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Abstract
Unikernel specializes a minimalistic LibOS and a tar-

get application into a standalone single-purpose virtual
machine (VM) running on a hypervisor, which is referred
to as (virtual) appliance. Compared to traditional VMs,
Unikernel appliances have smaller memory footprint and
lower overhead while guaranteeing the same level of
isolation. On the downside, Unikernel strips off the
process abstraction from its monolithic appliance and
thus sacrifices flexibility, efficiency, and applicability.

This paper examines whether there is a balance em-
bracing the best of both Unikernel appliances (strong
isolation) and processes (high flexibility/efficiency). We
present KylinX, a dynamic library operating system for
simplified and efficient cloud virtualization by providing
the pVM (process-like VM) abstraction. A pVM takes the
hypervisor as an OS and the Unikernel appliance as a
process allowing both page-level and library-level dy-
namic mapping. At the page level, KylinX supports pVM
fork plus a set of API for inter-pVM communication (IpC).
At the library level, KylinX supports shared libraries to
be linked to a Unikernel appliance at runtime. KylinX
enforces mapping restrictions against potential threats.
KylinX can fork a pVM in about 1.3 ms and link a library
to a running pVM in a few ms, both comparable to process
fork on Linux (about 1 ms). Latencies of KylinX IpCs
are also comparable to that of UNIX IPCs.

1 Introduction

Commodity clouds (like EC2 [5]) provide a public plat-
form where tenants rent virtual machines (VMs) to run
their applications. These cloud-based VMs are usually
dedicated to specific online applications such as big data
analysis [24] and game servers [20], and are referred to
as (virtual) appliances [56, 64]. The highly-specialized,
single-purpose appliances need only a very small portion
of traditional OS support to run their accommodated

applications, while the current general-purpose OSs con-
tain extensive libraries and features for multi-user, multi-
application scenarios. The mismatch between the single-
purpose usage of appliances and the general-purpose de-
sign of traditional OSs induces performance and security
penalty, making appliance-based services cumbersome
to deploy and schedule [62, 52], inefficient to run [56],
and vulnerable to bugs of unnecessary libraries [27].

This problem has recently motivated the design of
Unikernel [56], a library operating system (LibOS) archi-
tecture that is targeted for efficient and secure appliances
in the clouds. Unikernel refactors a traditional OS into
libraries, and seals the application binary and requisite
libraries into a specialized appliance image which could
run directly on a hypervisor such as Xen [30] and
KVM [22]. Compared to traditional VMs, Unikernel
appliances eliminate unused code, and achieve smaller
memory footprint, shorter boot times and lower overhead
while guaranteeing the same level of isolation [56]. The
hypervisor’s steady interface avoids hardware compati-
bility problems encountered by early LibOSs [39].

On the downside, Unikernel strips off the process
abstraction from its statically-sealed monolithic appli-
ances, and thus sacrifices flexibility, efficiency, and
applicability. For example, Unikernel cannot support
dynamic fork, a basis for commonly-used multi-process
abstraction of conventional UNIX applications; and the
compile-time determined immutability precludes run-
time management such as online library update and
address space randomization. This inability has largely
reduced the applicability and performance of Unikernel.

In this paper, we examine whether there is a balance
embracing the best of both Unikernel appliances (strong
isolation) and processes (high flexibility/efficiency). We
draw an analogy between appliances on a hypervisor and
processes on a traditional OS and take one step forward
from static Unikernels to present KylinX, a dynamic
library operating system for simplified and efficient
cloud virtualization by providing the pVM (process-like
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VM) abstraction. We take the hypervisor as an OS and
the appliance as a process allowing both page-level and
library-level dynamic mapping for pVM.

At the page level, KylinX supports pVM fork plus a
set of API for inter-pVM communication (IpC), which is
compatible with conventional UNIX inter-process com-
munication (IPC). The security of IpC is guaranteed by
only allowing IpC between a family of mutually-trusted
pVMs forked from the same root pVM.

At the library level, KylinX supports shared libraries
to be dynamically linked to a Unikernel appliance, en-
abling pVMs to perform (i) online library update which
replaces old libraries with new ones at runtime and (ii)
recycling which reuses in-memory domains for fast boot-
ing. We analyze potential threats induced by dynamic
mapping and enforce corresponding restrictions.

We have implemented a prototype of KylinX based
on Xen [30] (a type-1 hypervisor) by modifying Mini-
OS [14] (a Unikernel LibOS written in C) and Xen’s
toolstack. KylinX can fork a pVM in about 1.3 ms and link
a library to a running pVM in a few ms, both comparable
to process fork on Linux (about 1 ms). Latencies of
KylinX IpCs are also comparable to that of UNIX IPCs.
Evaluation on real-world applications (including a Redis
server [13] and a web server [11]) shows that KylinX
achieves higher applicability and performance than static
Unikernels while retaining the isolation guarantees.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background and design options.
Section 3 presents the design of dynamically-customized
KylinX LibOS with security restrictions. Section 4
reports the evaluation results of the KylinX prototype
implementation. Section 5 introduces related work. And
Section 6 concludes the paper and discusses future work.

2 Preliminaries

2.1 VMs, Containers & Picoprocesses
There are several conventional models in the literature of
virtualization and isolation: processes, Jails, and VMs.

• OS processes. The process model is targeted for
a conventional (partially-trusted) OS environment,
and provides rich ABI (application binary interface)
and interactivity that make it not suitable for truly
adversarial tenants.
• FreeBSD Jails [47]. The jail model provides a

lightweight mechanism to separate applications and
their associated policies. It runs a process on a
conventional OS, but restricts several of the syscall
interfaces to reduce vulnerability.
• VMs. The VM model builds an isolation boundary

matching hardware. It provides legacy compatibi-
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Figure 1: Alternative virtualization architectures.

lity for guests to run a complete OS, but it is costly
due to duplicated and vestigial OS components.

VMs (Fig. 1(left)) have been widely used in multi-
tenant clouds since it guarantees strong (type-1-
hypervisor) isolation [55]. However, the current virtu-
alization architecture of VMs is heavy with layers of
hypervisor, VM, OS kernel, process, language runtime
(such as glibc [16] and JVM [21]), libraries, and applica-
tion, which are complex and could no longer satisfy the
efficiency requirements of commercial clouds.

Containers (like LXC [9] and Docker [15]) leverage
kernel features to package and isolate processes. They
are recently in great demand [25, 7, 6] because they
are lightweight compared to VMs. However, containers
offer weaker isolation than VMs, and thus they often run
in VMs to achieve proper security guarantees [58].

Picoprocesses [38] (Fig. 1 (center)) could be viewed
as containers with stronger isolation but lighter-weight
host obligations. They use a small interface between the
host OSs and the guests to implement a LibOS realizing
the host ABI and map high-level guest API onto the small
interface. Picoprocesses are particularly suitable for
client software delivery because client software needs to
run on various host hardware and OS combinations [38].
They could also run on top of hypervisors [62, 32].

Recent studies [67, 32, 54] on picoprocesses relax
the original static isolation model by allowing dynamics.
For example, Graphene [67] supports picoprocess fork
and multi-picoprocess API, and Bascule [32] allows OS-
independent extensions to be attached to a picoprocess
at runtime. Although these relaxations dilute the strict
isolation model, they effectively extend the applicability
of picoprocesses to a much broader range of applications.

2.2 Unikernel Appliances
Process-based virtualization and isolation techniques
face challenges from the broad kernel syscall API that
is used to interact with the host OS for, e.g., pro-
cess/thread management, IPC, networking, etc. The
number of Linux syscalls has reached almost 400 [3]
and is continuously increasing, and the syscall API is
much more difficult to secure than the ABI of VMs
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(which could leverage hardware memory isolation and
CPU rings) [58].

Recently, researchers propose to reduce VMs, instead
of augmenting processes, to achieve secure and efficient
cloud virtualization [56, 19, 49]. Unikernel [56] is
focused on single-application VM appliances [26] and
adapts the Exokernel [39] style LibOS to VM guests to
enjoy performance benefits while preserving the strong
isolation guarantees of a type-1 hypervisor. It breaks
the traditional general-purpose virtualization architec-
ture (Fig. 1 (left)) and implements the OS features (e.g.,
device drivers and networking) as libraries. Compared
to other hypervisor-based reduced VMs (like Tiny Core
Linux [19] and OSv [49]), Unikernel seals only the
application and its requisite libraries into the image.

Since the hypervisor already provides a number of
management features (such as isolation and scheduling)
of traditional OSs, Unikernel adopts the minimalism
philosophy [36], which minimizes the VMs by not only
removing unnecessary libraries but also stripping off the
duplicated management features from its LibOS. For
example, Mirage [57] follows the multikernel model [31]
and leverages the hypervisor for multicore scheduling, so
that the single-threaded runtime could have fast sequen-
tial performance; MiniOS [14] relies on the hypervisor
(instead of an in-LibOS linker) to load/link the appliance
at boot time; and LightVM [58] achieves fast VM boot
by redesigning Xen’s control plane.

2.3 Motivation & Design Choices

Unikernel appliances and conventional UNIX processes
both abstract the unit of isolation, privileges, and ex-
ecution states, and provide management functionalities
such as memory mapping, execution cooperation, and
scheduling. To achieve low memory footprint and small
trusted computing base (TCB), Unikernel strips off the
process abstraction from its monolithic appliance and
links a minimalistic LibOS against its target application,
demonstrating the benefit of relying on the hypervisor to
eliminate duplicated features. But on the downside, the
lack of processes and compile-time determined mono-
lithicity largely reduce Unikernel’s flexibility, efficiency,
and applicability.

As shown in Fig. 1 (right), KylinX provides the pVM

abstraction by explicitly taking the hypervisor as an
OS and the Unikernel appliance as a process. KylinX
slightly relaxes Unikernel’s compile-time monolithicity
requirement to allow both page-level and library-level
dynamic mapping, so that pVMs could embrace the best
of both Unikernel appliances and UNIX processes. As
shown in Table 1, KylinX could be viewed as an exten-
sion (providing the pVM abstraction) to Unikernel, similar
to the extention of Graphene [67] (providing conven-

Static Dynamic
Picoprocess Embassies [43],

Xax [38], etc.
Graphene [67],
Bascule [32], etc

Unikernel Mirage [57],
MiniOS [14], etc.

KylinX

Table 1: Inspired by dynamic picoprocesses, KylinX
explores new design space and extends the applicability
of Unikernel.

tional multi-process compatibility) and Bascule [32]
(providing runtime extensibility) to picoprocess.

We implement KylinX’s dynamic mapping extension
in the hypervisor instead of the guest LibOS for the
following reasons. First, an extension outside the guest
LibOS allows the hypervisor to enforce mapping restric-
tions (§3.2.3 and §3.3.4) and thus improves security. Sec-
ond, the hypervisor is more flexible to realize dynamic
management for, e.g., restoring live states during pVM’s
online library update (§3.3.2). And third, it is natural
for KylinX to follow Unikernel’s minimalism philosophy
(§2.2) of leveraging the hypervisor to eliminate dupli-
cated guest LibOS features.

Backward compatibility is another tradeoff. The ori-
ginal Mirage Unikernel [56] takes an extreme position
where existing applications and libraries have to be com-
pletely rewritten in OCaml [10] for type safety, which
requires a great deal of engineering effort and may intro-
duce new vulnerabilities and bugs. In contrast, KylinX
aims to support source code (mainly C) compatibility, so
that a large variety of legacy applications could run on
KylinX with minimum effort for adaptation.

Threat model. KylinX assumes a traditional threat
model [56, 49], the same context as Unikernel [56]
where VMs/pVMs run on the hypervisor and are expected
to provide network-facing services in a public multi-
tenant cloud. We assume the adversary can run untrusted
code in the VMs/pVMs, and applications running in the
VMs/pVMs are under potential threats both from other
tenants in the same cloud and from malicious hosts
connected via Internet. KylinX treats both the hypervisor
(with its toolstacks) and the control domain (dom0)
as part of the TCB, and leverages the hypervisor for
isolation against attacks from other tenants. The use of
secure protocols like SSL and SSH helps KylinX pVMs

trust external entities.
Recent advance in hardware like Intel Software Guard

eXtensions (SGX) [12] demonstrates the feasibility of
shielded execution in enclaves to protect VMs/pVMs
from the privileged hypervisor and dom0 [33, 28, 45],
which will be studied in our future work. We also assume
hardware devices are not compromised, although in rare
cases hardware threats have been identified [34].
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Figure 2: KylinX components. Blue parts are newly de-
signed. DomU pVM is essentially a Unikernel appliance.

3 KylinX Design

3.1 Overview
KylinX extends Unikernel to realize desirable features
that are previously applicable only to processes. Instead
of designing a new LibOS from scratch, we base KylinX
on MiniOS [27], a C-style Unikernel LibOS for user
VM domains (domU) running on the Xen hypervisor.
MiniOS uses its front-end drivers to access hardware,
which connect to the corresponding back-end drivers
in the privileged dom0 or a dedicated driver domain.
MiniOS has a single address space without kernel and
user space separation, as well as a simple scheduler
without preemption. MiniOS is tiny but fits the bill
allowing a neat and efficient LibOS design on Xen. For
example, Erlang on Xen [1], LuaJIT [2], ClickOS [59]
and LightVM [58] leverage MiniOS to provide Erlang,
Lua, Click and fast boot environments, respectively.

As shown in Fig. 2, the MiniOS-based KylinX de-
sign consists of (i) the (restricted) dynamic page/library
mapping extensions of Xen’s toolstack in Dom0, and (ii)
the process abstraction support (including dynamic pVM

fork/IpC and runtime pVM library linking) in DomU.

3.2 Dynamic Page Mapping
KylinX supports process-style appliance fork and com-
munication by leveraging Xen’s shared memory and
grant tables to perform cross-domain page mapping.

3.2.1 pVM Fork

The fork API is the basis for realizing traditional multi-
process abstractions for pVMs. KylinX treats each user
domain (pVM) as a process, and when the application
invokes fork() a new pVM will be generated.

We leverage the memory sharing mechanism of Xen
to implement the fork operation, which creates a child
pVM by (i) duplicating the xc dom image structure and

Parent DomU
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init_events();
init_console();
……
app_main();

m
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n

if (isChild) {
    restore_states();
    restore_regs();
    longjmp(&buf); }
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int id = fork();
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save_basic_states();
struct setjmp buf;
save_regs();
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Figure 3: pVM fork. After fork is invoked, KylinX creates
a child pVM by sharing the parent (caller) pVM’s pages.

(ii) invoking Xen’s unpause() API to fork the calling
parent pVM and return its domain ID to the parent. As
shown in Fig. 3, when fork() is invoked in the parent
pVM, we use inline assemblies to get the current states
of CPU registers and pass them to the child. The control
domain (dom0) is responsible for forking and starting the
child pVM. We modify libxc to keep the xc dom image

structure in memory when the parent pVM was created,
so that when fork() is invoked the structure could be
directly mapped to the virtual address space of the child
pVM and then the parent could share sections with the
child using grant tables. Writable data is shared in a
copy-on-write (CoW) manner.

After the child pVM is started via unpause(), it (i)
accepts the shared pages from its parent, (ii) restores
the CPU registers and jumps to the next instruction after
fork, and (iii) begins to run as a child. After fork() is
completed, KylinX asynchronously initializes an event
channel and shares dedicated pages between the parent
and child pVMs to enable their IpC, as introduced in the
next subsection.

3.2.2 Inter-pVM Communication (IpC)

KylinX provides a multi-process (multi-pVM) application
with the view that all of its processes (pVMs) are col-
laboratively running on the OS (hypervisor). Currently
KylinX follows the strict isolation model [67] where only
mutually-trusted pVMs can communicate with each other,
which will be discussed in more details in §3.2.3.

The two communicating pVMs use an event channel
and shared pages to realize inter-pVM communication.
If two mutually-trusted pVMs have not yet initialized
an event channel when they communicate for the first
time because they have no parent-child relationship via
fork() (§3.2.1), then KylinX will (i) verify their mutual
trustworthiness (§3.2.3), (ii) initialize an event channel,
and (iii) share dedicated pages between them.
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Type API Description

Pipe
pipe Create a pipe and return the f ds.
write Write value to a pipe.
read Read value from a pipe.

Signal
kill Send signal to a domain.
exit Child sends SIGCHLD to parent.
wait Parent waits for child’s signal.
ftok Return the key for a given path.

Message msgget Create a message queue for key.
Queue msgsnd Write msg to message queue.

msgrcv Read msg from message queue.
Shared shmget Create & share a memory region.

Memory shmat Attach shared memory (of shmid).
shmdt Detach shared memory.

Table 2: Inter-pVM communication API.

The event channel is used to notify events, and the
shared pages are used to realize the communication.
KylinX has already realized the following four types of
inter-pVM communication APIs (listed in Table. 2).

(1) pipe(fd) creates a pipe and returns two file
descriptors (fd[0] and fd[1]), one for write and the
other for read.

(2) kill(domid, SIG) sends a signal (SIG) to an-
other pVM (domid) by writing SIG to the shared page and
notifying the target pVM (domid) to read the signal from
that page; exit and wait are implemented using kill.

(3) ftok(path, projid) translates the path and
projid to an IpC key, which will be used by
msgget(key, msgflg) to create a message queue with
the flag (msgflg) and return the queue ID (msgid);
msgsend(msgid, msg, len) and msgrcv(msgid,

msg, len) write/read the queue (msgid) to/from the
msgbuf structure (msg) with length len.

(4) shmget(key, size, shmflg) creates and
shares a memory region with the key (key), memory
size (size) and flag (shmflg), and returns the shared
memory region ID (shmid), which could be attached
and detached by shmat(shmid, shmaddr, shmflg)

and shmdt(shmaddr).

3.2.3 Dynamic Page Mapping Restrictions

When performing dynamic pVM fork, the parent pVM

shares its pages with an empty child pVM, the procedure
of which introduces no new threats.

When performing IpC, KylinX guarantees the security
by the abstraction of a family of mutually-trusted pVMs,
which are forked from the same root pVM. For example, if
a pVM A forks a pVM B, which further forks another pVM
C, then the three pVMs A, B, and C belong to the same
family. For simplicity, currently KylinX follows the all-
all-nothing isolation model: only the pVMs belonging

to the same family are considered to be trusted and are
allowed to communicate with each other. KylinX rejects
communication requests between untrusted pVMs.

3.3 Dynamic Library Mapping
3.3.1 pVM Library Linking

Inherited from MiniOS, KylinX has a single flat virtual
memory address space where application binary and
libraries, system libraries (for bootstrap, memory allo-
cation, etc.), and data structures co-locate to run. KylinX
adds a dynamic segment into the original memory layout
of MiniOS, so as to accommodate dynamic libraries after
they are loaded.

As depicted in Fig. 2, we implement the dynamic
library mapping mechanism in the Xen control library
(libxc), which is used by the upper-layer toolstacks such
as xm/xl/chaos. A pVM is actually a para-virtualized
domU, which (i) creates a domain, (ii) parses the kernel
image file, (iii) initializes the boot memory, (iv) builds
the image in the memory, and (v) boots up the image
for domU. In the above 4th step, we add a function
(xc dom map dyn()) to map the shared libraries into
the dynamic segment, by extending the static linking
procedure of libxc as follows.

• First, KylinX reads the addresses, offsets, file sizes
and memory sizes of the shared libraries from the
program header table of the appliance image.

• Second, it verifies whether the restrictions (§3.3.4)
are satisfied. If not, the procedure terminates.

• Third, for each dynamic library, KylinX retrieves
the information of its dynamic sections including
the dynamic string table, symbol table, etc.

• Fourth, KylinX maps all the requisite libraries
throughout the dependency tree into the dynamic
segment of the pVM, which will lazily relocate an
unresolved symbol to the proper virtual address
when it is actually accessed.

• Finally, it jumps to the pVM’s entry point.

KylinX will not load/link the shared libraries until they
are actually used, which is similar to lazy binding [17]
for conventional processes. Therefore, the boot times
of KylinX pVMs are lower than that of previous Uni-
kernel VMs. Further, compared to previous Unikernels
which support only static libraries, another advantage of
KylinX using shared libraries is that it effectively re-
duces the memory footprint in high-density deployment
(e..g., 8K VMs per machine in LightVM [58] and 80K
containers per machine in Flurries [71]), which is the
single biggest factor [58] limiting both scalability and
performance.
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Next, we will discuss two simple applications of
dynamic library mapping of KylinX pVMs.

3.3.2 Online pVM Library Update

It is important to keep the system/application libraries
up to date to fix bugs and vulnerabilities. Static Uni-
kernel [56] has to recompile and reboot the entire ap-
pliance image to apply updates for each of its libraries,
which may result in significant deployment burdens
when the appliance has many third-party libraries.

Online library update is more attractive than rolling
reboots mainly in keeping connections to the clients.
First, when the server has many long-lived connections,
rebooting will result in high reconnection overhead.
Second, it is uncertain whether a third-party client will
re-establish the connections or not, which imposes com-
plicated design logic for reconnection after rebooting.
Third, frequent rebooting and reconnection may severely
degrade the performance of critical applications such as
high-frequency trading.

Dynamic mapping makes it possible for KylinX to
realize online library update. However, libraries may
have their own states for, e.g., compression or cryp-
tography, therefore simply replacing stateless functions
cannot satisfy KylinX’s requirement.

Like most library update mechanisms (including DY-
MOS [51], Ksplice [29], Ginseng [61], PoLUS [37],
Katana [63], Kitsune [41], etc), KylinX requests the new
and old libraries to be binary-compatible: it is allowed
to add new functions and variables to the library, but it is
not allowed to change the interface of functions, remove
functions/variables, or change fields of structures. For
library states, we expect all the states are stored as vari-
ables (or dynamically-allocated structures) that would be
saved and restored during update.

KylinX provides the update(domid, new lib,

old lib) API to dynamically replace old lib with
new lib for a domU pVM (ID = domid), with necessary
update of library states. We also provide an update
command “update domid, new lib, old lib” for
parsing parameters and calling the update() API.

The difficulty of dynamic pVM update lies in manip-
ulating symbol tables in a sealed VM appliance. We
leverage dom0 to address this problem. When the
update API is called, dom0 will (i) map the new library
into dom0’s virtual address space; (ii) share the loaded
library with domU; (iii) verify whether the old library is
quiescent by asking domU to check the call stack of each
kernel thread of domU; (iv) wait until the old library is
not in use and pause the execution; (v) modify the entries
of affected symbols to the proper addresses; and finally
(vi) release the old library. In the above 5th step, there
are two kinds of symbols (functions and variables) which

…...

struct Elf_Rel

r_offset

sym type

name value

size

dyn symtab

info

…...

…...

struct Elf_Sym

…...

dyn strtab

name string

…...

Addr .dynamic

module ID
_dl_runtime_

resolve

…...

.got.plt

foo

push *(got+4)

Dom0 DomU

dyn relocation

…...

…...

.plt

…...

jmp *(foo@got)

foo

dyn  library

…...

…...

…...

jmp PLT0

jmp du_resolve

push n

Figure 4: KylinX dynamic symbol resolution for func-
tions. The green lines represent pointers for normal lazy
binding of processes. The blue line represents the result
of KylinX’s resolution, pointing to the real function
instead of the .plt table entry (dashed green line).

will be resolved as discussed below.

Functions. The dynamic resolution procedure for func-
tions is illustrated in Fig. 4. We keep the relocation table,
symbol table and string table in dom0 as they are not in
the loadable segments. We load the global offset table
of functions (.got.plt) and the procedure linkage table
(.plt) in dom0 and share them with domU. In order to
resolve symbols across different domains, we modify the
2nd line of assembly in the 1st entry of the .plt table (as
shown in the blue region in Fig. 4) to point to KylinX’s
symbol resolve function (du resolve). After the new
library (new lib) is loaded, the entry of each function
of old lib in the .got.plt table (e.g., foo in Fig. 4)
is modified to point to the corresponding entry in the
.plt table, i.e., the 2nd assembly (push n) shown by the
dashed green line in Fig. 4. When a function (foo) of
the library is called for the first time after new lib is
loaded, du resolve will be called with two parameters
(n and *(got+4)), where n is the offset of the symbol
(foo) in the .got.plt table, and *(got+4) is the ID of
the current module. du resolve then asks dom0 to call
its counterpart d0 resolve, which finds foo in new lib

and updates the corresponding entry (located by n) in the
.got.plt table of the current module (ID = module ID) to
the proper address of foo (the blue line in Fig. 4).

Variables. Dynamic resolution for variables is slightly
complex. Currently we simply assume that new lib

expects all its variables to be set to their live states in
old lib instead of their initial values. Without this
restriction, the compiler will need extensions to allow
developers to specify their intention for each variable.

(1) Global variables. If a global variable (g) of the
library is accessed in the main program, then g is stored
in the data segment (.bss) of the program and there is
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an entry in the global offset table (.got) of the library
pointing to g, so after new lib is loaded KylinX will
resolve g’s entry in the .got table of new lib to the
proper address of g. Otherwise, g is stored in the data
segment of the library and so KylinX is responsible for
copying the global variable g from old lib to new lib.

(2) Static variables. Since static variables are stored
in the data segment of the library and cannot be accessed
from outside, after new lib is loaded KylinX will simply
copy them one by one from old lib to new lib.

(3) Pointers. If a library pointer (p) points to a
dynamically-allocated structure, then KylinX preserves
the structure and set p in new lib to it. If p points to a
global variable stored in the data segment of the program,
then p will be copied from old lib to new lib. If p
points to a static variable (or a global variable stored in
the library), then p will point to the new address.

3.3.3 pVM Recycling

The standard boot (§3.3.1) of KylinX pVMs and Uni-
kernel VMs [58] is relatively slow. As evaluated in
§4.1, it takes 100+ ms to boot up a pVM or a Unikernel
VM, most time of which is spent in creating the empty
domain. Therefore, we design a pVM recycling mecha-
nism for KylinX pVMs which leverages dynamic library
mapping to bypass domain creation.

The basic idea of recycling is to reuse an in-memory
empty domain to dynamically map the application (as a
shared library) to that domain. Specifically, an empty
recyclable domain is checkpointed and waits for running
an application before calling the app entry function
of a placeholder dynamic library. The application is
compiled into a shared library instead of a bootable
image, using app entry as its entry. To accelerate the
booting of a pVM for the application, KylinX restores the
checkpointed domain, and links the application library
by replacing the placeholder library following the online
update procedure (§3.3.2).

3.3.4 Dynamic Library Mapping Restrictions

KylinX should isolate any new vulnerabilities compared
to the statically and monolithically sealed Unikernel
when performing dynamic library mapping. The main
threat is that the adversary may load a malicious library
into the pVM’s address space, replace a library with a
compromised one that has the same name and symbols,
or modify the entries in the symbol table of a shared
library to the fake symbols/functions.

To address these threats, KylinX enforces restrictions
on the identities of libraries as well as the loaders of
the libraries. KylinX supports developers to specify the
restrictions on the signature, version, and loader of the

dynamic library, which are stored in the header of the
pVM image and will be verified before linking a library.

Signature and version. The library developer first gen-
erates the library’s SHA1 digest that will be encrypted by
RSA (Rivest-Shamir-Adleman). The result is saved in a
signature section of the dynamic library. If the appliance
requires signature verification of the library, the signature
section will be read and verified by KylinX using the
public key. Version restrictions are requested and verified
similarly.

Loader. The developer may request different levels of
restrictions on the loader of the libraries: (i) only allow-
ing the pVM itself to be the loader; (ii) also allowing other
pVMs of the same application; or (iii) even allowing pVMs
of other applications. With the first two restrictions a
malicious library in one compromised application would
not affect others. Another case for loader check is to
load the application binary as a library and link it against
a pVM for fast recycling (§3.3.3), where KylinX restricts
the loader to be an empty pVM.

With these restrictions, KylinX introduces no new
threats compared to the statically-sealed Unikernel. For
example, runtime library update (§3.3.2) of a pVM with
restrictions on the signature (to be the trusted developer),
version (to be the specific version number), and loader
(to be the pVM itself) will have the same level of security
guarantees as recompiling and rebooting.

4 Evaluation

We have implemented a prototype of KylinX on top of
Ubuntu 16.04 and Xen. Following the default settings
of MiniOS [14], we respectively use RedHat Newlib and
lwIP as the libc/libm libraries and TCP/IP stack. Our
testbed has two machines each of which has an Intel 6-
core Xeon E5-2640 CPU, 128 GB RAM, and one 1GbE
NIC.

We have ported a few applications to KylinX, among
which we will use a multi-process Redis server [13] as
well as a multi-thread web server [11] to evaluate the
application performance of KylinX in §4.6. Due to the
limitation of MiniOS and RedHat Newlib, currently two
kinds of adaptations are necessary for porting applica-
tions to KylinX. First, KylinX can support only select

but not the more efficient epoll. Second, inter-process
communications (IPC) are limited to the API listed in
Table 2.

4.1 Standard Boot
We evaluate the time of the standard boot procedure
(§3.3.1) of KylinX pVMs, and compare it with that of
MiniOS VMs and Docker containers, all running a Redis
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Figure 5: Total time of standard booting (reduced Redis).

server. Redis is an in-memory key-value store that
supports fast key-value storage/queries. Each key-value
pair consists of a fixed-length key and a variable-length
value. It uses a single-threaded process to serve user
requests, and realizes (periodic) serialization by forking
a new backup process.

We disable XenStore logging to eliminate the inter-
ference of periodic log file flushes. The C library (libc)
of RedHat Newlib is static for use in embedded systems
and difficult to be converted into a shared library. For
simplicity, we compile libc into a static library and libm
(the math library of Newlib) into a shared library that
will be linked to the KylinX pVM at runtime. Since
MiniOS cannot support fork, we (temporarily) remove
the corresponding code in this experiment.

It takes about 124 ms to boot up a single KylinX
pVM which could be roughly divided into two stages,
namely, creating the domain/image in memory (steps 1
∼ 4 in §3.3.1), and booting the image (step 5). Dynamic
mapping is performed in the first stage. Most of the time
(about 121 ms) is spent in the first stage, which invokes
hypercalls to interact with the hypervisor. The second
stage takes about 3 ms to start the pVM. In contrast,
MiniOS takes about 133 ms to boot up a VM, and Docker
takes about 210 ms to start a container. KylinX takes less
time than MiniOS mainly because its shared libraries are
not read/linked during the booting.

We then evaluate the total times of sequentially boot-
ing up a large number (up to 1K) of pVMs on one
machine. We also evaluate the total boot times of
MiniOS VMs and Docker containers for comparison.

The result is depicted in Fig. 5. First, KylinX is
slightly faster than MiniOS owing to its lazy load-
ing/linking. Second, the boot times of both MiniOS
and KylinX increase superlinearly as the number of
VMs/pVMs increases while the boot time of Docker con-
tainers increases only linearly, mainly because XenStore
is highly inefficient when serving a large number of
VMs/pVMs [58].
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4.2 Fork & Recycling
Compared to containers, KylinX’s standard booting can-
not scale well for a large number of pVMs due to the
inefficient XenStore. Most recently, LightVM [58] com-
pletely redesigns Xen’s control plane by implementing
chaos/libchaos, noxs (no XenStore), and split toolstack,
together with a number of other optimizations, so as to
achieve ms-level booting times for a large number of
VMs. We adopt LightVM’s noxs for eliminating Xen-
Store’s affect and test the pVM fork mechanism running
unmodified Redis emulating conventional process fork.
LightVM’s noxs enables the boot times of KylinX pVMs

to increase linearly even for a large number of pVMs. The
fork of a single pVM takes about 1.3 ms (not shown here
due to lack of space), several times faster than LightVM’s
original boot procedure (about 4.5 ms). KylinX pVM

fork is slightly slower than a process fork (about 1 ms)
on Ubuntu, because several operations including page
sharing and parameter passing are time-consuming. Note
that the initialization for the event channel and shared
pages of parent/child pVMs is asynchronously performed
and thus does not count for the latency of fork.

4.3 Memory Footprint
We measure the memory footprint of KylinX, MiniOS
and Docker (Running Redis) for different numbers of
pVMs/VMs/containers on one machine. The result (de-
picted in Fig. 6) proves that KylinX pVMs have smaller
memory footprint compared to statically-sealed MiniOS
and Docker containers. This is because KylinX allows
the libraries (except libc) to be shared by all appliances
of the same application (§3.3), and thus the shared
libraries need to be loaded at most once. The memory
footprint advantage facilitates ballooning [42] which
could be used to dynamically share physical memory
between VM appliances, and enables KylinX to achieve
comparable memory efficiency with page-level dedupli-
cation [40] while introducing much less complexity.
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pipe msg que kill exit/wait sh m
KylinX1 55 43 41 43 39
KylinX2 240 256 236 247 232
Ubuntu 54 97 68 95 53

Table 3: IpC vs. IPC in latency (µs). KylinX1: a pair
of lineal pVMs which already have an event channel and
shared pages. KylinX2: a pair of non-lineal pVMs.

4.4 Inter-pVM Communication
We evaluate the performance of inter-pVM communica-
tion (IpC) by forking a parent pVM and measuring the
parent/child communication latencies. We refer to a pair
of parent/child pVMs as lineal pVMs. As introduced in
§3.2.1, two lineal pVMs already have an event channel
and shared pages and thus they could communicate with
each other directly. In contrast, non-lineal pVM pairs have
to initialize the event channel and shared pages before
their first communication.

The result is listed in Table 3, and we compare it
with that of the corresponding IPCs on Ubuntu. KylinX
IpC latencies between two lineal pVMs are comparable
to the corresponding IPC latencies on Ubuntu, owing to
the high-performance event channel and shared memory
mechanism of Xen. Note that the latency of pipe

includes not only creating a pipe but also writing and
reading a value through the pipe. The first-time commu-
nication latencies between non-lineal pVMs are several
times higher due to the initialization cost.

4.5 Runtime Library Update
We evaluate runtime library update of KylinX by dynam-
ically replacing the default libm (of RedHat Newlib 1.16)
with a newer version (of RedHat Newlib 1.18). libm is
a math library used by MiniOS/KylinX and contains a
collection of 110 basic math functions.

To test KylinX’s update procedure for global variables,
we also add 111 pseudo global variables as well as
one read global function (reading out all the global
variables) to both the old and the new libm libraries. The
main function first sets the global variables to random
values and then periodically verifies these variables by
calling the read global function.

Consequently, there are totally 111 functions as well
as 111 variables that need to be updated in our test. The
update procedure could be roughly divided into 4 stages
and we measure the time of each stage’s execution.

First, KylinX loads new lib into the memory of dom0
and shares it with domU. Second, KylinX modifies the
relevant entries of the functions in the .got.plt table to
point to the corresponding entries in the .plt table. Third,
KylinX calls du resolve for each of the functions
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Figure 7: Runtime library update.

which asks dom0 to resolve the given function and
returns its address in new lib, and then updates the
corresponding entries to the returned addresses. Finally,
KylinX resolves the corresponding entries of the global
variables in the .got table of new lib to the proper
addresses. We modify the third stage in our evaluation
to update all the 111 functions in libm at once, instead
of lazily linking a function when it is actually being
called (§3.3.2), so as to present an overview of the entire
runtime update cost of libm.

The result is depicted in Fig. 7, where the total over-
head for updating all the functions and variables is about
5 milliseconds. The overhead of the third stage (resolv-
ing functions) is higher than others including the fourth
stage (resolving variables), which is caused by several
time-consuming operations in the third stage including
resolving symbols, cross-domain invoking d0 resolve,
returning real function addresses and updating corre-
sponding entries.

4.6 Applications
Besides the process-like flexibility and efficiency of pVM
scheduling and management, KylinX also provides high
performance for its accommodated applications compa-
rable to that of their counterparts on Ubuntu, as evaluated
in this subsection.

4.6.1 Redis Server Application

We evaluate the performance of Redis server in a KylinX
pVM, and compare it with that in MiniOS/Ubuntu. Again,
since MiniOS cannot support fork(), we temporarily
remove the code for serialization. The Redis server uses
select instead of epoll to realize asynchronous I/O,
because epoll is not yet supported by the lwIP stack [4]
used by MiniOS and KylinX.

We use the Redis benchmark [13] to evaluate the
performance, which uses a configurable number of busy
loops asynchronously writing KVs. We run different
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Figure 8: Redis server application.

numbers of pVMs/VMs/processes (each for 1 server)
servicing write requests from clients. We measure the
write throughput as a function of the number of servers
(Fig. 8). The three kinds of Redis servers have similar
write throughput (due to the limitation of select), in-
creasing almost linearly with the numbers of concurrent
servers (scaling being linear up to 8 instances before the
lwIP stack becomes the bottleneck).

4.6.2 Web Server Application

We evaluate the JOS web server [11] in KylinX, which
adopts multithreading for multiple connections. After
the main thread accepts an incoming connection, the web
server creates a worker thread to parse the header, reads
the file, and sends the contents back to the client. We use
the Weighttp benchmark that supports a small fraction
of the HTTP protocol (but enough for our web server)
to measure the web server performance. Similar to the
evaluation of Redis server, we test the web server by
running multiple Weighttp [8] clients on one machine,
each continuously sending GET requests to the web
server.

We evaluate the throughput as a function of the num-
ber of concurrent clients, and compare it with the web
servers running on MiniOS and Ubuntu, respectively.
The result is depicted in Fig. 9, where the KylinX
web server achieves higher throughput than the MiniOS
web server since it provides higher sequential perfor-
mance. Both KylinX and MiniOS web servers are slower
than the Ubuntu web server, because the asynchronous
select is inefficiently scheduled with the netfront driver
of MiniOS [27].

5 Related Work

KylinX is related to static Unikernel appliances [56, 27],
reduced VMs [19, 48, 49], containers [66, 9, 15], and
picoprocess [38, 62, 32, 54, 67, 33].
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5.1 Unikernel & Reduced VMs
KylinX is an extension of Unikernel [56] and is imple-
mented on top of MiniOS [27]. Unikernel OSs include
Mirage [56], Jitsu [55], Unikraft [18], etc. For example,
Jitsu [55] leverages Mirage [56] to design a power-
efficient and responsive platform for hosting cloud ser-
vices in the edge networks. LightVM [58] leverages
Unikernel on Xen to achieve fast booting.

MiniOS [27] designs and implements a C-style Uni-
kernel LibOS that runs as a para-virtualized guest OS
within a Xen domain. MiniOS has better backward
compatibility than Mirage and supports single-process
applications written in C. However, the original MiniOS
statically seals an appliance and suffers from similar
problems with other static Unikernels.

The difference between KylinX and static Unikernels
(like Mirage [56], MiniOS [27], and EbbRT [65]) lies in
the pVM abstraction which explicitly takes the hypervisor
as an OS and supports process-style operations like
pVM fork/IpC and dynamic library mapping. Mapping
restrictions (§3.3.4) make KylinX introduce as little
vulnerability as possible and have no larger TCB than
Mirage/MiniOS [56, 55]. KylinX supports source code
(C) compatibility instead of using a type-safe language
to rewrite the entire software stack [56].

Recent research [19, 49, 48] tries to improve
the hypervisor-based type-1 VMs to achieve smaller
memory footprint, shorter boot times, and higher ex-
ecution performance. Tiny Core Linux [19] trims an
existing Linux distribution down as much as possible to
reduce the overhead of the guest. OSv [49] implements
a new guest OS for running a single application on
a VM, resolving libc function calls to its kernel that
adopts optimization techniques such as the spinlock-free
mutex [70] and the net-channel networking stack [46].
RumpKernel [48] reduces the VMs by implementing
a optimized guest OS. Different from KylinX, these
general-purpose LibOS designs consist of unnecessary
features for a target application leading to larger attack
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surface. They cannot support the multi-process abstrac-
tion. Besides, KylinX’s pVM fork is much faster than
replication-based VM fork in SnowFlock [50].

5.2 Containers
Containers use OS-level virtualization [66] and leverage
kernel features to package and isolate processes, instead
of relying on the hypervisors. In return they do not need
to trap syscalls or emulate hardware, and could run as
normal OS processes. For example, Linux Containers
(LXC) [9] and Docker [15] create containers by using
a number of Linux kernel features (such as namespaces
and cgroups) to package resource and run container-
based processes.

Containers require to use the same host OS API [49],
and thus expose hundreds of system calls and enlarging
the attack surface of the host. Therefore, although LXC
and Docker containers are usually more efficient than
traditional VMs, they provide less security guarantees
since attackers may compromise processes running in-
side containers.

5.3 Picoprocess
A picoprocess is essentially a container which imple-
ments a LibOS between the host OS and the guest,
mapping high-level guest API onto a small interface.
The original picoprocess designs (Xax [38] and Em-
bassies [43]) only permit a tiny syscall API, which can
be small enough to be convincingly (even verifiably)
isolated. Howell et al. show how to support a small
subset of single-process applications on top of a mini-
mal picoprocess interface [44], by providing a POSIX
emulation layer and binding existing programs.

Recent studies relax the static and rigid picoprocess
isolation model. For example, Drawbridge [62] is a Win-
dows translation of the Xax [38] picoprocess, and creates
a picoprocess LibOS which supports rich desktop appli-
cations. Graphene [67] broadens the LibOS paradigm
by supporting multi-process API in a family (sandbox)
of picoprocesses (using message passing). Bascule [32]
allows OS-independent extensions to be attached safely
and efficiently at runtime. Tardigrade [54] uses pico-
processes to easily construct fault-tolerant services. The
success of these relaxations on picoprocess inspires our
dynamic KylinX extension to Unikernel.

Containers and picoprocesses often have a large TCB
since the LibOSs contain unused features. In contrast,
KylinX and other Unikernels leverage the hypervisor’s
virtual hardware abstraction to simplify their implemen-
tation, and follow the minimalism philosophy [36] to link
an application only against requisite libraries to improve
not only efficiency but also security.

Dune [34] leverages Intel VT-x [69] to provide a
process (rather than a machine) abstraction to isolate pro-
cesses and access privileged hardware features. IX [35]
incorporates virtual devices into the Dune process model
and achieves high throughput and low latency for net-
worked systems. lwCs [53] provides independent units
of protection, privilege, and execution state within a
process.

Compared to these techniques, KylinX runs directly
on Xen (a type-1 hypervisor), which naturally provides
strong isolation and enables KylinX to focus on the
flexibility and efficiency issues.

6 Conclusion

The tension between strong isolation and rich features
has been long lived in the literature of cloud virtu-
alization. This paper exploits the new design space
and proposes the pVM abstraction by adding two new
features (dynamic page and library mapping) to the
highly-specialized static Unikernel. The simplified virtu-
alization architecture (KylinX) takes the hypervisor as an
OS and safely supports flexible process-style operations
such as pVM fork and inter-pVM communication, runtime
update, and fast recycling.

In the future, we will improve security through mo-
dularization [27], disaggregation [60], and SGX en-
claves [33, 28, 45, 68]. We will improve the perfor-
mance of KylinX by adopting more efficient runtime
like MUSL [23], and adapt KylinX to the MultiLibOS
model [65] which allows spanning pVMs onto multiple
machines. Currently, the pVM recycling mechanism is
still tentative and conditional: it can only checkpoint an
empty domain; the recycled pVM cannot communicate
with other pVMs using event channels or shared memory;
the application can only be in the form of a self-contained
shared library that does not need to load/link other shared
libraries; and there are still no safeguards inspecting
potential security threats between the new and old pVMs

after recycling. We will address these shortcomings in
our future work.
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[66] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A.,
AND PETERSON, L. Container-based operating system virtu-
alization: a scalable, high-performance alternative to hypervisors.
In ACM SIGOPS Operating Systems Review (2007), vol. 41,
ACM, pp. 275–287.

[67] TSAI, C.-C., ARORA, K. S., BANDI, N., JAIN, B., JANNEN,
W., JOHN, J., KALODNER, H. A., KULKARNI, V., OLIVEIRA,
D., AND PORTER, D. E. Cooperation and security isolation of
library oses for multi-process applications. In Proceedings of the
Ninth European Conference on Computer Systems (2014), ACM,
p. 9.

[68] TSAI, C.-C., PORTER, D. E., AND VIJ, M. Graphene-sgx: A
practical library os for unmodified applications on sgx. In 2017
USENIX Annual Technical Conference (USENIX ATC) (2017).

[69] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L.,
MARTINS, F., ANDERSON, A. V., BENNETT, S. M., KÄGI, A.,
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