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Tryptophan metabolites are known to participate in the regulation of many cells of the 

immune system and are involved in various immune-mediated diseases and disorders. 

Kynurenic acid (KYNA) is a product of one branch of the kynurenine pathway of trypto-

phan metabolism. The influence of KYNA on important neurophysiological and neuro-

pathological processes has been comprehensively documented. In recent years, the link 

of KYNA to the immune system, inflammation, and cancer has become more apparent. 

Given this connection, the anti-inflammatory and immunosuppressive functions of KYNA 

are of particular interest. These characteristics might allow KYNA to act as a “double- 

edged sword.” The metabolite contributes to both the resolution of inflammation and 

the establishment of an immunosuppressive environment, which, for instance, allows for 

tumor immune escape. Our review provides a comprehensive update of the significant 

biological functions of KYNA and focuses on its immunomodulatory properties by signal-

ing via G-protein-coupled receptor 35 (GPR35)- and aryl hydrocarbon receptor-mediated 

pathways. Furthermore, we discuss the role of KYNA–GPR35 interaction and microbiota 

associated KYNA metabolism for gut homeostasis.

Keywords: kynurenic acid, immunomodulation, inflammation, aryl hydrocarbon receptor, G-protein-coupled 

receptor 35, tryptophan metabolism, microbiota

BIOLOGICAL SIGNIFICANCE OF THE KYNURENINE  

PATHWAY (KP)

�e degradation of tryptophan (TRP) along the KP plays a crucial role in the regulation of the 
immune response, notably as a counter-regulatory mechanism in the context of in�ammation (1–3). 
An overview of the KP is presented in Figure 1. �ree rate-limiting enzymes of KP, tryptophan 
2,3-dioxygenase (TDO) and indolamine 2,3-dioxygenase (IDO) 1 and 2, have been described in the 
literature thus far. TDO is positively regulated by TRP in order to maintain the homeostasis of TRP 
(4, 5). Furthermore, the expression and activity of TDO is regulated by hormones such as cortisol, 
insulin, glucagon, or epinephrine (6–8). IDO1 and 2 are upregulated by in�ammatory stimuli such 
as interferon-γ (IFN-γ) (9–14). �e signi�cance of KP activation depends on the production of 
biologically active metabolites such as kynurenine (KYN), kynurenic acid (KYNA), quinolinic acid 
(QUIN), or anthranilic acid mediating various immuno- and neuromodulative functions. Within 
the central nervous system, it has been well documented that metabolites such as KYNA and 
QUIN modulate neurological functions. �us, KYNA acts as an antagonist a�ecting all ionotropic 
glutamate receptors including NMDA, AMPA, and kainate receptors as well as the α7 nicotinic 
acetylcholine receptor (α7nAChR) assuming it as a neuroprotective metabolite (15–18). However, 
the inhibition of α7nAChR by KYNA is extensively debated because some later studies addressing 
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FIGURE 1 | Kynurenic acid (KYNA) synthesis along the kynurenine pathway and its mode of action. The catabolism of TRP by the enzymes TDO or IDO represents 

the rate-limiting step in KYNA synthesis. The intermediate metabolite kynurenine can be further processed through three distinct pathways to form KYNA, 

3-hydroxykynurenine, and anthranilic acid. KYNA is formed by the irreversible transamination of KYN either via kynurenine aminotransferases (KAT I–IV) or through 

the action of reactive oxygen species (ROS). KYNA is a non-competitive antagonist of ionotropic glutamate receptors (GLUT-R) as well as of the α7 nicotinic 

acetylcholine receptor (α7nAChR) expressed on neuronal cells. Apart from neuromodulatory properties, KYNA is an agonist of the broadly expressed G-protein-

coupled receptor 35 (GPR35) and aryl hydrocarbon receptor (AhR). Furthermore, KYNA functions as an ROS scavenger. Black arrows mark enzymatic reactions and 

dashed arrows include more than one catalytic reaction step. FOR, formamidase; IDO, indolamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; TPH, 

tryptophan hydroxylase; KAT, kynurenine aminotransferase; KMO, kynurenine 3-monooxygenase; KYN, kynureninase; AMO, anthranilate 3-monooxygenase; AMPA, 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDA, N-methyl-D-aspartate receptor; KAR, kainate receptor.
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this mechanism (3, 19–21) could not recapitulate the original 
results from Hilmas et al. (18). Dysregulation of KP, resulting in 
alterations of the balance between KYNA and QUIN, has been 
described in many neurological disorders (22). However, altera-
tions of KYNA are also described in several in�ammatory-related 
states, such as sepsis or in�ammatory bowel disease (IBD), and 
are discussed as a potential marker in cancer patients (23–25).  
It is generally accepted that KYNA mediates immunosuppressive 
e�ects (22), notably by targeting the G-protein-coupled receptor 
35 (GPR35)- or aryl hydrocarbon receptor (AhR)-associated 
signaling pathways (2, 26, 27).

ENDOGENOUS KYNA SYNTHESIS AND 

ITS INFLAMMATORY REGULATION IN 

VERTEBRATES

Generation of KYNA was described in endothelial cells (28), 
epithelial cells (29, 30), �broblasts (31), pancreatic islet cells 
(32), human peripheral blood mononuclear cells (33), skeletal 
muscle cells (34), and red blood cells (35). Under physiological 
conditions, KYNA is produced by kynurenine aminotransferases 

(KATs), which catalyze the irreversible transamination reaction 
between l-KYN and 2-oxoacid, as a co-substrate, to form KYNA 
(36, 37), or in the presence of reactive oxygen species (ROS) as 
illustrated in Figure 1. Currently four proteins named KAT I–IV 
are described in mammals (38–43). Mediating overlapping bio-
logical functions, the mammalian enzymes KAT I and KAT III 
share high homologies in sequence and genomic structure (42). 
KAT activity was described in various tissues, such as liver, kid-
ney, small intestine, dermal �broblasts, and brain (31, 38, 44, 45).  
In human cardiac muscle, there is evidence that the KAT system 
di�ers from brain KAT regulation regarding optimum pH, co-
substrate speci�city, and sensitivity to inhibition by amino acids 
such as l-TRP (36). Regarding the in�ammatory regulation 
of KATs, there is no consensus, assuming the existence of cell 
type-dependent regulatory di�erences. Studies in human dermal 
�broblasts reveal that tumor necrosis factor α (TNF) alone does 
not a�ect the number of transcripts, whereas IFN-γ alone (or in 
combination with TNF) decreases the transcript abundance of 
KAT I, III, and IV a�er 48 h. Due to the fact that in this study the 
metabolite concentration of KYNA was increased in supernatants 
the decrease of KATs 48 h a�er cytokine stimulation may re�ect 
a negative feedback mechanism (31). In fetal astrocytes, IFN-γ 
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increases the transcript levels of KAT I and II a�er 24  h (46), 
whereas no e�ect of IFN-γ was observed in neuronal cells (47). 
In mice, an intraperitoneal (i.p.) lipopolysaccharide (LPS) chal-
lenge increased KAT-I mRNA expression in the hippocampus 6 h 
postchallenge, followed by a decrease a�er 24 h, whereas KAT-II 
mRNA expression was decreased 24 h a�er LPS treatment (48).

In addition to KAT-catalyzed KYNA synthesis, alternative 
routes for KYNA synthesis in the presence of ROS have been 
described (49) (Figure  1). �us, it is assumed that indole-
3-pyruvic acid, a reaction product of tryptophan-2-oxoglutarate-
induced transamination of TRP, undergoes pyrrole ring cleavage 
followed by a spontaneous cyclization generating KYNA (50). 
Furthermore, l-KYN can be converted to KYNA in the presence 
of hydrogen peroxide (51) or KYNA formation can result from 
reactions of KYN or indole-3-pyruvic acid under conditions 
generating free radicals (52, 53).

Elevations of KYNA blood concentrations were experimen-
tally induced under di�erent in�ammatory conditions. In pigs, 
the i.p. application of LPS increased plasma levels of KYNA. 
However, the ex vivo LPS stimulation of whole blood culture 
failed to elevate KYNA in supernatants (54), assuming sources 
of KYNA production other than blood cells or the requirement 
of additional in�ammatory mediators, which are not produced 
in blood cells. Increased KYNA plasma concentrations were also 
detected in mice that were repeatedly stressed. In this context, the 
elevated KYNA levels were proposed to be induced by a systemic 
low-grade in�ammation due to an altered intestinal barrier 
function (55). Interestingly, in this study the application of the 
IDO inhibitor l-1-methyltryptophan (1-MT), a TRP analog, 
speci�cally increased plasma concentrations of KYNA by a yet 
unknown pathway (55).

KYNA DEGRADATION AND EXCRETION

Kynurenic acid is described as one of the end products of KP in 
animals, assuming no uptake or further metabolism of KYNA. In 
a study including di�erent rodent species, 90% of radioactively 
labeled KYNA was excreted in urine within 24 h of i.p. application 
(56). �us, 80–100% of labeled KYNA was excreted unchanged 
and only small amounts of quinaldic acid and quinaldylglycine 
were detected (0.3 and 5%, respectively). �is is supported by stud-
ies in rats, �nding that radioactively labeled KYNA was eliminated 
rapidly a�er intracerebroventricular microinjection and substan-
tial amounts of radioactivity were recovered in urine 30 min a�er 
injection (57). Studies in rabbits described di�erences in KYNA 
metabolism depending on the type of administration (58). A�er 
oral administration of KYNA, the majority of the dose was detected 
in the form of quinaldic or 8-hydroxyquinaldic acid, indicating a 
dehydroxylation of the molecule. In contrast, a�er subcutaneous 
administration, 99% of KYNA was recovered unchanged, indicat-
ing that the dehydroxylation occurs in the gastrointestinal tract 
(58) most probably by the gut microbiota. �is is supported by the 
�nding that approximately 30% of ingested KYNA was excreted 
in urine as quinaldic acid in humans (59). �e assumption that 
KYNA is metabolized by microorganisms is supported by the �nd-
ing that extracts of Pseudomonas spp. and Aerococcus spp. were 
able to enzymatically partially degrade KYNA (60, 61).

IMMUNOMODULATIVE PROPERTIES  

OF KYNA

In recent years, numerous in vivo and in vitro studies have been 
directed toward the immunomodulatory functions of KYNA. 
�ere are strong indications that the action of KYNA varies 
depending on whether in�ammatory or homeostatic conditions 
are considered. Under homeostatic conditions, KYNA induced 
interleukin 6 (IL6) mRNA expression 2 h a�er treatment in the 
breast cancer cell line MCF-7 (27) and cytokine secretion (TNF, 
IL6, IL1β, and IL10) in primary murine splenocytes a�er 72 h 
(62). A further in  vitro study indicated that KYNA may be an 
early mediator of leukocyte recruitment, acting by triggering the 
activation of neutrophils as well as the adhesion of monocytes 
to �bronectin and intercellular adhesion molecule 1 via β1-/β2 
integrin (63). In contrast, KYNA treatment decreased the mRNA 
expression of IL6 a�er 6  h in the rat mast cell line RBL-2H3 
followed by a return to baseline level a�er 24  h (64). In addi-
tion, 24-h KYNA treatment under homeostatic conditions did 
not in�uence IL6 or TNF secretion in the murine microglial cell 
line BV-2 (65). At �rst glance, all these �ndings seem to be very 
inhomogeneous. However, they clearly demonstrate that know-
ing that mRNA expression of pro-in�ammatory cytokines is 
normally tightly controlled by mRNA decay and cytokine secre-
tion measurement needs su�cient accumulation time, it is very 
important for interpretation of such results to know at which time 
what (mRNA expression or cytokine secretion) was analyzed. In 
conclusion, these studies, analyzing the e�ect of KYNA under 
non-in�ammatory conditions, suggest a time- and/or cell type-
dependent in�uence of the treatment.

�e KYNA e�ect under in�ammatory conditions appears to be 
more uniformly. Several in vitro studies, using various primary or 
immortalized leukocyte cell types, have revealed that KYNA can 
attenuate in�ammation elucidated by di�erent stimuli (e.g., LPS). 
For instance, KYNA reduces TNF expression and secretion (26, 
55, 65, 66) and diminishes high-mobility group box 1 (HMGB1) 
protein secretion in monocytes (66, 67). Likewise, KYNA has 
been shown to inhibit the secretion of α-defensin HNP1–3 in 
granulocyte cultures (66) and reduce interleukin 4 release in 
T-cell receptor stimulated invariant natural killer-like T  cells 
(iNKT) (68). Recently, Elizei et al. (69) demonstrated that KYNA 
reduced LPS-induced IL23 expression of dendritic cells and 
inhibited �17 cell di�erentiation in vitro. �e downregulation of 
the IL23/IL17 axis is known to be bene�cial for anti-in�ammatory 
treatment of many immune-mediated diseases (70).

�ese anti-in�ammatory e�ects of KYNA, frequently 
observed in many cell models, were con�rmed by in vivo stud-
ies in mice and dogs. For example, KYNA treatment inhibited 
the LPS induced increase of TNF and nitric oxide (NO) in mice 
serum and also drastically reduced LPS-induced death in those 
animals (67). Leukocytes of KYNA-treated mice also exhibited a 
reduced release of TNF in response to an ex vivo LPS challenge 
(55). Moreover, the increased mucosal leukocyte accumulation 
and the xanthine oxidoreductase activity, a predominant marker 
of mucosal superoxide radical production, in the gastrointestinal 
tract of dogs with experimental colon obstruction were reduced 
by KYNA treatment (71).
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FIGURE 2 | Kynurenic acid (KYNA)-mediated pathways of inflammatory signaling. Pro-inflammatory cytokines induce the expression of indolamine (IDO) enzyme via 

STAT, AP1, IRF1, and NF-κB transcription factor activation. KYNA is formed by the IDO-dependent canonical pathway or by an alternative route through direct 

kynurenine (KYN) or tryptophan (TRP) transformation by reactive oxygen species (ROS). On the other hand, KYNA as a free radical scavenger decreases ROS level. 

KYNA binds and activates G-protein-coupled receptor 35 (GPR35)-reducing cAMP and calcium (Ca2+) levels in cells. Activation of GPR35 by KYNA may also inhibit 

phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (p38), as well as increasing the level 

of β-catenin. All of these cellular responses probably decrease activation of relevant inflammatory transcription factors, such as NF-κB and AP1. Therefore, reduced 

induction of tumor necrosis factor α (TNF), high-mobility group box 1 (HMBG1), interleukin 4 (IL4), α defensin (α-Def), and inducible nitric oxide synthase (iNOS) have 

frequently been observed in response to KYNA treatment. Recruitment of arrestin β2 (ARRB2) to GPR35 is necessary for internalization and desensitization of the 

KYNA-activated receptor. Binding of KYNA to the aryl hydrocarbon receptor (AhR) receptor leads to recruitment of the AHR nuclear translocator (ARNT) and 

induction of IL6 expression. Interaction of the KYNA–AhR complex with NF-κB may also be involved in the induction of IL6. Furthermore, ligand-activated AhR 

initiates the proto-oncogene tyrosine-protein kinase Src activation and, thereby, the phosphorylation (P) of IDO. Phosphorylated IDO induces the expression of 

transforming growth factor β1 (TGFβ). NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; AP1, activator protein 1; STAT, signal transducer and 

activator of transcription; IRF, interferon-regulatory factor; G, G protein.
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Kynurenic acid is a ligand of the GPR35 (26) and the AhR 
(27, 72) (Figures  1 and 2). �e a�nity of KYNA for both 
receptors is in the low micromolar range. However, in various 
in�ammatory and tumor diseases high levels of this metabolite 
are produced, so it is not surprising that under these conditions 
KYNA levels are su�cient to activate these receptors (72). In 
addition to GRP35- and AhR-mediated signals, KYNA has 
a relevant role as an antioxidant and ROS scavenger (73, 74) 
(Figures 1 and 2). �is indicates that KYNA also actively pre-
vents tissue damage triggered by overshooting in�ammation. 
In addition, induction of the KYNA-synthesizing branch of 
TRP metabolism may also be relevant for the synthesis of other 
TRP metabolites, such as serotonin or melatonin. Serotonin 
and melatonin are known immune regulators whose decrease 
may in�uence immune response (75, 76). KYNA synthesis 
may decrease their abundance either simply by the reduction 
of the necessary substrate TRP, or by direct inhibition of their 
synthesis, or induction of their degradation. In this regard, it 
was found that furafylline-mediated inhibition of CYP1A2, a 
“classic” AhR-inducible gene, increased 6-hydroxymethylation 
of melatonin in rat liver slides. �is result indicates that AhR 

signaling, perhaps triggered by KYNA, may be relevant in 
melatonin catabolism (77).

KYNA AS AGONIST OF GPR35

G-protein-coupled receptor 35 is expressed in various subpopu-
lations of immune cells, including peripheral monocytes (26), 
mast cells, basophils, eosinophils (78), and iNKT  cells (68). A 
high level of GPR35 expression was detected throughout the 
digestive tract (26, 79), as well as in lung, skeletal muscle, uterus, 
and dorsal root ganglion (79). Moderate expression was found in 
heart, liver, bladder, spinal cord, whole brain, and cerebrum (79).

Recently, it was found that GPR35 is a high-a�nity receptor 
for the mucosal chemokine CXCL17 (80). Nevertheless, KYNA 
was the �rst reported agonist ligand for GPR35. �is was identi-
�ed by high-throughput screening using changes of intracellular 
calcium (Ca2+) in the Chinese hamster ovary cell line, CHO, 
co-expressing GPR35 and a G-protein mixture as a readout (15). 
Further in-depth studies revealed that KYNA–GPR35 interaction 
inhibited N-type Ca2+ channels in sympathetic neurons (81) and 
reduced the plateau phase of ATP-induced calcium transients in 
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astrocytes (82). �e later study also demonstrated that KYNA-
mediated GPR35 activation decreased forskolin-induced cAMP 
elevation. Furthermore, the recruitment of β-arrestin 2 mediated 
GPR35 internalization upon KYNA activation, which led to 
receptor desensitization (82, 83).

Kynurenic acid may also have an inhibitory effect on the 
phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and 
mitogen-activated protein kinase (MAPK) pathways. Walczak 
et al. (84) demonstrated that KYNA decreased phosphorylation 
of extracellular signal-regulated kinases (ERK) 1/2, p38 MAPK, 
and Akt in colon epithelial cells. �ey also found indications that 
KYNA induced accumulation of β-catenin. MAPK, PI3K/Akt and 
β-catenin pathways are well-known targets of GPR signaling (85, 86).
�erefore, it is possible that the observed inhibition of ERK and 
p38, as well as the induction of β-catenin accumulation a�er KYNA 
treatment, are a consequence of GRP35 activation. Interestingly, all 
of these described e�ects of KYNA–GPR35 signaling might lead to 
the suppression or limitation of in�ammation. Increased intra-
cellular calcium is associated with in�ammatory signal secretion 
(87, 88) and triggers the activation of NF-κB (89), which is an 
essential transcription factor in in�ammation (90). �e cAMP 
pathway is known to regulate innate and adaptive immune cell 
activities (91) [e.g., T-cell functions (92)]. In this respect, there is 
strong evidence that KYNA–GPR35-mediated inhibition of ade-
nylate cyclase is causal for the downregulation of the IL23/IL17 
immune axis observed a�er KYNA treatment (69). Furthermore, 
the PI3K/Akt pathway and MAPK’s play crucial roles in generat-
ing an in�ammatory response (93, 94). Conversely, the β-catenin 
signaling pathway is known to inhibit in�ammation through 
limiting NF-κB activation by stabilizing the NF-κB inhibitory 
IκB-factors (95).

KYNA AS AGONIST OF AhR

Aryl hydrocarbon receptor is a ubiquitously expressed promiscu-
ous ligand-operated receptor of KYNA (27), mediating crucial 
e�ects on the regulation of the immune response (96). When 
binding to a ligand, AhR dimerizes with the AhR nuclear trans-
locator (ARNT) and acts as a transcription factor.

Several studies using AhR knockout mice indicated that this 
receptor has an important immune regulatory role in in�amma-
tion. For instance, AhR-de�cient mice have a high susceptibility to 
LPS-induced septic shock (97) and developed a stronger response 
a�er local in�ammatory challenge (or insult) in the lung (98, 99). 
AhR activation is involved in preventing an overshooting pro-
in�ammatory cytokine induction in response to an in�ammatory 
stimulus in various cells including �broblasts, endothelial cells, 
and macrophages (97, 100, 101). �erefore, it has been proposed 
that a clinical treatment with an appropriated AhR ligand like 
KYNA may o�er a promising therapeutic intervention in in�am-
matory disorders. Interestingly, brains of AhR knockout mice 
exhibited an increased KAT-II expression and a higher KYNA 
level in the cerebral cortex and striatum that is associated with 
protection against oxidative stress induced by an excitotoxic insult 
via intrastriatal application of QUIN (102). �is may be either a 
result of KYNA-mediated counteraction of NMDAR activation 
by QUIN, which is known to mediate exitotoxic properties, or 

of the receptor-independent antioxidative properties of KYNA 
discussed above. Furthermore, the data of this study indicated 
a negative feedback-loop between AhR, KAT II, and the AhR 
ligand KYNA in the brain. Unfortunately, there are no data 
regarding KYNA levels and KAT expression outside the brain of 
AhR-de�cient mice. �erefore, further analyses are necessary to 
prove whether this is only a tissue-speci�c observation or a gen-
eral �nding. However, studies using AhR-de�cient mice need to 
be carefully evaluated because, although these animals appeared 
relatively normal, this knockout in�uences several physiologic 
processes in the animals including structure of the central nerv-
ous system and blood cell di�erentiation (103).

In addition to KYNA, other TRP metabolites, such as the 
KYNA precursor KYN, have been shown to be ligands of the 
AhR (104). In humans, pigs, and mice KYNA normally have 3- to 
10-fold lower plasma concentrations than KYN (54, 55, 105, 106). 
However, KYNA is described as a more potent AhR ligand (27) 
and has a higher stability than KYN (56). It was speculated that 
AhR interaction with TRP metabolites contributed to immune 
homeostasis during endotoxin tolerance by activating immu-
nomodulatory signaling (104). �e data of Bessede et al. indicated 
that AhR-associated Src activity, triggered by TRP metabolites 
bound to AhR, was responsible for IDO1 phosphorylation. �ese 
studies revealed that the TRP metabolite KYN, without the IDO1 
protein, was insu�cient to induce TGFβ expression. �e authors 
speculated that IDO1 phosphorylation represented an independ-
ent signaling pathway necessary for TGFβ-mediated immune 
tolerance. Whether the TRP metabolite KYN or KYNA could 
be the relevant AhR ligand mediating those immunosuppressive 
e�ects remains unclear. It has been demonstrated that KYNA 
ligated to AhR induced IL6 mRNA expression in breast cancer 
cells. �ese authors also showed that a combination of KYNA 
and pro-in�ammatory IL1 induced IL6 much more strongly 
than either of these factors alone. �is synergistic activation of 
IL6 could be mediated by direct interaction of AhR–ARNT and 
the NF-κB factor RELB. NF-κB factors are known to be activated 
by pro-in�ammatory cytokines, such as IL1. �e role of AhR-NF-
κB cross talk was previously described for IL8 gene expression 
(107). IL6 features pleiotropic activities (108). Although IL6 plays 
essential roles in promoting in�ammation, it also has many anti-
in�ammatory and regenerative activities (109) reviewed in Ref. 
(110, 111). �erefore, it is di�cult to estimate if KYNA-mediated 
IL6 expression contributes only to the immunosuppressive 
function of KYNA. However, studies have shown that IL6 is 
involved in the development of many chronic in�ammatory and 
cancer diseases (111). For example, the study that demonstrated a 
KYNA-mediated induction of IL6 in breast cancer cells discussed 
this observation as part of the mechanisms allowing tumor cells 
to escape immune surveillance (27). A further interesting point 
is that IL6 can induce IDO1 via STAT3 activation. �is signaling 
is known as the AhR–IL6–STAT3 loop, which is associated with 
poor prognosis in lung cancer (112). �ere is increasing evidence 
that the interaction of AhR with metabolites of the KP, such 
as KYNA, is relevant for maintaining the immunosuppressive 
microenvironment in many cancer types (72, 113). �e probable 
mode of action is a TGFβ- and IL6-mediated suppression of 
T-cell response by interfering with di�erentiation and activation 
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TABLE 1 | Alteration of kynurenic acid (KYNA) metabolism in several pathological states in humans.

Disease Perturbation of KYNA level Matrix Source

Inflammation-related diseases

Multiple sclerosis Increased vs. healthy controls Plasma (114)

Inflammatory bowel disease Increased vs. healthy controls Plasma (23)

Septic shock patients with acute kidney injury Increased in non-survivor vs. survivors Plasma (24)

Out-of-hospital cardiac arrest Increased in patients with 12-month poor outcome Plasma (115)

Rheumatoid arthritis Decreased vs. patients with osteoarthritis Synovial fluid (116, 117)

Positive correlation with plasma fibrinogen

Positive correlation with morning stiffness and pain score Serum

Type 2 diabetes Increased vs. healthy control Plasma (118)

Chronic kidney disease Increased with severity stage Serum (119)

Odontogenic abscesses Increased vs. healthy subjects Saliva (120)

Cancer

Colon carcinoma Increased vs. non-carcinoma cells Supernatant (30)

Adenoma tubovillosum and A. tubulare Increased vs. non-carcinoma cells Supernatant (30)

Non-small cell lung cancer Increased vs. healthy controls Serum (121)

Increased in patients with metastatic spread to lymph  

nodes vs. non-metastatic patients

Prostate cancer Decreased vs. participants without malignancy Urine (25)

Primary cervical cancer Decreased vs. healthy controls Serum (122)

Glioma Decreased vs. healthy controls Serum (123)

Mental disorders

Affective psychosis Decreased vs. healthy controls Serum (124)

Chronic schizophrenia Decreased vs. healthy control Serum (125)

Chronic migraine Decreased vs. healthy controls Serum (126)

Cluster headache Decreased vs. healthy controls Serum (127)

Alzheimer’s type dementia Positive correlation of KYNA with cognitive function Plasma (128)

Schizophrenia with distress intolerance Increased vs. patients with distress tolerance and healthy controls,  

positive correlation with severity of clinical symptoms

Saliva (129)

Schizophrenia Increased vs. heathy controls CSF (130–132)

Alzheimer’s dementia Decreased vs. healthy control Plasma,  

red blood cells

(35)

Alzheimer’s disease Positive correlation with P-tau and soluble intercellular adhesion molecule-1 CSF (37)

Inherited diseases/diseases with questionable cause

Down syndrome Increased vs. control specimens Temporal cortex, urine (133, 134)

Huntington’s disease Reduced vs. healthy controls Brain areas, CSF (135, 136)

Amyotrophic lateral sclerosis (ALS) Increased patients with bulbar onset and severe  

clinical status of ALS vs. healthy control

CSF (137)

Decreased in patients with severe clinical status of ALS vs. healthy control Serum

Irritable bowel syndrome Decreased vs. healthy controls Plasma, serum (138, 139)
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of regulatory T cells. �is is still supported by the fact that various 
cancer cells secrete KYNA (Table 1).

Irrespective of the presumed KYNA-mediated tumor-immune 
escape, another research group found that high KYNA concen-
trations inhibit proliferation and migration of cancer cell lines 
in vitro (84, 140, 141). �is seems to be mediated by interference 
with the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) 
pathway (142). All this indicates that KYNA can act as both 
tumor-promoting as well as tumor-inhibiting factor. However, 
all mentioned studies used cancer cell lines and characterized the 
e�ect of KYNA under in vitro conditions. �erefore, it must be 
kept in mind that further studies are needed to validate the KYNA 
e�ects on tumor development.

KYNA AND ITS LINK TO PATHOLOGICAL 

CONDITIONS

Alterations of KYNA metabolism in both periphery and brain 
are described for several pathological states in humans (Table 1).

Inflammation-Related Diseases
Kynurenic acid levels are increased in peripheral blood of patients 
su�ering from type 2 diabetes, multiple sclerosis, IBD, and chronic 
kidney disease (23, 114, 118, 119) as well as in saliva of patients 
su�ering from odontogenic abscesses (140). Regarding these 
chronic in�ammatory conditions, it remains unclear whether 
the elevation of KYNA is either a compensatory response due 
to in�ammatory signaling or a primary abnormality, inducing 
speci�c patterns of diseases. However, it is presumed that chronic 
stress or low-grade in�ammation may induce the production of 
KYNA (55, 118), provoking various immunomodulative actions 
due to KYNA-mediated signaling pathways. Contrary to elevated 
peripheral KYNA levels in IBD, blood levels of KYNA were 
found to be decreased in patients with irritable bowel syndrome 
(IBS), which is—in contrast to IBD—a functional gastrointestinal 
disorder without chronic in�ammation (138, 139). However, 
KYN was increased in plasma of patients with IBS (138) and with 
severe IBS (143). �ese data may indicate an in�ammatory induc-
tion of IDO. However, in this study there was no evidence for 
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in�ammatory processes, such as increased serum levels of IFN-γ 
or TRP depletion compared with healthy controls. Christmas 
et  al. (139) reported decreased levels of KYNA, KYN, and 
3-hydroxyanthranilic acid in IBS. �is provides evidence for a 
generally inhibited TRP degradation, resulting in a reduced TRP 
oxidation. It was assumed that the increased free TRP would be a 
source for utilizing serotonin, which may increase gut secretions 
and motility as described in diarrhea-predominant IBS.

Studies of patients with septic shock and acute kidney injury 
showed that a failed reduction of KYNA a�er a hemo�ltration 
treatment might predict fatal outcomes (24). �e authors assumed 
that the increased plasma levels of KYNA depended on the rate 
of KYNA synthesis and not on a failed renal excretion since 
KYNA and other TRP metabolites were eliminated continuously 
in these patients by hemodialysis. An increased KP activation, 
for instance, measured by increased KYN and KYNA levels, 
was observed in non-survivors of out-of-hospital cardiac arrest 
during early and late stage of disease (115). In this context, it is 
possible that increased generation of KP metabolites may re�ect 
an overshooting pro-in�ammatory response, which subsequently 
provokes the establishment of a protracted immunoparalysis as 
described in sepsis (2).

A positive correlation of serum KYNA with morning sti�ness 
and pain score was found in patients with rheumatoid arthritis 
(RA) (116), indicating that an increased level of in�ammation is 
correlated with increased circulating KYNA levels. �is assump-
tion is supported by the �nding that KYNA concentrations 
in the synovial �uid of RA patients were positively correlated 
with plasma �brinogen (116), which is described as a marker 
for disease activity re�ecting the acute phase response (144). In 
vitro studies revealed that KYNA inhibited the proliferation of 
synoviocytes and enhanced the antiproliferative action of drugs, 
targeting the prevention of hyperplasia of synovial �broblasts 
(145). In patients with RA, KYNA was decreased compared with 
patients with osteoarthritis (OA; no in�ammatory background). 
�is was in accordance with the results of an earlier study 
revealing that KYNA was decreased in RA compared with OA, 
while IDO activity was increased, which is not surprising due 
to RA-induced in�ammation (117). According to the described 
antiproliferative function of KYNA on synovial �broblasts, 
impaired KYNA synthesis may provoke the development of 
hyperplasia in RA.

Cancer
Increased concentrations of KYNA were detected in supernatants 
of colon-derived cells from patients diagnosed with colon carci-
noma, adenoma tubulovillosum, or adenoma tubulare compared 
with a healthy control group (30). Furthermore, KYNA was 
elevated in the serum of patients with non-small cell lung cancer 
compared with healthy volunteers and increased in patients 
with metastases that spread to lymph nodes vs. non-metastatic 
patients (121). �ese �ndings support the suggestion that many 
cancer types secrete KYNA provoking the establishment of an 
immunosuppressive microenvironment (72, 113). In contrast, 
KYNA was decreased in the serum of patients su�ering from 
glioblastoma compared with healthy controls (123). Due to the 
increased ratio of KYN to TRP, an indicator for IDO activity, 

an over-activation of KP was postulated. However, the plasma 
concentrations of TRP, KYN, KYNA, and QUIN were decreased 
compared with healthy controls, indicating a depletion of TRP by 
other mechanisms. Indeed, Opitz et al. detected an accumulation 
of KYN and QUIN in TDO-expressing glioblastoma cells (146), 
in addition to lower serum levels of TRP and KYN in glioblastoma 
patients. �is indicates an increased transport of TRP and KYN 
through the blood–brain barrier. In this context it was shown that 
the TDO-derived KYN interfered with AhR signaling, leading 
to a suppression of antitumor immune responses and likewise 
promoted tumor-cell survival (146). Unfortunately, KYNA con-
centrations were not evaluated in this study. �e studies of Adams 
et al. found no evidence for an increased production of neither 
the metabolites KYN, QUIN, nor KYNA in the supernatant of 
glioblastoma cells. However, the mRNA expression of KAT I, II, 
and III but not the secretion of KYNA was reduced in glioma cells 
compared with fetal or adult astrocytes (123), suggesting that in 
glioma cancer cells there is no shi� to the KYNA branch com-
pared with other cancer cells. �e absence of increased KYNA 
production in glioma cells might be a bene�t for tumor survival, 
since it has been shown that KYNA inhibits the proliferation and 
migration of human glioblastoma T98G cells (141). A shi� of 
KYNA to QUIN production was also shown in patients with pri-
mary cervical cancer, resulting in reduced levels of serum KYNA 
whereas QUIN was increased concurrent with unchanged levels 
of TRP and KYN (122). It was assumed that the increased levels 
of QUIN may contribute to the restoration of energy supplies via 
formation of acetyl-CoA and NAD pathways. Decreased levels of 
KYNA were also detected in the urine of prostate cancer patients 
(25). However, whether the decrease resulted from attenuated 
KYNA synthesis or an impaired renal clearance was not evaluated 
in this study.

Mental Disorders
It is well described that there is a link between an in�ammation-
induced impairment of the balance of TRP metabolism and 
the development of mental disorders such as depression or 
schizophrenia (130, 147). KYNA was found to be decreased 
in the blood of patients with a�ective psychosis (124), chronic 
schizophrenia (125), Alzheimer’s dementia (35, 128), cluster 
headache (127), and chronic migraine (126) compared with 
healthy subjects. Similar to the �ndings in glioma patients, the 
decrease of KYNA in blood may indicate an increased transfer 
of TRP or KYN through the blood–brain barrier as a substrate 
for local synthesis of KYNA in brain tissue. �is is supported 
by the �ndings that increased levels of KYNA were detected in 
the CSF of patients with schizophrenia (130–132). In the CSF of 
patients with Alzheimer’s disease (AD), KYNA correlated with 
the expression of P-tau and the soluble intercellular adhesion 
molecule-1, which are biomarkers for in�ammation (37). A 
link between in�ammation and increased brain levels of KYNA 
was furthermore described in amyotrophic lateral sclerosis 
(ALS) patients. �is study demonstrated a correlation between 
increased levels of KYNA in CSF with the severe clinical status 
of ALS (137). It is assumed that oxidative stress, glutamatergic 
excitotoxicity, or neuroin�ammation play key roles in the 
pathophysiology of neurodegeneration, particularly in ALS or 
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AD (148). �erefore, the increased production of KYNA may 
act as compensatory response to neurotoxic e�ects. �e fact that 
KYNA was decreased in the blood of patients with a severe clini-
cal state of ALS (137) supports the suggestion that TRP or KYN 
from the periphery is used as precursors for increased brain syn-
thesis of KYNA, knowing that KYNA is hardly able to cross the 
blood–brain barrier (149). Increased levels of KYNA in saliva 
were also detected in schizophrenia patients with concurrent 
distress intolerance compared with distress-tolerant patients 
and healthy controls. �is �nding indicated an interference of 
stress with the activation of KP (129).

Inherited Diseases/Diseases with 

Questionable Cause
In patients su�ering from Huntington’s disease, KYNA was 
decreased in the CSF and several brain regions (135, 136, 150). 
It was suggested that this was due to a selective impairment in 
KYNA biosynthesis in speci�c brain areas of HD patients (150), 
resulting in an inadequate anti-in�ammatory and neuroprotec-
tive response to in�ammatory conditions.

Increased concentrations of KYNA in the brain were described 
in patients with Down syndrome (133), which exhibit similar 
neuropathological features as patients with AD, such as neuritic 
amyloid-β plaques (151). �is indicates that neuro-in�ammatory 
processes may play a role in the Down syndrome phenotype. 
Increased brain levels of KYNA may re�ect a compensatory 
response to neurotoxic e�ects due to congenital malfunctions. 
Furthermore, the �nding that in Down syndrome patients the 
urinary excretion of KYN was lower concurrent with increased 
excretion of KYNA, and anthranilic acid, suggests a shi� of KP to 
the neuroprotective and antioxidative branch (134).

In conclusion, the results of the described clinical studies 
might indicate that the production of KYNA is a compensatory 
mechanism that functions to limit in�ammation-induced cell 
and tissue damage in both brain and periphery. Furthermore, an 
impaired synthesis of KYNA may provoke an inadequate anti-
in�ammatory response characterized by, e.g., enhanced tissue 
damage or exceeding cell proliferation during in�ammatory 
conditions. In tumor cells, the modulation of KYNA secretion 
was found to be di�erent between the types of carcinoma. An 
enhanced production of KYNA by cancer cells may provoke 
the establishment of an immunosuppressive microenvironment 
for e�ective immune escape. Decreased levels of KYNA in the 
periphery of patient su�ering from cerebral cancer (and also from 
mental disorders) might re�ect an increased transfer of TRP and 
KYN through the blood–brain barrier. �is might be a conse-
quence of an accelerated TRP degradation due to pathological 
processes in brain tissue. However, also a shi� to another branch 
of KP such as QUIN may result in the reduction of KYNA.

KYNA, MICROBIOTA, AND GUT 

HOMEOSTASIS

High GPR35 expression in the gastrointestinal tract (26, 79) indi-
cates that this receptor, and probably its ligand KYNA, could have 
a function in gut homeostasis (152). �e potential signi�cance of 

KYNA for gut health emerges from its association with various 
bowel diseases and colon cancer [Table 1 (30, 138, 139)], as well 
as the potential anti-in�ammatory e�ects of KYNA treatment in 
dogs with experimental colon obstruction (71). Studies in rats and 
pigs have shown a high concentration of KYNA in the intestinal 
lumen (153, 154). �e intestinal KYNA concentration increased 
from the proximal to the distal part of the gut, reaching ~16 μM 
in the distal ileum of the rat (153) and ~1.6 μM in the colon of 
the pig (154). �e studies in rat suggest that relevant amounts 
of KYNA in the gut originated from the intestinal micro�ora, 
due to the relatively low concentrations in the wall of the ileum 
(~0.2–0.3 μM) and the food (~0.6 μM). However, certain foods 
and herbs may contain relatively high amounts of KYNA like 
broccoli (~2 μM), honey (~1 μM), basil (~74 μM), and thyme 
(~9  μM) (155, 156). Furthermore, the intestinal commensal 
Escherichia coli can produce and liberate KYNA through aspar-
tate aminotransferase (AspAT) (153, 157, 158). KYNA is readily 
absorbed from the gut into the bloodstream (155). Interestingly, 
rats with the probiotic Bi�dobacteria infantis in the gut have 
signi�cantly higher KYNA levels in the blood then un-colonized 
control animals (159). Furthermore, blood from B. infantis-
colonized animals exhibits a lower TNF induction a�er ex vivo 
challenge with LPS, which is a typical indication of an endotoxin 
tolerance. �ere are also indications that KYNA selectively regu-
lates the growth, and thereby the composition, of the intestinal 
microbiota (160). In this context, the microbial-mediated KYNA 
catabolism, known so far from Pseudomonas and Aerococcus (60, 
61), might be relevant. Interestingly, feed supplementation with 
very high amounts of KYNA might have a toxic/stress-inducing 
e�ect in rainbow trout (161). Hence, further studies are neces-
sary to evaluate if a supplementation of KYNA is bene�cial or 
detrimental to human health.

CONCLUSION

Due to the proven relevance of KYNA for various diseases, it is 
o�en mooted as both a target and agent for therapeutic interven-
tions. However, the interference of KYNA with diverse immune-
related signaling pathways requires further in-depth analysis to 
avoid unexpected adverse consequences.
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