convergence of the above θ method towards the KK model with γ = O(h). We derive a O(h3/2)
estimate for the global error, which lies above the O(h2) bound expected from a standard consistency

analysis, a difference which is due to the lack of regularity of the KK model.

The above approach based on tailored numerical dissipation is compared to direct time-discretizations

of the dissipative models. We simulate an impact on a granular chain, where the KK model is approx-

imated either using a Crank-Nicolson (CN) scheme or a GL scheme. When the classical position-

velocity formulation is used, we numerically observe an order of convergence limited to 3/2 for both

schemes (whereas the usual order is 2 for the CN scheme and 4 for the GL scheme). This order re-

duction is due to the fact that the KK model is not Lipschitz continuous. In order to attenuate this

phenomenon, one has to introduce a change of variables leading to more regular dynamical equations,

for which the CN scheme recovers the order 2 and the GL scheme has order 5/2. These schemes are

compared to the θ and IRK schemes with tailored numerical dissipation in the case of an impact on

a dissipative dimer chain (i.e., aligned beads with alternatively large and small radii). This problem

constitutes an interesting test because the impact generates different types of solitary-like waves (with

a small or large amount of dispersion) depending on the mass ratio between beads [12, 8, 18]. These

waves are qualitatively well described both by tailored numerical dissipation and direct discretization,

even for relatively large time steps for the IRK and GL schemes. When the time step is small, we ob-

tain the most precise results with direct discretization of the KK model written in its regularized form.

However, for rather large time steps and γ not too large, tailored numerical dissipation is competitive

with the direct discretizations, and the IRK scheme is even more precise than the GL scheme in some

physical range of damping constants γ.

The structure of the paper is as follows : in section 2, we recall basic properties of the KK model, es-

tablish the well-posedness of the dynamical equations for the contact laws (1) including the nonsmooth

cases, and study numerically the orders of the CN and GL schemes for different formulations of the KK

model. In section 3, we present the approach of tailored numerical dissipation in a general framework.

Section 3.1 recalls the main features of modified equations for one-step methods applied to autonomous

nonlinear ODE. We introduce the additive θ method (section 3.2) and IRK scheme (sections 3.3 and

3.4) with tailored numerical dissipation, and study numerically their orders of convergence for the KK

model (section 3.5). Section 4 concerns the simulation of impacts in dimer chains and the comparison

of the different numerical schemes. Section 5 summarizes the above results and draws some perspec-

tives opened by this study. Finally, different technical results are presented in the appendix, where we

establish the A-stability [40] of the IRK scheme with tailored dissipation (section A.1) and prove the

convergence of the θ method with KK numerical dissipation (section A.2).
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2. DYNAMICAL EQUATIONS FOR GRANULAR CHAINS

We focus on dissipative granular chains without precompression. The chains are made of N spher-

ical elements (with masses m1, . . . ,mN ) interacting through the contact law (1), with stiffness and

damping parameters kn, γn for the contact between elements n− 1, n. The dynamical equations are

mnẍn =kn (xn−1 − xn)
3/2
+ + βγnkn (xn−1 − xn)

β−1
+ (ẋn−1 − ẋn)

− kn+1 (xn − xn+1)
3/2
+ − βγn+1kn+1 (xn − xn+1)

β−1
+ (ẋn − ẋn+1) , 1 ≤ n ≤ N,

(2)

where xn is the displacement of the center of the nth element from its equilibrium position (correspond-

ing to an uncompressed chain of touching beads) and overdots denote time derivatives. The chain ends

are free, i.e., we set k1 = kN+1 = 0 in (2). In most of the numerical simulations of (2), we shall

consider the initial condition

xn (0) = 0; ẋ1 (0) = Vimp, ẋn (0) = 0 ∀n ≥ 2, (3)

corresponding to the first bead impacting the others (initially at rest) at velocity Vimp > 0.

In the sequel, we start by recalling basic properties of the KK model (case β = 3/2 of (2)), estab-

lish the well-posedness of the evolution problem (2) in the general case, and explore the behavior of

different numerical time-integration schemes applied to the KK model.

2.1. Kuwabara-Kono model. In this work, the analysis of impacts will be performed for β = 3/2
in (2) and a constant damping parameter γ. This is the case when all beads are made with the same

material or for dimer chains alternating two types of beads. In that case system (2) becomes

mnẍn =kn (xn−1 − xn)
3/2
+ +

3

2
γkn (xn−1 − xn)

1/2
+ (ẋn−1 − ẋn)

− kn+1 (xn − xn+1)
3/2
+ − 3

2
γkn+1 (xn − xn+1)

1/2
+ (ẋn − ẋn+1) , 1 ≤ n ≤ N.

(4)

It is interesting to consider the particular case of two beads (N = 2) and study the restitution coefficient

e defined as the ratio of (the moduli of) post- and pre-impact relative velocities. Considering the relative

displacement δ = x1 − x2, equation (4) leads to

mδ̈ = −kδ3/2+ − 3

2
γkδ

1/2
+ δ̇, (5)

where we denote by m = m1m2
m1+m2

the reduced mass and k = k2. The initial condition (3) yields

δ (0) = 0 and δ̇ (0) = Vimp. Moreover, one can rewrite (5) in dimensionless form by setting

T =
(m

k

)2/5
V

−1/5
imp , (6)

t = τT and δ (t) = VimpTζ (τ). This leads to the renormalized equation

d2ζ

dτ2
= −ζ3/2+ − 3

2
γ̃ζ

1/2
+

dζ

dτ
, (7)

with dimensionless damping parameter

γ̃ = γV
1/5
imp

(

k

m

)2/5

(8)

and the initial condition ζ (0) = 0, dζ
dτ (0) = 1. The restitution coefficient can then be expressed as

e =

∣

∣

∣

∣

dζ

dτ
(τc)

∣

∣

∣

∣

,

where τc is the collision duration. When γ̃ ≈ 0 (or equivalently e ≈ 1) one has (see e.g. [43])

γ̃ ≈ 0.578 (1− e) . (9)
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For example, restitution coefficients obtained experimentally with different types of beads [25] for

Vimp = 0.5m s−1 suggest γ̃ ≈ 0.01 for glass spheres (radius R = 1.96 cm), γ̃ ≈ 0.06 for steel spheres

(R = 1.65 cm), and γ̃ ≈ 0.17 for cork spheres with a lead core (R = 1.66 cm, mn = 31.7 g).

In the forthcoming sections, we shall work with equation (4) rescaled in a similar form obtained by

setting m = m1 and k = k2 in (6). Moreover, we will consider relatively small values of the rescaled

damping constant (8), consistently with the above estimates.

2.2. Well-posedness and time-discretizations of the dissipative contact problem. The well-posedness

of the initial value problem for equation (2) is not immediate for β ∈ [1, 2), since the map defining the

right-hand side of (2) is discontinuous accross the hyperplanes xn−1 = xn for β = 1, and not Lipschitz

continuous for β ∈ (1, 2) (in particular for the KK model).

This difficulty can be circumvented by an appropriate choice of dynamical variables. Defining a

generalized velocity wn through

ẋn = wn +
1

mn

(

γnkn (xn−1 − xn)
β
+ − γn+1kn+1 (xn − xn+1)

β
+

)

, (10)

the dynamical equation (2) becomes

ẇn =
1

mn

(

kn (xn−1 − xn)
3/2
+ − kn+1 (xn − xn+1)

3/2
+

)

. (11)

Now let us denote x = (x1, . . . , xN ), w = (w1, . . . , wN ) and Y = (x,w). The map (x, ẋ) 7→ Y
defines an homeomorphism in R

2N when β > 0. Moreover, for all β ≥ 1, the right-hand side of

(10)-(11) defines a locally Lipschitz continuous map Y 7→ Fs(Y ) (Fs is even C1 for β > 1) and

thus the corresponding initial value problem is well posed according to the Cauchy-Lipschitz theorem.

Moreover, since the energy

H(t) =
1

2

N
∑

n=1

mn ẋ
2
n(t) +

2

5

N
∑

n=2

kn (xn−1(t)− xn(t))
5/2
+

is nonincreasing along any solution, it follows that ẋn(t) is bounded and |xn(t)| grows at most linearly

for all n = 1, . . . , N and all positive times, hence all solutions are globally defined for t ≥ 0.

The new formulation (10)-(11) is also very useful for the purpose of numerical integration. Indeed,

for several numerical schemes, the improved regularity of the right-hand side brings better convergence

properties compared to the differential equation based on the usual dynamical variables (xn, ẋn), whose

right-hand side is not Lipschitz continuous for β ∈ [1, 2).
In order to illustrate this point, let us consider a chain of three spherical beads (of the same material)

having different radii and use the KK model (4) rewritten in dimensionless form. Masses are set to

mn = R3
n with R1 = 1, R2 = 4/5, R3 = 9/10 (Rn corresponds to a rescaled bead radius), and the

rescaled Hertzian stiffness [19] at the different contacts is k2 = 1, k3 =
√

81/85. We fix γ = 0.1.

Reference solutions X = (x, ẋ) are computed using the standard ODE solver of the software pack-

age Scilab, with relative and absolute error tolerances set to 10−13 and 10−15, respectively. In that

case, the numerical time-integration of the KK model is performed using formulation (10)-(11) for

Y (t) (with β = 3/2), and velocity components of X(t) are recovered from the dynamical variable

Y (t) through identity (10).

For several initial conditions X(0) = X0 and different time steps h, we compare the reference solu-

tion X(k h) to numerical approximations Xk obtained using four different methods, which correspond

to IRK schemes with different orders. The first two schemes are applied to (4) rewritten in the form

Ẋ = F (X), i.e., using the usual dynamical variables corresponding to bead positions and velocities.

We consider the Crank-Nicolson (CN) scheme (or trapezoidal rule) [40, 44] defined by

Xk+1 −Xk

h
=

1

2
(F (Xk+1) + F (Xk)). (12)
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This defines a second-order method when the dynamical equations are sufficiently smooth (i.e., the

right-hand side is C2), but such estimates do not apply in our case since F is not Lipschitz continuous.

In addition, we consider the Gauss-Legendre (GL) method [45, 46] defined by

Xk+1 −Xk

h
=
k1 + k2

2
, (13)

where k1, k2 are determined from the implicit equations

ki = F (Xk + h (ai1 k1 + ai2 k1)), i = 1, 2, (14)

with

a11 = a22 =
1

4
, a12 =

1

4
−

√
3

6
, a21 =

1

4
+

√
3

6
. (15)

This defines a fourth-order method in the case of sufficiently smooth systems (i.e., if the right-hand side

isC4), but this result does not apply to the vector field F . The two remaining schemes are applied to the

equation Ẏ = Fs(Y ) corresponding to system (10)-(11). Approximations Yk to Y (k h) are obtained

with the CN scheme
Yk+1 − Yk

h
=

1

2
(Fs(Yk+1) + Fs(Yk)) (16)

and the GL method
Yk+1 − Yk

h
=
k1 + k2

2
, (17)

ki = Fs(Yk + h (ai1 k1 + ai2 k1)), i = 1, 2, (18)

with coefficients aij given in (15). Using the resulting approximations of x(k h) and w(k h) in con-

junction with identity (10) for the velocity components, one obtains approximations Xk to X(k h).
At each iteration, the implicit equations that define each scheme are solved using the Scilab fsolve

function (based on a Powell hybrid method) with relative error tolerance set to 10−13. The time evolu-

tion of bead positions and velocities is approximated in an interval [0, Tmax], and for each scheme we

compute the global error E = max
k h∈[0,Tmax]

‖X(k h)−Xk‖∞.

We first consider the initial condition (3) with impact velocity Vimp = 1, and we set the maximal

time of integration to Tmax = 5 (slightly above the duration of the multiple impact). The global errors

resulting from the four different schemes are given in figure 2. Interestingly, the CN scheme (16) based

on the more regular dynamical equations keeps its optimal order 2 (this is not automatic, since Fs is

C1,1/2 and not C2). The situation is different for the CN scheme (12) based on the less regular ODE. In

that case, while the order seems close to 2 for relatively large h, there is a crossover around h = 10−2,

and below this step size the order drops to 3/2. Order reduction is also observed for the GL scheme.

The scheme (13)-(14) based on the less regular ODE has only order 3/2, which limits its interest due to

its higher computational cost (the dimension of the nonlinear algebraic system solved at each iteration

is twice the dimension of the CN system). The same phenomenon occurs with the scheme (17)-(18)

applied to the smoother dynamical equations, but order reduction is less important since the scheme has

order 5/2. We also note a saturation of the global error around 10−12 when h reaches 10−4, followed

by an increase of the error to 10−11 when h is further decreased to 10−5. Such behavior is typically

linked with the error tolerances of the Scilab ode and fsolve functions and the accumulation of errors in

double-precision arithmetics, but it is certainly enhanced by the limited smoothness of the C1,1/2 map

Fs. Interestingly, we also observe that this GL scheme remains quite precise even for rather large values

of h, as illustrated by the bottom panels of figure 2. Finally, in the case of the GL schemes, we also note

that the global error does not decay monotonically when h goes to 0 and exhibits small oscillations, a

phenomenon which may be linked with the limited smoothness of the dynamical equations.

The above order reduction phenomena are due to the limited smoothness of the maps F and Fs,

which shows up only in the case of contact creation or breaking. To illustrate this point, let us consider
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FIGURE 2. Top : global error E computed versus step size h for four different meth-

ods : CN schemes (12) (blue line) and (16) (crosses), GL schemes (13)-(14) (black

line) and (17)-(18) (diamonds). The errors are plotted in logarithmic scale. The

red lines are plotted to guide the eye and correspond to E = a h3/2 (top line) and

E = b h5/2 (bottom line) with appropriate fitting parameters a, b. We consider the

initial condition (3) with Vimp = 1, and solutions are computed for t ∈ [0, 5]. Bottom :

displacements (left panel) and velocities (right panel) of beads with index n = 1 (black

line), n = 2 (blue), n = 3 (green), and their approximations by the CN scheme (16)

(crosses) and GL scheme (17)-(18) (black diamonds) for h = 0.5.

the new initial condition and maximal time of integration

x(0) = (0.9, 0.2, 0), ẋ(0) = (0.7, 0.6, 0.02), Tmax = 1.5, (19)

so that no contact breaking occurs on [0, Tmax] (see the right panel of figure 3). The global errors

resulting from the four different schemes are given in the left panel of figure 3. One can see that

all schemes keep their optimal orders (2 for the CN schemes, and 4 for the GL methods). This not

surprising since F and Fs define analytic maps in the corresponding regions of the phase space where all

beads remain in contact. One can notice that the global error saturates around 10−13 for the GL schemes
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with time steps below 10−3, but this saturation effect is less important compared to the situation of

figure 2. Moreover, the results are extremely close if dynamical equations are discretized at the level of

X(t) or Y (t).

FIGURE 3. The left panel provides the global error computed versus step size h for

four different methods : CN schemes (12) (blue line) and (16) (crosses), GL schemes

(13)-(14) (black line) and (17)-(18) (diamonds). The errors are plotted in logarithmic

scale. The initial condition and maximal time of integration are given in (19). The

right panel displays the displacements of beads with index n = 1 (black line), n = 2
(blue), n = 3 (green), and their approximations by the CN scheme (16) (crosses) and

GL scheme (17)-(18) (diamonds) for h = 0.3.

In conclusion, in situations where contact creation or breaking occurs, it is preferable to discretize

the dynamical equations rewritten in the form (10)-(11) rather that using the usual dynamical variables

(xn, ẋn).

3. TAILORED NUMERICAL DISSIPATION AND ITS APPLICATION TO THE KUWABARA-KONO

MODEL

Given a smooth ODE discretized with a one-step method of order p, there exists a suitable small

perturbation of the equation, thereafter denoted as modified equation, which is consistent with the

numerical scheme at an orderm > p (m can be chosen arbitrarily large if the ODE is infinitely smooth).

In this section, we show that the KK model with γ = O(h) arises as a modified equation for different

dissipative numerical schemes used to approximate impacts in nondissipative granular chains. This

observation leads to a new class of time-integration methods with tailored numerical dissipation. The

schemes correspond to an additive θ method (p = 1, m = 2) and two-stage IRK methods (p = 1,

m = 2 or 3 depending on the scheme).

We start by recalling general properties of modified equations in section 3.1. In section 3.2, the

dynamical equations of Newton’s cradle are discretized with the additive θ method. The class of two-

stage IRK methods is studied in sections 3.3 and 3.4. The orders of the methods are numerically tested

in section 3.5 for a granular chain.

3.1. General properties of modified equations. We consider an autonomous differential equation in

R
d

dy

dt
= f (y) , (20)
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where the right-hand side f is assumed sufficiently smooth. Given a smooth map g : Rd → R
d, we

denote by Lfg(y) = Dg(y) f(y) the Lie derivative of g along f (Dg denotes the Jacobian matrix of g).

More generally, we denote by Lk
fg the kth Lie derivative of g along f , which is defined by induction

through Lk
fg = LfL

k−1
f g.

We discretize (20) with a general one-step method

Yk+1 − Yk
h

= φ (Yk, h) , (21)

where h denotes the time step, Yk an approximation of y(k h), and the application φ : Rd×R → R
d is

assumed sufficiently smooth. In this paper we shall resort to implicit schemes, hence φ will be defined

implicitly through a system of nonlinear equations solved at each time step.

We assume φ (Y, 0) = f (Y ), so that the scheme (21) is consistent with (20). Denoting by p ≥ 1 the

order of the scheme, one has for all solution y of (20) and h→ 0 :

Ry,h(t) = O(hp), (22)

where Ry,h is the consistency error defined by :

Ry,h(t) =
y(t+ h)− y(t)

h
− φ (y(t), h) . (23)

Property (22) is equivalent to the following condition (see e.g. [47]) :

∂khφ(y, 0) =
1

k + 1
Lk
ff(y), 0 ≤ k ≤ p− 1. (24)

Now let us consider a smooth map F : Rd × R → R
d satisfying F(y, 0) = f(y) and the perturbed

system

dY

dt
= F (Y, h) . (25)

Given an integer m > p, we search for F such that the scheme (21) is consistent at the higher order m
with (25). This means that for all solution Y of (25) one has

RY,h(t) = O(hm) (26)

when h → 0. Equation (25) will be denoted as a modified equation at the mth order relative to the

scheme, or simply modified equation.

Typically, perturbative terms in (25) allow to capture possible effects of time-discretization such as

numerical dissipation or instabilities. A thorough description of the theory of modified equations can

be found in chapter IX of [39] to which we refer for details. We summarize below some basic results

that will be useful for our purpose.

Modified equations are clearly non-unique, since property (26) remains true for any smooth O(hm)
perturbation of the right-hand side in (25). However, all modified equations at the mth order admit the

same Taylor expansion in h at order m− 1. Its coefficients are determined by induction from condition

(26), where an expansion of RY,h with respect to h can be obtained using the expansions of φ, (25) and

its time derivatives. This yields the Taylor expansion of F :

F(Y, h) = f(Y ) +
m−1
∑

j=p

hj Fj(Y ) +O(hm), (27)

where the leading order correction term is given by

Fp =
1

p!

(

∂phφ− 1

p+ 1
Lp
ff

)

. (28)
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A recurrence formula for the coefficients Fj is given in [39] (Lemma 7.3 p.362). Introducing φk =
1
k! ∂

k
hφ, one has in particular :

F1 = φ1 −
1

2
Lff, (29)

F2 = φ2 −
1

6
L2
ff − 1

2

(

LfF1 + LF1f
)

. (30)

The explicit computation of Fj becomes cumbersome for large j or when the coefficients φk are heavy

to compute, but the procedure can be automated using a computer algebra software [48].

It is interesting to note that the coefficient (28) appears at leading order in the consistency error (22),

where Ry,h = −hp Fp(y) +O(hp+1) ([39], Theorem 1.2 p.340).

3.2. An additive θ method with Kuwabara-Kono numerical dissipation. We consider a Newton’s

cradle, which corresponds to a granular chain of the same type as in figure 1, but including local attach-

ments consisting of strings [34] or plates [15]. The dynamical equations correspond to a generalization

of system (4) including local restoring forces, where the attachment of the nth bead is represented by a

spring with linear stiffness Kn, namely :

mnẍn = −Knxn + knδ
3/2
(n−1)+ − kn+1δ

3/2
n+ , 1 ≤ n ≤ N, (31)

with δn = xn − xn+1 and k1 = kN+1 = 0. In model (31), collisions are assumed nondissipative (KK

dissipation will be taken into account at a later stage). Setting x = (x1, . . . , xN ), v = (ẋ1, . . . , ẋN )
and y = (x, v), system (31) can be reformulated as

ẏ = f (y) =

(

v
g(x)

)

, (32)

where the components of g(x) ∈ R
N are given by

gn (x) =
1

mn

(

−Knxn + knδ
3/2
(n−1)+ − kn+1δ

3/2
n+

)

. (33)

In order to approximate solutions of (32), we introduce the implicit one-step method

Xk+1
n −Xk

n

h
=θV k+1

n + (1− θ)V k
n ,

V k+1
n − V k

n

h
=

1

mn

[

− (1− µ)KnX
k+1
n + θ

(

kn

(

∆k+1
n−1

)3/2

+
− kn+1

(

∆k+1
n

)3/2

+

)]

+
1

mn

[

−µKnX
k
n + (1− θ)

(

kn

(

∆k
n−1

)3/2

+
− kn+1

(

∆k
n

)3/2

+

)]

,

(34)

where ∆k
n = Xk

n−Xk
n+1, h denotes the time step and Yk =

(

Xk
1 , . . . , X

k
N , V

k
1 , . . . , V

k
N

)

approximates

y(k h). The scheme (34) depends on two parameters θ and µ. In the special case Kn = 0 (or if kn = 0
and µ = 1 − θ), one recovers the classical θ method [40]. In the general case, (34) corresponds to an

additive θ method where the contact and restoring forces are discretized using different coefficients.

In the sequel, we follow the general procedure described in section 3.1 and consider a modified

equation corresponding to the scheme (34) :

Ẏ = f (Y ) + hF1(Y ) +O(h2), (35)

where the coefficient F1 needs to be determined.

Provided h is small enough, system (34) defines Yk+1 as an implicit function of Yk and h (this

follows from similar arguments as in section A.2). Back substitution in the right-hand side of (34)

leads to the explicit reformulation (21), where

φ(Y, h) = f(Y ) + hφ1(Y ) +O(h2) (36)
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and φ1 has to be determined. Let us set Y = (X,V ) with X = (X1, . . . , XN ), V = (V1, . . . , VN ).
Inserting (21) and (36) in (34) and identifying terms of order h, we find

φ1(Y ) =

(

θ g(X)
ϕ(Y )

)

, (37)

where g(X) ∈ R
N is defined in (33) and the components of ϕ(Y ) ∈ R

N are given by

ϕn(Y ) =
1

mn

(

−Kn (1− µ)Vn +
3

2
θ
(

kn∆
1/2
(n−1)+∆

′
n−1 − kn+1∆

1/2
n+∆′

n

)

)

,

with ∆n = Xn −Xn+1 and ∆′
n = Vn − Vn+1. From identity (29) and expression (37), we obtain the

first order correction term in the modified equation (35) :

F1(Y ) =

(

(θ − 1
2) g(X)
ψ(Y )

)

, (38)

where the components of ψ(Y ) ∈ R
N are given by

ψn(Y ) =
1

mn

(

−Kn(
1

2
− µ)Vn +

3

2
(θ − 1

2
)
(

kn∆
1/2
(n−1)+∆

′
n−1 − kn+1∆

1/2
n+∆′

n

)

)

.

As a consequence, the modified equation (35) can be rewritten

Ẋn = Vn + h (θ − 1

2
) gn(X) +O(h2), (39)

mnẌn +Kn

(

h (θ − µ) Ẋn +Xn

)

=kn

(

∆
3/2
(n−1)+ + 3

(

θ − 1

2

)

h∆
1/2
(n−1)+∆̇n−1

)

− kn+1

(

∆
3/2
n+ + 3

(

θ − 1

2

)

h∆
1/2
n+ ∆̇n

)

+O
(

h2
)

.

(40)

With equation (40) at hand, we are now able to qualitatively analyze discretization effects induced

by the scheme (34). A local linear damping is present when θ > µ, but this effect disappears for

µ = θ. The anti-damping that occurs for µ > θ corresponds to a numerical instability. The scheme

also introduces a contact damping that we now examine in more detail. Setting

θ =
1

2
+

γ

2h
= µ (41)

in (40) and neglecting O(h2) terms, one recovers the KK model

mnẌn +KnXn = kn∆
3/2
(n−1)+ +

3

2
γkn∆

1/2
(n−1)+∆̇n−1 − kn+1∆

3/2
n+ − 3

2
γkn+1∆

1/2
n+ ∆̇n. (42)

This observation leads us to the concept of tailored numerical dissipation. In this framework, one

discretizes the nondissipative model (31) with the dissipative scheme (34)-(41) in order to approximate

the dissipative model (42). From the above computations, for µ = θ the scheme (34) is consistent at

order 2 with the KK model (39)-(42) with damping γ = (2θ − 1)h fixed by (41).

Using this approach, one cannot expect convergence of solutions of (34)-(41) towards solutions of

(42) when γ is fixed and h→ 0, due to the divergence of the coefficient θ in (41). However, as we shall

see in section 3.5, numerical tests performed for Kn = 0 indicate that the scheme (34) approximates

solutions of (42) up to an error O(h2) when γ = O(h) is fixed by (41). The order of approximation is

the same for positions and velocities provided one applies the following correction to Vn :

Ẋn(k h) ≈ V k
n +

h

mn

(

θ − 1

2

)(

−KnX
k
n + kn

(

∆k
n−1

)3/2

+
− kn+1

(

∆k
n

)3/2

+

)

, (43)

which corresponds to neglecting O(h2) terms in (39).

Note that in the above computations, some care must be taken concerning the regularity of solutions

and the order of the method, due to the limited smoothness of the KK model (see section 2.2). The
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formal second-order consistency that follows from the dissipation condition (41) is actually valid in

the absence of contact creation or breaking between the beads (in such regions of the phase space,

dynamical equations are infinitely smooth). However, if contact creation or breaking occurs, we show

in section A.2 that the consistency error is only O(h3/2). As a consequence, our estimate of the global

error is only O(h3/2) instead of O(h2) (see theorem 1 in section A.2).

The scheme (34)-(41)-(43) will be thereafter denoted as additive θ method, or simply θ method in

the special case Kn = 0 (this case will be studied in section 4). Note that in the nondissipative case

γ = 0, one obtains θ = 1/2 and one recovers the CN scheme studied in section 2.2.

Besides the aspects related to convergence, the additive θ method provides a qualitatively correct

approximation of the dynamics of (42) even for relatively large step sizes. In particular, the scheme

reproduces an asymptotic synchronisation of the oscillators which originates from the contact damping

in (42) and the absence of local damping. In order to illustrate these aspects, we consider a Newton’s

cradle consisting of N = 10 identical elements, with contact damping parameter γ = 0.3 (the other

parameters are precised in figures 4 and 5). We choose a time step h = 0.5, which is relatively large

considering the collision time Tcol between two free beads (Tcol ∼ 6h), but small compared to the

period Tosc of in-phase oscillations (Tosc ∼ 125h). According to the dissipation condition (41), this

choice leads us to fix θ = 0.8. We consider the impact initial condition (3) with Vimp = 1.

The dynamics of Newton’s cradle is illustrated in figure 4 (kn = 13.115) and figure 5 (kn = 1).

Each figure compares the reference solution computed by the Matlab ode23s solver for stiff systems

(tolerance 10−8) and the approximation obtained with the additive θ method (system (34) is solved

with the fsolve Matlab function with tolerance 10−4). One can observe that both numerical schemes

reproduce the same dynamical behavior, characterized by an alternance of short impact phases (where

energy is dissipated through contact damping) and slow oscillations (where beads are not in contact,

and either the first or last bead oscillates with the highest amplitude), as illustrated by figure 4. After

this transient phase, beads tend to oscillate almost in phase with almost equal amplitudes (figure 5).

From a more quantitative point of view, relatively small differences between the two solutions are

visible in figure 4 during the transient phase (with an error close to 7% on the maximal deflection

of the last bead following the initial impact), but discrepancies tend to become negligible when time

increases. Comparing the two panels of figure 5, it is hard to see a difference between the two solutions

on longer time scales. On the whole time of simulation (which corresponds to almost 48 periods of

the linear local oscillators), the error measured with the (rather stringent) supremum norm is 0.155 for

displacements and 0.0475 for velocities (dividing by the maximal displacement and velocity, this yields

relative errors around 5%).

In the sequel, we will introduce a class of two-stage IRK schemes which provide a higher order

approximation of the KK model and more accurate results than the θ method, even for large step sizes.

3.3. Order conditions for two-stage RK schemes with tailored dissipation. We start this section by

providing the modified equation for a general two-stage IRK scheme applied to an arbitrary smooth

ODE in R
d of the form (20). This problem can be addressed by following the computation scheme

described in section 3.1. We summarize below the main steps of the computations which are detailed

in [39]. The IRK scheme takes the form [44]

Yk+1 − Yk
h

= b1k1 + (1− b1) k2, (44)

where k1, k2 ∈ R
d are obtained by solving a 2d-dimensional nonlinear system

ki = f (Yk + h (ai1k1 + ai2k2)) , i = 1, 2. (45)

The scheme parameters are b1 and the 2× 2 matrix A = (aij). By solving (45) for h small enough and

defining

φ (Yk, h) = b1k1 + (1− b1) k2, (46)



KUWABARA-KONO NUMERICAL DISSIPATION: A NEW METHOD TO SIMULATE GRANULAR MATTER 13

0 50 100 150

Time

-3

-2

-1

0

1

2

3

4

5

D
is

p
la

c
e

m
e

n
t

FIGURE 4. Time histories of bead displacements in Newton’s cradle (N = 10). The

blue solid lines represent the reference solution of (42) computed with ode23s. During

the slow phases, beads are not in contact and the graphs correspond to beads n =
1, . . . , N from bottom to top. The red dashed lines denote the approximation of the

solution by the additive θ method with h = 0.5. The system parameters are mn = 1,

Kn = 0.01, kn = 13.115 and γ = 0.3.
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FIGURE 5. Space time diagrams showing bead displacements in Newton’s cradle. Pa-

rameters are the same as in figure 4 except kn = 1. The left and right panels display

the solutions obtained with ode23s and the additive θ method, respectively (the two

contour plots are almost identical). In each panel, two insets provide a zoom on the

solution over long times and during the transient regime preceding synchronization.

the IRK scheme can be reformulated in the equivalent explicit form (21), and we have φ (Y, 0) =
f (Y ). The Taylor expansion of (k1, k2) with respect to h can be computed by a standard identification

procedure in system (45), which in turn yields the Taylor expansion of φ (see [39], Theorem 1.4 p.55

and Table 1.1 p.53).

Following the approach described in section 3.1, we consider the modified equation at the third order

relative to the IRK scheme :

dY

dt
= f(Y ) + hF1(Y ) + h2 F2(Y ) +O(h3). (47)
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The coefficients F1, F2 are determined in such a way that the IRK scheme and (47) are consistent at

order 3, i.e., the consistency errorRY,h defined by (23) isO(h3). One obtains with the Taylor expansion

of φ and equations (29)-(30) (see [39], section IX.9, formula (9.2) p.369) :

F1 = C11f
[1], F2 =

1

2
(C22 − 2C11)Lf [1]f +

1

2
(C21 − C11) f

(2), (48)

where f [1] = Lff , f (2)(y) = D2f (y) (f (y) , f (y)) (D2 denotes the second derivative) and

C11 = b1 (a11 + a12) + (1− b1) (a21 + a22)−
1

2
, (49)

C21 = b1 (a11 + a12)
2 + (1− b1) (a21 + a22)

2 − 1

3
, (50)

C22 = 2b1 (a11 (a11 + a12) + a12 (a21 + a22)) + 2 (1− b1) (a21 (a11 + a12) + a22 (a21 + a22))−
1

3
.

(51)

In the sequel, we address more specifically the case when d = 2N and the right-hand side of (20) reads

f(y) =

(

v
g(x)

)

, ∀y = (x, v) ∈
(

R
N
)2
, (52)

where g denotes a smooth map in R
N . Problem (20)-(52) is then equivalent to the second order system

ẍ = g(x). (53)

Equation (53) is time-reversible, i.e., it has the invariance t → −t. Setting Y = (X,V ) ∈
(

R
N
)2

and

using expressions (48) and (52), the modified equation (47) can be rewritten

Ẋ = V + hC11 g(X) +
h2

2
(C22 − 2C11)Dg(X)V +O(h3), (54)

Ẍ = g(X) + h 2C11Dg(X)Ẋ + h2
(

λ1Lgg(X) + λ2D
2g(X)(Ẋ, Ẋ)

)

+O(h3), (55)

with

λ1 = C22 − 2C11 − C2
11, λ2 =

1

2
(C21 + C22 − 3C11).

Thereafter, we follow the approach introduced in section 3.2 on the example of Newton’s cradle, and

use the scheme (44)-(45) to approximate the following perturbation of (53) :

ẍ = g(x) + γ Dg(x)ẋ. (56)

The parameter γ controls the strength of the perturbation that breaks the time-reversibility symmetry in

(56). Moreover, if g = −M−1∇Ψ for a smooth convex potential Ψ : RN → R and a positive definite

symmetricN×N matrixM , and if one assumes γ > 0, then the energyH = 1
2 ẋ

TM ẋ+Ψ(x) satisfies

Ḣ = −γ ẋTD2Ψ(x)ẋ ≤ 0, (57)

i.e., system (56) represents a dissipative perturbation of the conservative system (53).

The modified equation (55) coincides with the perturbed system (56) up to O(h2) terms under the

dissipation condition

C11 =
γ

2h
. (58)

Consequently, if C11 is fixed and γ = 2C11h, then the IRK scheme is consistent at order 2 with model

(56) supplemented by (54). Furthermore, equations (55) and (56) coincide up toO(h3) terms under the

additional conditions λ1 = λ2 = 0, which can be rewritten as

C22 = 2C11 + C2
11, C21 = C11 − C2

11. (59)

Consequently, the conditions (58)-(59) imply that the IRK scheme is consistent at order 3 with model

(56) and equation (54).
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Let us examine the above results more closely in the case of Newton’s cradle, which is described by

equation (31) in the nondissipative case. In this system we have M = diag(m1, . . . ,mN ),

Ψ(x) =
1

2

N
∑

n=1

Kn x
2
n +

2

5

N
∑

n=2

kn (xn−1 − xn)
5/2
+

and the energy reads H = Ψ(x) + 1
2

∑N
n=1mn ẋ

2
n. The modified equation (55) takes the form :

mnẌn+Kn

(

γ Ẋn+Xn

)

= kn

(

∆
3/2
(n−1)+ +

3

2
γ∆

1/2
(n−1)+∆̇n−1

)

−kn+1

(

∆
3/2
n+ +

3

2
γ∆

1/2
n+ ∆̇n

)

+O (hm) ,

(60)

where ∆n = Xn −Xn+1, m = 2 under condition (58), and m = 3 if conditions (58)-(59) hold true.

Consequently, the modified equation (60) incorporates a contact damping term corresponding to KK

dissipation, similarly to equation (42). If Kn = 0, the KK model (4) and equation (60) coincide up to

O (hm) terms. In that case, the KK model can be interpreted as a modified equation at the mth order

relative to the IRK scheme.

IfKn 6= 0, one can notice from equation (60) that the IRK scheme introduces a local damping which

is proportional to the contact damping and cannot be tuned independently. In particular, the model (42)

cannot be approximated by an equivalent equation within this class of IRK schemes, since this model

incorporates contact damping but no local damping. In section 3.2, this issue was solved by introducing

an additive θ method for which local and contact forces were discretized differently (see equation (34)).

This scheme belongs to the more general class of additive RK methods [41], which could be used in

place of (44)-(45) and would allow us to tune local and contact numerical dissipations independently.

We end this section with some comments on the order of the method and regularity issues. As

already noted in section 3.2, the above arguments must be interpreted with caution if the IRK scheme

is applied to a situation where contact creation or breaking occurs in a granular chain. In this case, the

coefficient of the modified equation (55) at order hj presents a singularity for all j ≥ 2. In particular,

the coefficient D2g(X)(Ẋ, Ẋ) at order h2 reads
(

D2g(X)(Ẋ, Ẋ)
)

n
=

3

4mn

(

knH(∆n−1)∆
−1/2
n−1 ∆̇2

n−1 − kn+1H(∆n)∆
−1/2
n ∆̇2

n

)

, (61)

where H denotes the Heaviside step function. This term is clearly singular when ∆n → 0+ for some

index n ∈ {1, . . . , N − 1}, i.e., when the compression between beads n and n+ 1 tends to vanish. We

did not attempt to analytically estimate the global error obtained with this class of IRK schemes under

conditions (58)-(59). However, for a particular choice of parameters, numerical experiments performed

in section 3.5 for γ = O(h) indicate O(h5/2) convergence instead of O(h3).

3.4. An A-stable third order IRK scheme with tailored dissipation. In what follows, we construct

a two-stage IRK scheme having convenient stability properties and satisfying the order conditions (59),

where C11 is assumed positive and treated as a parameter. The parameters of the scheme (44)-(45) are

searched in the form

b1 =
1

2
+ β, (62)

{

a11 =
1
4 + C11 + α, a12 =

1
4 −

√
3
6 − α+ β√

3
,

a21 =
1
4 +

√
3
6 + α+ β√

3
, a22 =

1
4 + C11 − α,

(63)

where the coefficients α = α(C11) and β = β(C11) will be determined as functions of C11 in order to

fulfill the two order conditions (59).

As we shall see, the order conditions lead to α(0) = β(0) = 0, so that the scheme (62)-(63) is a

perturbation of the GL scheme (13)-(14)-(15) when C11 is small. It is clear that the order conditions

(59) are satisfied for C11 = α = β = 0, because the GL scheme has order 4, which implies F(Y, h) =
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f(Y )+O(h4) in (27). Small values of C11 will occur for weakly dissipative systems (where γ is small

in (57)) due to condition (58) (assuming that the time step h is not too small). Since the GL scheme

possesses good stability properties [45] and is symplectic for Hamiltonian systems [44, 39], one can

expect the scheme (62)-(63) to possess convenient qualitative properties in the case of weak dissipation.

Let us now determine α, β from the two order conditions (59). With the choice (62)-(63), the coef-

ficient C21 given by (50) is independent of α and takes the form

C21 = −1

3
β2 + C11 + C2

11.

Assuming further β ≥ 0, the second order condition C21 = C11 − C2
11 yields β =

√
6C11. Substitut-

ing this value in the expression of C22 (equation (51)), one obtains after lengthly but straightforward

computations

C22 = (2 +
√
2)C11 + 6C2

11 −
2√
3
α.

The order condition C22 = 2C11 + C2
11 leads then to

α =

√

3

2
C11 + 5

√
3

2
C2
11. (64)

Consequently, we have obtained a family of IRK schemes parameterized by C11 ≥ 0, defined by (64)

and

b1 =
1

2
+
√
6C11, (65)

{

a11 =
1
4 + C11 + α, a12 =

1
4 −

√
3
6 − α+

√
2C11,

a21 =
1
4 +

√
3
6 + α+

√
2C11, a22 =

1
4 + C11 − α,

(66)

which satisfies the order conditions (59). The stability of the IRK scheme is studied in section A.1,

where we show in particular that the method isA-stable forC11 ≥ 0 (see the appendix for the definition

of A-stability).

From the above computations, in order to approximate the solutions of the perturbed system (56),

one can use the IRK scheme (44)-(45) with parameters fixed by the dissipation condition (58) and (64)-

(65)-(66), applied to the unperturbed system with right-hand side (52). In that case (using the order

conditions), the equivalent equation (54)-(55) of the IRK scheme simplifies to

Ẋ = V + hC11 g(X) +
h2

2
C2
11Dg(X)V +O(h3), (67)

Ẍ = g(X) + γ Dg(X)Ẋ +O(h3), (68)

and (68) coincides with (56) up to O(h3) terms. From equation (67), the following correction must be

applied in order to approximate time derivatives up to O(h3) :

Ẋ(k h) ≈ Ẋk
def
= Vk + hC11 g(Xk) +

h2

2
C2
11Dg(Xk)Vk, (69)

where Yk = (Xk, Vk) denotes a solution of (44)-(45).

One can notice that for a given initial condition at t = 0, if X0 = X(0) and Dg(X0) 6= 0, then the

determination of V0 requires to solve the following linear system originating from approximation (69) :
(

I +
h2

2
C2
11Dg(X0)

)

V0 = Ẋ(0)− hC11 g(X0). (70)

Then, with (X0, V0) at hand, Yk is computed from (44)-(45) by induction, which determines Xk ≈
X(k h), Vk, and Ẋk ≈ Ẋ(k h) is obtained with (69). Another possibility is to compute the first iterate
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using the rule

V0 = Ẋ(0)− hC11 g(X0)−
h2

2
C2
11Dg(X0)Ẋ(0), (71)

since identities (70) and (71) coincide up to O(h3) terms.

In the sequel, this scheme will be applied to the KK model (4). For convenience, we summarize

below the different features of the scheme. The coefficients b1 and aij of the two-stage IRK scheme

are given by (65) and (66), where C11 is related to the KK damping γ and time step h through the

dissipation condition (58), and α is a function of C11 defined in (64).

The scheme defines a sequence of vectors Yk = (Xk
1 , . . . , X

k
N , V

k
1 , . . . , V

k
N ), where Xk

n approxi-

mates bead positions xn(k h). Bead velocities are approximated according to (69) :

ẋn(k h) ≈ V k
n +

1

mn
hC11

(

kn

(

∆k
n−1

)3/2

+
− kn+1

(

∆k
n

)3/2

+

)

+
3

4mn
h2C2

11

(

kn

(

∆k
n−1

)1/2

+

(

V k
n−1 − V k

n

)

− kn+1

(

∆k
n

)1/2

+

(

V k
n − V k

n+1

)

)

,

(72)

where ∆k
n = Xk

n −Xk
n+1. Moreover, we initialize the IRK scheme with X0

n = xn(0) and

V 0
n = ẋn(0) +

1

mn
hC11

(

−kn
(

∆0
n−1

)3/2

+
+ kn+1

(

∆0
n

)3/2

+

)

+
3

4mn
h2C2

11

(

−kn
(

∆0
n−1

)1/2

+
(ẋn−1(0)− ẋn(0)) + kn+1

(

∆0
n

)1/2

+
(ẋn(0)− ẋn+1(0))

)

,

(73)

following approximation (71).

At each iteration, starting from a known iterate Yk, one solves the 4N -dimensional nonlinear system

(45) (the map f in the right-hand side is the case Kn = 0 of (32)-(33)), and one obtains Yk+1 from

identity (44).

3.5. Orders of convergence. In section A.2, the convergence of the θ scheme is proved for the KK

model with small O(h) dissipation. For the sake of simplicity, the proof is carried out for an infinite

chain of identical beads without local potential, but the analysis could be readily extended to the general

case. If θ ≥ 1/2 is fixed and the dissipation constant is given by γ = (2θ − 1)h (according to (41)),

then the θ scheme approximates bead positions and velocities up to an error O(h3/2) on any bounded

time interval (see Theorem 1 in section A.2). This error bound is weaker than the O(h2) bound that

could be expected from the consistency analysis performed in the absence of contact breaking (section

3.2).

In what follows, we perform numerical simulations to test the above error estimate for the θ scheme

and to study the convergence of the IRK scheme. We consider the trimer system introduced in section

2.2 and start with the initial condition (19), for which no contact breaking occurs on [0, Tmax] with

Tmax = 1.5. The contact damping is set to γ = h, hence θ = 1 and C11 = 1/2 according to (41)

and (58). In order to study the orders of convergence of the θ- and IRK schemes, we compare the

numerical solutions to the reference solution obtained with the ode45 Matlab solver (relative tolerance

10−13, absolute tolerance 10−15). The global errors obtained with the θ method and IRK scheme for

different time steps h are shown in the left panel of figure 6 (the global error is the maximal error in

displacement and velocity with respect to the reference solution, taken over n and t ∈ [0, Tmax]). As

expected from the consistency order of these schemes (deduced from the derivation of the equivalent

equations in sections 3.2, 3.3 and 3.4), the θ method converges with order 2 and and the IRK scheme

with order 3 in the absence of contact breaking.

In a second step, we consider the initial condition (3) with impact velocity Vimp = 1. Fixing

Tmax = 5, contact creation and breaking occur in the time interval of simulation [0, Tmax]. The global

errors obtained with the θ method and IRK scheme are shown in the right panel of figure 6. We

observe that the order of convergence of the θ method is still equal to 2, which indicates that the order
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3/2 obtained in section A.2 is not optimal (at least for this type of initial condition). In addition, we

observe that the order of the IRK scheme drops to 2.5. The loss of cubic convergence is consistent with

the singular terms (at contact breaking) obtained in the derivation of the modified equation (see (55)

and (61)).
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FIGURE 6. Global error of the θ method (blue line) and IRK scheme (black dashed

line) for the initial condition and time interval (19) without contact breaking (left

panel), and for the initial condition (3) with impact velocity Vimp = 1 (right panel).

4. DISSIPATIVE IMPACTS AND WAVES IN DIMER CHAINS

In this section, we apply the additive θ method defined in section 3.2 and the IRK scheme defined

in section 3.4 to an impact on a chain consisting of two types of beads. The beads are made of the

same material and have alternatively large and small radii. This problem constitutes an interesting

test case because the system response displays different wave features depending on the mass ratio

between beads. In addition, the effect of the KK contact damping has not been previously analyzed in

this context up to our knowledge.

We recall that the θ and IRK schemes correspond to numerical discretizations of the nondissipative

Hertz model, where numerical dissipation is controlled by a single parameter and appropriately tuned in

order to match the KK dissipation. For given values of the contact damping constant γ and numerical

step size h, the scheme parameters θ and C11 are fixed by the dissipation conditions (41) for the θ
method and (58) for the IRK scheme. Bead velocities ẋn are retrieved from equations (43) for the θ
scheme and (72) for the IRK scheme. The schemes were implemented both in Matlab and Scilab, and

we have used the fsolve functions to solve the implicit equations at each time step.

To evaluate the precision of the θ and IRK schemes, we will consider reference solutions of the KK

model (system (10)-(11) with β = 3/2) obtained using adaptive ODE solvers with tolerances set to very

low values (in the range 10−8− 10−13, depending on the simulation). We use either the ode23s Matlab

solver for stiff problems or the ODE solver of Scilab for stiff or non-stiff systems (LSODA ODEPACK

solver). In addition, we shall compare the θ and IRK schemes to the direct discretizations of the KK

model introduced in section 2.2. We will evaluate the numerical schemes quantitatively by computing

the global error, and qualitatively by studying the robustness of the relevant wave phenomena, both for

small and large time steps h.

4.1. Solitary waves under dissipation and dispersion effects. We consider equation (4) with kn = 1,

m2i+1 = 1, m2i = ε ∈ (0, 1], and the impact initial condition (3) with Vimp = 1.
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The response of the system corresponds to the propagation of a solitary wave in the absence of

dissipation (case γ = 0). This case was studied in [12, 18], where it was shown that the amount of

energy dispersion during impact propagation depends on the mass ratio ε. More precisely, for long

chains and ε ≈ 0.59, one finds a maximal drop in the value of the force transmitted at the end of the

chain, while the main pulse is followed by a significant dispersive tail [12]. On the contrary, scattering

is minimal for homogeneous chains (ε = 1), leading to a maximal transmitted force. These results have

been extended in [8, 18] to the case of dissipative chains, using the LZB model [27, 28] that accounts

for energy loss due to plastic deformations. In what follows, we show that the above phenomenology

is preserved by the KK model (4) and the numerical schemes introduced in section 3.

Figure 7 illustrates the propagation of a solitary wave in a dimer chain with N = 25 elements,

for ε = 0.59 and γ = 0.06. In the left panel, the blue solid line provides the time history of bead

velocities computed from the ode23s scheme with low tolerance. The propagation of a slowly damped

solitary wave followed by a sizeable oscillatory tail is clearly visible. When fixing h = 0.1, the IRK

scheme provides a very accurate approximation of the wave profiles (left panel, magenta line). In the

right panel, one can notice some discrepancies between the reference solution given by ode23s and the

approximation obtained from the IRK scheme with large time step h = 1. However, the different wave

phenomena are still qualitatively well reproduced by the IRK scheme. The θ scheme requires smaller

time steps in order to obtain correct results due to its lower order. For h = 0.1, the solution obtained

with the θ scheme is very close to the ones displayed in the left panel of figure 7 (data not shown).

More quantitative informations are summarized in Table 1.

In the case of an homogeneous chain (ε = 1), the IRK and θ scheme accurately capture the propaga-

tion of a coherent solitary wave and its slow amplitude decay due to contact damping. This is illustrated

in figure 8 for γ = 0.1 and h = 0.1.

10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

V
e

lo
c

it
y

10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

V
e

lo
c

it
y

FIGURE 7. Impact propagation in a dimer chain with mass ratio ε = 0.59, γ = 0.06
and N = 25 elements. The graphs display the time evolution of the velocities of beads

number 10, 15, 20 and 25 (from left to right). The blue solid line corresponds to the

reference solution obtained with ode23s (tolerance 10−13) and the magenta dash-dot

line show the IRK approximation. Left and right panels correspond to h = 0.1 and

h = 1, respectively.

Figure 9 illustrates the effect of mass ratio on the ejection velocity of the last bead, computed with

different schemes and time steps for the same parameters as in figure 7. The results of the IRK and θ
schemes with h = 0.1 are very close to the reference solution and small discrepancies appear for the

IRK scheme with h = 1, although the graph of the ejection velocity remains qualitatively correct. A

shallow local minimum of the ejection velocity is clearly visible close to ǫ = 0.6, and is linked with
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Method and time step
Maximal error

in displacement

Maximal error

in velocity

Execution

time [s]

IRK scheme h = 1 0.0832 0.0447 0.18

IRK scheme h = 0.1 0.0033 6.1127e-04 1.8

θ scheme h = 0.1 0.0217 0.0121 0.53

TABLE 1. Numerical errors and execution times for the simulation of the impact

propagation described in figure 7 (dimer chain with N = 25 elements), for different

numerical schemes and time steps. Errors are computed in supremum norm, with 1 ≤
n ≤ N and t ∈ [0, 30] (the supremum norm of the reference solution is approximately

2.27 for displacements and 1 for velocities). Timings were measured on a Intel Core

i7 processor (3 GHz, 16GB RAM) with the numerical algorithms implemented in

Scilab.
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FIGURE 8. Impact propagation in an homogeneous chain with γ = 0.1 and N = 50
elements. The graphs display the time evolution of the velocities of beads number

1 + 5 i (0 ≤ i ≤ 9) from left to right. The red solid line corresponds to the reference

solution obtained with ode23s (tolerance 10−8), the black dashed line to the θ scheme,

and the magenta dash-dot line to the IRK scheme, with h = 0.1 for both schemes.

the energy transferred to the oscillatory tail of the solitary wave, similarly to the results reported in

[12, 8, 18].

In summary, the above computations indicate that the concept of tailored numerical dissipation im-

plemented through the θ and IRK schemes correctly describe impact propagation in dimer chains, even

for relatively large step sizes h (in the range 0.1− 1, depending on the scheme).

4.2. Numerical dissipation vs direct discretization. Let us now compare the θ and IRK schemes to

the direct discretizations of the KK model introduced in section 2.2, based on the CN and GL schemes.

We recall that in the absence of contact creation or breaking, dynamical equations are perfectly smooth

(i.e., the right-hand side is analytic) and thus the latter schemes have orders 2 and 4, respectively.

Impacts lead to order reduction, but this phenomenon can be attenuated to some extent by a regularizing

change of variables, switching from the usual discretizations (12) and (13)-(14) to the new ones (16)

and (17)-(18).

Tests are performed for a dimer chain with N = 25 elements and ε = 0.59. For given step sizes,

we compare the global errors (uniform distance to the reference solution) of the IRK and GL schemes

on one hand, and those of the θ and CN schemes on the other hand. Note that in each group, the three
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FIGURE 9. Velocity of ejection of the last bead in a dimer chain, plotted as a func-

tion of mass ratio ǫ (the chain has N = 25 elements and the impact velocity is equal

to unity). The contact damping constant is γ = 0.06. The blue solid line shows the

reference solution calculated by ode23s (tolerance 10−8), the black dashed line corre-

sponds to the θ scheme with h = 0.1, the magenta dash-dot line to the IRK scheme

with h = 0.1 (this curve almost perfectly coincides with the reference solution), and

the red dotted line to the IRK scheme with h = 1. The final velocity of the N th bead

is evaluated at t = 30 (beyond this time the bead performs a free flight).

schemes lead to similar execution times, and at each iteration the θ and CN schemes are computation-

ally less expensive than the IRK and GL schemes.

We start by comparing the IRK and GL schemes and first consider a large time step h = 0.5.

The errors resulting from each scheme are given in the left panel of figure 10 for different values of

γ ∈ [0, 0.1]. The smallest error is obtained with the IRK scheme for γ ∈ [0.007, 0.057] and with the

GL scheme (13)-(14) for γ ∈ [0.062, 0.1]. Moreover, the errors converge to the same value for the three

schemes when γ → 0 because the schemes coincide for γ = 0.

The situation is different for smaller time steps, as illustrated in figure 10 (right panel) for h =
0.05. The error obtained with the IRK scheme is the largest when γ lies above 0.013, and it increases

significantly with γ in comparison to the GL schemes. This is linked with the fact that the IRK scheme

does not converge towards the solution of the KK model when γ > 0 is fixed and h → 0 (figure 6

suggests convergence for γ = O(h) as in Theorem 1), but does converge for γ = 0 and h → 0 (since

it coincides with the GL scheme). In addition, we notice that (17)-(18) provides better results than

(13)-(14) for γ in some bounded interval away from 0 and h small enough. This is due to the higher

order of (17)-(18) when contact creation or breaking occurs.

The case of the θ and CN schemes is addressed in figure 11. For a rather large time step h = 0.25
(left panel), the largest error is produced by the CN scheme (12) (based on the less regular ODE) when

γ ∈ [0.11, 0.178] and by the θ method outside this interval. There are no values of γ for which the θ
scheme yields the smallest error, but for γ below 0.1 the three schemes lead to rather similar errors.

The CN scheme (16) provides the best results when γ is large enough, above 0.08 for this time step.

When h is further decreased, this scheme becomes more advantageous than (12), which suffers from

order reduction in the case of impacts. This is illustrated in figure 11 (right panel) for h = 0.01, where

the CN scheme (16) yields the lowest error for γ above 0.05. For the θ scheme, the error increases

rapidly when γ departs from 0 and h is small, for the same reason as previously explained for the IRK

scheme.
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FIGURE 10. Global error resulting from different schemes for an impact propagation

in a dimer chain (ε = 0.59,N = 25). The black curve corresponds to the IRK scheme,

the red curve to the GL scheme (17)-(18), and the blue curve to the GL scheme (13)-

(14) based on the less regular ODE. The left panel corresponds to a large step size

h = 0.5, while the right panel corresponds to h = 0.05. Errors are computed in

supremum norm (with 1 ≤ n ≤ N and t ∈ [0, 30]) for different values of the damping

constant γ (note the semi-logarithmic scale in the right panel). The reference solutions

used to evaluate the global error have been computed using the standard ODE solver of

Scilab, with relative and absolute error tolerances set to 10−13 and 10−15, respectively

(the supremum norm of the reference solution decays from approximately 2.94 to 2.06
when γ is increased in [0, 0.1]).

As a conclusion, the above numerical results indicate that the best approach for the simulation of

impacts in granular chains depends on the range of step sizes considered and the strength of contact

damping. In order to obtain more precise results when the time step is small, it is preferable to use

a direct discretization of the KK model written in the regularized form (10)-(11), as illustrated in this

work with the GL and CN schemes. However, for large time steps and γ not too large, the θ and IRK

schemes based on tailored numerical dissipation are competitive with the direct discretizations, and the

IRK scheme is even more precise than the GL scheme in some physical range of damping constants γ.

5. CONCLUSION AND PERSPECTIVES

In this work, we have used the technique of modified equations to construct time-integration schemes

matching numerical dissipation with physical dissipation at different consistency orders. This approach

was applied to an additive θ method and general two-stage IRK schemes, and allowed us to simulate

impacts in dissipative granular chains without explicitly including the nonsmooth viscoelastic force of

the KK model. For dimer chains, we have shown that an IRK scheme with KK numerical dissipation

provides accurate results for relative large step sizes and compares well with direct discretization of

the KK model by the GL scheme. In the above study, particular attention has been paid to the lack

of regularity of the KK model. We have numerically studied associated order reduction phenomena,

introduced appropriate variables for more accurate time-integration, and provided in section A.2 a

convergence proof for the θ method adapted to the non Lipschitz continuous contact forces.

The above numerical methods will be further improved in several directions. The formulation and

resolution of the implicit equations (34) and (45) can be significantly optimized, e.g. by following

the line of [49] (chapter 5) and by exploiting the band structure of the dynamical equations. This will
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FIGURE 11. Global error resulting from different schemes for an impact propagation

in a dimer chain, for the same parameters as in figure 10. The black curve corresponds

to the θ scheme, the red curve to the CN scheme (16), and the blue curve to the CN

scheme (12) based on the less regular ODE. The left and right panels correspond to

h = 0.25 and h = 0.01, respectively (note the semi-logarithmic scale in the right

panel).

allow for efficient simulations of much larger systems of particles, such as those describing two- or

three-dimensional granular crystals (see e.g. [7] and references therein) or a granular layer in contact

with a continuum elastic medium [2]. The introduction of adaptive piecewise-constant time steps will

also bring important improvements by increasing precision and reducing simulation times.

From a theoretical point of view, it would be interesting to obtain a sharper error bound for the

θ method with KK dissipation and to generalize the convergence analysis to other IRK schemes, in-

cluding the third order IRK method introduced in section 3.4. Moreover, applying our approach to

nonautonomous systems constitutes an additional meaningful extension. On another front, the approx-

imation of unilateral compliant models involving linear spring-dashpots constitutes another interesting

problem, where additional difficulties may arise from the discontinuity of dissipative forces.

Another relevant problem concerns the approximation of more general types of dissipative effects.

Additive RK schemes [41] could be used to match an arbitrary sum of dissipative forces, just as we

have used the additive θ method to approximate the local and contact dissipations in Newton’s cradle.

In addition, variable stepsizes [50] may allow us to approximate a wider class of dissipative forces

using numerical dissipation, such as the case β 6= 3/2 in (1). If other types of dissipation are present

which can hardly be incorporated through numerical dissipation, such as those arising from Coulomb

friction and plasticity, one could then consider hybrid discretizations combining numerical dissipation

with explicitly incorporated dissipative terms.

ACKNOWLEDGMENTS

G.J. thanks the PAZI Fund (Israel Atomic Energy Commission) (Grant No. 263/15) for financial

support. The authors are grateful to V. Acary, F. Bourrier and A. Vieira for stimulating discussions.

APPENDIX A. STABILITY AND CONVERGENCE ANALYSIS

A.1. A-stability of the two-stage IRK scheme. In this section we analyze the stability of the two-

stage IRK schemes (44)-(45) parameterized by C11 > 0, with coefficients ai,j and b1 defined in (64)-

(65)-(66). For simplicity we omit the case C11 = 0 which corresponds to the GL scheme, for which
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A-stability is already established [45]. In what follows we assume some familiarity with standard

stability analysis (see e.g. [45], sections IV.2-3).

We discretize the Dahlquist test equation ẏ = λ y, where y(t) ∈ C and λ ∈ C is a parameter,

and therefore consider iteration (44)-(45) with f(y) = λ y. The numerical solution takes the form

Yk = (R(hλ))k Y0, where R is called the stability function of the method. It consists of a rational

function R = P
Q which takes the form [45]

P (z) = det
(

I − zA+ z✶bT
)

, Q(z) = det (I − zA) , (74)

where A = (aij), b
T = (b1, 1− b1), ✶ = (1, 1)T . Using the coefficients defined in (64)-(65)-(66), one

obtains after lengthy but straightforward computations

P (z) = 1 +
(1

2
− 2C11

)

z + a− z2, Q(z) = 1−
(1

2
+ 2C11

)

z + a+ z2, (75)

where a± = 1
12 ± 1

2 C11 +
3
2 C

2
11.

In the sequel, we check that the IRK scheme isA-stable [45], i.e., we have |R(z)| ≤ 1 for Re(z) ≤ 0.

More precisely, we will show that

|R(z)| < 1 when Re(z) ≤ 0 and z 6= 0. (76)

Therefore, if the equilibrium y = 0 of the Dahlquist equation is asymptotically stable (case Re(λ) < 0),

then this property remains true for the fixed point Y k = 0 for all step size h > 0. Similarly, if λ 6= 0 lies

on the imaginary axis (case when y = 0 is Lyapunov stable), then Y k = 0 is asymptotically stable for

all step sizes, meaning that the scheme is dissipative. This differs from the case C11 = 0 and λ ∈ iR,

in which Y k = 0 is only Lyapunov stable.

We start by checking (76) on the imaginary axis. For all ω ∈ R \ {0}, one has

|Q(i ω)|2 − |P (i ω)|2 = C11 ω
2

(

2 + ω2
(1

6
+ 3C2

11

)

)

> 0

and thus |R(i ω)| < 1. In addition, one can check that Q has two conjugate roots with positive real

parts whenever C11 is nonnegative, and thus R(z) is analytic in the left complex plane Re(z) ≤ 0.

Consequently, property (76) follows from the maximum principle and the bound |R(iω)| < 1.

We close this section by observing that

lim
|z|→+∞

|R(z)| = r, with r =
a−

a+
< 1.

This implies that the domain of instability where |R(z)| > 1 is bounded. Moreover, if C11 is either

large or close to 0, then r is close to unity and stiff components of linear ODE (corresponding to large

eigenvalues λ) are only slowly damped with the IRK scheme. In contrast, for C11 = 1
3
√
2
≈ 0.236, r

attains a global minimum rmin =
√
2−1√
2+1

≈ 0.17 far from unity.

A.2. Convergence of the θ method with Kuwabara-Kono numerical dissipation. The aim of this

section is to establish the convergence of the θ method (34)-(43) towards the KK model with dissipation

constant given by (41) (some familiarity with the convergence of one-step methods [39, 44, 47] is

assumed). For simplicity we consider an infinite chain of identical beads without local restoring forces

(i.e., with Kn = 0 and mn, kn constant in (31) and (42)). The KK model reads after suitable rescaling :

ẍ = δ−(1 + γ̃
d

dt
)FH(δ

+x), (77)

where x(t) = (xn(t))n∈Z describes bead positions, (δ±x)n = ± (xn±1 − xn) denote the usual for-

ward and backward differences, FH(r) = −(−r)3/2+ the Hertz force and γ̃ ≥ 0 the nondimensional
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dissipation constant. We consider solutions of (77) in ℓ2(Z) (the Hilbert space of real square summable

sequences). Since FH defines a C1 map in ℓ2(Z) and the energy

H(t) =
1

2
‖ẋ(t)‖22 +

2

5

∑

n∈Z
(xn(t)− xn+1(t))

5/2
+

is nonincreasing along the solutions of (77), one obtains a smooth flow in ℓ2(Z)
2 for (x(t), ẋ(t) −

γ̃ δ− FH(δ
+x(t))) which is globally defined for t ≥ 0.

Now let us consider the usual θ scheme for the nondissipative Hertz model :

Yk+1 − Yk
h

= θ f(Yk+1) + (1− θ) f(Yk), (78)

where Yk = (Xk, Vk) ∈ ℓ2(Z)
2 for all k ≥ 0, h denotes a small step size and f(x, ẋ) = (ẋ, δ− FH(δ

+x)).
We shall prove the following :

Theorem 1. Fix θ ≥ 1/2, H0 ≥ 0 and T > 0. There exist M > 0 and hmax ∈ (0, T ) such that the

following properties hold true for all h ∈ (0, hmax), for the dissipation constant of (77) given by

γ̃ = (2θ − 1)h, (79)

and for any solution x of (77) in ℓ2(Z) satisfying H(0) = H0 :

i) There exists a unique finite sequence (Yk)0≤k≤T/h ⊂ ℓ2(Z)
2 solution of (78) for all k ∈ [0, Th − 1]

and denoted by Yk = (Xk, Vk), satisfying the initial condition

Y0 =
(

x(0), ẋ(0) + (
1

2
− θ)h δ− FH(δ

+x(0))
)

and such that max
k h∈[0,T ]

‖(−δ+Xk)+‖∞ ≤ 2 (5H0/2)
2/5.

ii) The sequence (Yk) approximates the solution x on [0, T ] with :

max
k h∈[0,T ]

‖x(k h)−Xk‖2 ≤M h3/2, (80)

max
k h∈[0,T ]

‖ẋ(k h)− Ẋk‖2 ≤M h3/2 (81)

and Ẋk
def
= Vk + (θ − 1

2)h δ
− FH(δ

+Xk).

Proof : as shown in section 3.2, the modified equation corresponding to (78) reads

dY

dt
= f(Y ) + (θ − 1

2
)hDf(Y ) f(Y ) +O(h2). (82)

The scheme (78) is consistent with (82) at order 2 in the absence of contact breaking, i.e., whenever

δ+x(t) < 0. We recall that (82) takes the same form as the KK model with small dissipation. More

precisely, setting y = (x, v) with

v = ẋ− γ̃

2
δ− FH(δ

+x), (83)

equation (77) can be rewritten

dy

dt
= f(y) +

γ̃

2
Df(y) f(y) +

γ̃2

4
ρ(y) (84)

with ρ(y) = δ−
(

0, F ′
H(δ

+x) δ2FH(δ
+x)

)

and δ2 = δ+ δ−. With the choice (79) of dissipation con-

stant in (84), equations (82) and (84) coincide at leading order in h, and thus (78) is consistent with the

KK model (84) at order 2 in the absence of contact breaking.
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The next step is to estimate the order of consistency of (78) with (84) including the case of contact

breakings. Given an arbitrary solution y = (x, v) of (84), we consider the residual

R(t) =
y(t+ h)− y(t)

h
− θ f(y(t+ h))− (1− θ) f(y(t))

which has the same order in h as the consistency error (23). The following identity can be derived from

(79) and (84) after lengthy algebraic manipulations :

R(t) =
h

2

∫∫

[0,1]2

(

ḟ(t+ s h)− ḟ(t+ r h)
)

(r − s) ds dr +
γ̃2

4

∫ 1

0
Q[y(t+ s h)] ds, (85)

where Q(y) = (1− γ̃
2Df(y))ρ(y)−Df(y)Df(y) f(y) and

ḟ(t) =
d

dt
f(y(t)) = δ−

[

FH(δ
+x)

(

1
0

)

+ F ′
H(δ

+x) δ+ẋ

(

γ̃
2
1

)]

(t).

In the subsequent estimates, we assume t, τ ≥ 0 and h ∈ (0, 1). For notational simplicity, we use a

unique symbol C to denote multiplicative constants depending solely on θ and on the initial energy

H(0). Since H(t) ≤ H(0), velocities ẋn(t) are bounded, absolute displacements |xn(t)| grow at most

linearly in time, and contact forces FH(xn+1(t)− xn(t)) are bounded. Using these properties, one can

show that ‖Q(y(t))‖2 ≤ C and

‖FH(δ
+x(t))− FH(δ

+x(τ)) ‖2 ≤ C |t− τ |

from the mean value inequality. Proceeding in the same way, and using the estimate

∀ a, b ∈ R, |F ′
H(a)− F ′

H(b)| ≤
3

2
|a− b|1/2

and the bound ‖ẍ(t)‖2 ≤ C derived from (77), we get

‖F ′
H(δ

+x(t)) δ+ẋ(t)− F ′
H(δ

+x(τ)) δ+ẋ(τ) ‖2 ≤ C (‖x(t)− x(τ)‖1/22 + ‖ẋ(t)− ẋ(τ)‖2)
≤ C (|t− τ |1/2 + |t− τ |).

We note in passing that the fractional exponent 1/2 accounts for the possibility of contact breaking.

Substitution of the above estimates in (85) leads finally to the following bound for the residual :

‖R(t)‖2 ≤ C h3/2 (86)

for all t ≥ 0 and h ∈ (0, 1).
Having checked the consistency of (78) with (84) through estimate (86), we are now in a position to

prove the O(h3/2) convergence of the θ method towards the KK model.

We begin by modifying f with a cut-off in order to recover the classical setting of a globally Lipschitz

continuous map. For this purpose we define r0 = 2 (5H(0)/2)2/5 and denote by P the unique C1

function such that P (r) = r
3/2
+ for r ≤ r0 with P affine on [r0,+∞). We denote similarly F̃H(r) =

−P (−r), so that f̃(x, ẋ) = (ẋ, δ− F̃H(δ
+x)) defines a Lipschitz continuous map in ℓ2(Z)

2, with

constant L depending solely on H(0). From H(t) ≤ H(0) it follows that ‖(−δ+x(t))+‖∞ ≤ r0
2 and

thus f(y(t)) = f̃(y(t)).

Now we look for a solution Yk of the modified θ scheme (78) with f replaced by f̃ , for the initial

condition Y0 = y(0). We introduce the error variable ek = Yk − y(k h) which satisfies

ek+1 = ek + h θ
(

f̃ [y((k + 1)h) + ek+1]− f̃ [y((k + 1)h)]
)

(87)

+h (1− θ)
(

f̃ [y(k h) + ek]− f̃ [y(k h)]
)

− hR(k h).
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This defines a fixed point problem for ek+1 in ℓ2(Z)
2 which admits a unique solution when h < (θ L)−1

(this follows from the contraction mapping theorem), hence the sequence (ek)k≥0 is uniquely defined

by induction. Furthermore, we find

‖ek+1‖2 ≤ ‖ek‖2 (1 + h bL) + h b ‖R(k h)‖2
with b = (1− h θ L)−1. Assuming further h ≤ (θ L)−1/2 and k h ≤ T for some fixed T > 0, we then

obtain from a discrete Gronwall inequality

‖ek‖2 ≤ e2LT 2h
k−1
∑

j=0

‖R(j h)‖2.

Consequently, the consistency estimate (86) yields the global error estimate

max
k h∈[0,T ]

‖ek‖2 ≤ C T e2LT h3/2. (88)

Coming back to the numerical solution Yk = y(k h) + ek = (Xk, Vk), we get

max
k h∈[0,T ]

‖(−δ+Xk)+‖∞ ≤ r0
2

+ 2 max
k h∈[0,T ]

‖ek‖2 ≤ r0

provided h < hmax, with hmax depending solely on θ, H(0) and T . In that case, Yk defines a solution

of (78) whenever (k + 1)h ≤ T , since f(Yk+1) = f̃(Yk+1) and f(Yk) = f̃(Yk). In the same way, Yk
is the unique solution of (78) such that Y0 = y(0) and maxk h∈[0,T ] ‖(−δ+Xk)+‖∞ ≤ r0.

Estimate (88) yields the error bound (80) on bead positions, where M denotes a constant depending

solely on θ, H(0) and T . Moreover, the error bound (81) on velocities follows from (79), (83) and (88).

This completes the proof of Theorem 1.
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