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Introduction

In recent years, the general view of the pathophysiology of
schizophrenia (i.e., disturbances in dopamine [DA] transmis-
sion) has been expanded to also involve a glutamatergic dys-
function of the brain. Thus, clinical observations show that
systemic administration of N-methyl-D-aspartate (NMDA) re-
ceptor antagonists (e.g., phencyclidine [PCP] and ketamine)
evokes schizophrenia-like symptoms in healthy individuals
and provokes symptoms in patients with schizophrenia.1–3

Furthermore, the glutamate deficiency theory has gained

some support from genetic findings.4 A hypoglutamatergic
state of the brain can also be achieved by elevation of the
 endogenous NMDA receptor antagonist kynurenic acid
(KYNA).5 Indeed, increased concentrations of KYNA have
been found in the cerebrospinal fluid (CSF) and in the post-
mortem brains of patients with schizophrenia.6–8 Kynurenic
acid is a metabolite of tryptophan (Fig. 1) and acts as an an-
tagonist at the glycine coagonist site and the glutamate recog-
nition site of the NMDA receptor.9–12 Additionally, KYNA
blocks the α7* nicotinic receptor at low concentrations.13 Ele-
vated levels of KYNA in the rat brain are associated with
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Background: Patients with schizophrenia show increased brain and cerebrospinal fluid (CSF) concentrations of the endogenous 
N-methyl-D-aspartate receptor antagonist kynurenic acid (KYNA). This compound is an end-metabolite of the kynurenine pathway, and its for-
mation indirectly depends on the activity of kynurenine 3-monooxygenase (KMO), the enzyme converting kynurenine to 3-hydroxykynurenine.
Methods: We analyzed the association between KMO gene polymorphisms and CSF concentrations of KYNA in patients with schizo-
phrenia and healthy controls. Fifteen single nucleotide polymorphisms (SNPs) were selected covering KMO and were analyzed in
 UNPHASED. Results: We included 17 patients with schizophrenia and 33 controls in our study. We found an association between a
KMO SNP (rs1053230), encoding an amino acid change of potential importance for substrate interaction, and CSF concentrations of
KYNA. Limitations: Given the limited sample size, the results are tentative until replication. Conclusion: Our results suggest that the
nonsynonymous KMO SNP rs1053230 influences CSF concentrations of KYNA.



 increased midbrain DA firing14–17 and disrupted prepulse in-
hibition,18 a deficit that has also been observed in patients
with schizophrenia.19 In this regard, KYNA has important
similarities to other NMDA receptor antagonists.20,21

Formation of KYNA indirectly depends on the activity of
kynurenine 3-monooxygenase (KMO), the enzyme convert-
ing kynurenine to 3-hydroxykynurenine.22 Thus, pharmaco-
logic inhibition of this enzyme will shunt the metabolism of
kynurenine to KYNA. A functional polymorphism of the
gene encoding the enzyme KMO, possibly resulting in a re-
duction of the expression of KMO and/or its enzyme activity,
may contribute to the elevated levels of KYNA in patients
with schizophrenia. The KMO gene is located on chromo-
some 1q42 and, interestingly, several genetic analyses of fam-
ilies densely affected with schizophrenia and schizoaffective
disorder have reported linkage to this region.23,24 Further-
more, genes in this region are suggested to affect susceptibil-
ity to these disorders.25,26 However, to our knowledge, no as-
sociation between KMO polymorphisms and schizophrenia
has yet been reported.27,28

In the present study, we analyzed whether polymorphisms
in the gene encoding the enzyme KMO have an impact on
CSF concentrations of KYNA in a Swedish sample of patients
with schizophrenia and healthy controls.

Methods

Samples

For association analysis between KMO polymorphisms and
CSF concentrations of KYNA, we recruited participants with
schizophrenia and healthy controls who had been previously
included in a case–control study in which our group ana-

lyzed KMO polymorphisms.28 Cerebrospinal fluid concentra-
tions of KYNA in both controls and patients with schizophre-
nia have previously been published.8,28

We invited patients with schizophrenia to participate in
the study. None of them was subjected to involuntary treat-
ment. We obtained informed consent from patients and con-
trols after providing written and verbal information about
the procedure and the purpose of the study. All patients in-
cluded in the study were competent to give informed consent
according to the opinion of psychiatrists familiar with the pa-
tients. We recruited healthy controls among age-matched stu-
dents and hospital staff members. All controls were found to
be free from current signs of psychiatric morbidity or difficul-
ties in social adjustment at the time of sampling according to
an interview performed by a psychiatrist. Patients and con-
trols included in the present study are those from whom both
CSF and blood were collected. The study was approved by
the ethical committees of the Karolinska Institutet.

Genotyping

We selected 15 KMO single nucleotide polymorphisms
(SNPs) spanning 60 kb from the 5′ near gene region to intron
15 for genotyping, including at least 2 in each of the 4 haplo-
type blocks of the gene (Appendix 1, available at www .cma .ca
/jpn), representing gene coverage of 79%.28 Genomic DNA
was extracted from whole blood samples. The selected SNPs
were genotyped at the SNP Technology Platform in Uppsala,
Sweden (www.genotyping.se) using the Illumina BeadStation
500GX and the 1536-plex Illumina Golden Gate assay (Illu-
mina Inc.). All SNPs were in Hardy–Weinberg equilibrium.
The sample success rate was on average 99.4% for the geno-
typed SNPs, and the reproducibility of the genotyping was
100%, as determined from a sample of 873 broad-spectrum
patients with schizophrenia and 1473 unrelated Scandinavian
controls, including those enrolled in this study.28

Cerebrospinal fluid sampling

We obtained CSF by lumbar puncture after participants had
a minimum of 8 hours of observed bedrest and abstained
from food and smoking before sampling. For a more detailed
description of the procedure, see Nilsson and colleagues8 and
Holtze and colleagues.28

Kynurenic acid analysis

We detected KYNA using an isocratic reversed-phase high-
performance liquid chromatography (HPLC) system, includ-
ing a fluorescence detector (Jasco FP-2020) with an excitation
wavelength of 344 nm and an emission wavelength of 398 nm
(18-nm bandwidth), as previously described.8 Samples of 25 µL
were manually inserted into a Rheodyne injector (Rhonert
Park), and the retention time of KYNA was about 13 minutes.
The precision of the HPLC method used in the present study
was routinely tested within days (intra-assay) and between
days (interassay). For the determination of intra-assay preci-
sion, aliquots (n = 10) of KYNA standards at concentrations of
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Fig. 1: The kynurenine pathway.
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0.3125 nM and 5 nM were analyzed. The precision of the assay
was calculated from the percent coefficient of variation (CV) of
the mean, according to the equation CV (%) = (standard devia-
tion ÷ mean) × 100. The CV (%) for 0.3125 nM was 6.44% and
that for 5 nM was 1.49%. Interassay precision was calculated
by analyzing aliquots of the same KYNA standard (1 nM) on
10 consecutive days. The CV (%) for interassay precision was
2.83%. We measured all samples in a single assay.

Statistical analysis

Cerebrospinal fluid concentrations of KYNA were treated as
a quantitative trait and allele associations with KMO SNPs
were tested in UNPHASED.29 Back length, age at the time of
lumbar puncture, sex and affection state are factors that have
previously been associated with CSF concentrations of
KYNA.8,30,31 Consequently, we used these variables as con-
founders in the analysis. To test whether the allele association
differed between individuals with schizophrenia and con-
trols, we treated affection state as a modifier in a separate
UNPHASED analysis. The number of individuals homozy-
gous for the minor allele was typically below 4 for each SNP,
and thus did not allow for meaningful genotype association
tests. Correction for multiple testing was completed using a
permutation test in UNPHASED (1000 permutations).

Results

We enrolled 50 individuals from Sweden (17 patients with
schizophrenia and 33 healthy controls) in our study. The
demo graphic and clinical characteristics of participants are
summarized in Table 1. At the time of lumbar puncture, 3 of
the patients were drug-free but had previously received anti -
psychotic drugs, whereas the remaining patients were pre-
scribed the following neuroleptics: chlorpromazine (n = 2),
perphenazine (n = 3), thioridazine (n = 2), raclopride (n = 1),
cisflupenthixol (n = 1), zuclopenthixol (n = 2), a combination
of clozapine and perphenazine (n = 1), a combination of
haloperidol and sulpiride (n = 1), and a combination of per-
phenazine and thioridazine (n = 1).

We found an association between the KMO SNP rs1053230
and CSF concentrations of KYNA (likelihood ratio χ2

1 = 10.0,
p = 0.002). The additive value was 1.1 (95% confidence inter-
val 0.34–1.79), and a copy of the T-allele was associated with

a 45% increase in CSF concentrations of KYNA (least square
means were 1.0 nM for individuals with the CC genotype and
1.49 nM for those with the CT genotype; Fig. 2). This associa-
tion was observed in both patients and controls and was sig-
nificant after correction for multiple testing (adjusted
p = 0.023, empirical 5% quantile = 0.003). Although there was
a tendency toward a stronger association in affected individ-
uals (Fig. 2), this difference was not statistically significant
(p = 0.73 for affection state as modifier).

Discussion

We found that the minor allele (T) of the KMO SNP
rs1053230 was strongly associated with increased CSF con-
centrations of KYNA. To our knowledge, this is the first
study showing an association between a KMO SNP and a pu-
tative phenotype of schizophrenia (i.e., elevated levels of
KYNA concentrations). This SNP is located in exon 15 and re-
sults in a shift of the amino acid sequence from arginine to
cysteine. The association was evident in both healthy controls
and patients with schizophrenia, and it tended to be stronger
in patients.

The KMO enzyme is located at the outer membrane of the
mitochondria.32 Although the major part of the enzyme is lo-
cated inside of the membrane, the KMO polymorphism
rs1053230 is situated in the part of the gene sequence coding
for positions outside of the mitochondria membrane (www
.predictprotein.org), likely the site for substrate interaction.
Thus, an exchange of amino acids in this part of the enzyme
may directly influence substrate binding,33 for example, affect-
ing the hydropathy index from –4.5 (arginine, the most hy-
drophilic amino acid) to 2.5 (cysteine, a moderate hydropho-
bic amino acid). The increased levels of KYNA, seen in
individuals with the minor T allele, may thus follow a reduc-
tion of kynurenine binding to KMO. In support of this theory,
it has been shown that concentrations of brain kynurenine, the
precursor of KYNA, are elevated6,34 and that KMO activity is

Table 1: Demographic and clinical characteristics
of the study participants

Group; mean (SD)*

Characteristic Schizophrenia Control

No. 17 33

Sex, % women 17.6 27.3

Age, yr† 33.2 (7.5) 27.9 (9.8)

Age at onset, yr 22.7 (4.2) —

KYNA, nM 1.4 (0.7) 1.3 (0.6)

KYNA = kynurenic acid; SD = standard deviation.
*Unless indicated otherwise.
†Age at the time of lumbar puncture.
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Fig. 2: The concentrations of kynurenic acid (KYNA) increase with
the T-allele of rs1053230 (p = 0.023 after correction for multiple test-
ing). Least square means and standard errors are given for controls
and patients with schizophrenia with the CC, CT and TT genotypes,
respectively, adjusting for effects of back length, age and sex.



decreased35 in patients with schizophrenia. The metabolism of
kynurenine would thus be shunted toward KYNA, similar to
the outcome of administering pharmacologic compounds that
block KMO.36 The availability of kynurenine is suggested to be
the determinant of KYNA synthesis.22

One might speculate that the SNP rs1053230 is affecting the
function of the KMO enzyme, as it is associated with CSF
concentrations of KYNA. The functionality of this SNP is,
however, not explored in the present study. An in vitro enzy-
matic assay, overexpressing the different KMO variants, in-
cluding either the C allele or the T allele of this SNP as the
only genetic difference, would have been a desirable ap-
proach to analyze functionality. However, since KMO is a
mitochondria–membrane bound enzyme, estimating its ac-
tivity in an artificial environment might be problematic.

Participants in the present study represent a smaller frac-
tion of those included in the study by Nilsson and col-
leagues,8 in which CSF concentrations of KYNA were found
to be significantly higher in patients than controls. Possibly,
the lack of a difference in CSF concentrations of KYNA be-
tween patients and controls in the present study was related
to the restricted number of samples analyzed, and the less
disparate CSF concentrations of KYNA in the 2 groups might
mainly be explained by higher KYNA concentrations in con-
trols in the present analysis compared with those controls in
the larger study for whom DNA was not available. Despite
this limitation, it is of interest to note that the association be-
tween the KMO (rs1053230) T allele and increased KYNA
concentration tended to be stronger in patients compared
with controls (Fig. 2). Notably though, KMO SNPs per se do
not confer major susceptibility to schizophrenia.28

Synthesis of KYNA is not only affected by the activity of
the enzyme KMO, but is also critically regulated by in-
doleamine 2,3-dioxygenase (IDO) and/or tryptophan 2,3-
dioxygenase (TDO), enzymes responsible for the rate-
 limiting step of the kynurenine pathway (Fig. 1). Notably,
CSF concentrations of KYNA as well as brain IDO and TDO
activity are induced during infections or immune activa-
tion,37–39 and numerous studies suggest that brain KYNA is a
biologic marker of neuroinflammation.40,41 In support of an ac-
tivation of the brain immune system in patients with schizo-
phrenia, the CSF concentration of interleukin-1β, a pro inflam -
matory cytokine, is elevated in patients with first- episode
schizophrenia.42 Indeed, gene expression of TDO and the
density of TDO-immunopositive cells are found to be ele-
vated in the postmortem brains of patients with schizophre-
nia.43 A change in the KMO codon sequence from arginine to
cysteine in combination with increased IDO and/or TDO ac-
tivity may thus be responsible for the elevated KYNA con-
centrations seen in patients with schizophrenia.6–8,34,44

Limitations

One limitation of the present study is the relatively small
sample size for a genetic study. To reduce the influence of gen -
etic variation, all participants were white and sampled from
the same area of Sweden. Still, replication in additional sam-
ples is needed to confirm the relation. Another limitation

stems from the use of antipsychotic drugs during CSF sam-
pling among most of the patients. Generally, treatment with
antipsychotic drugs should be taken into consideration as a
confounding factor when evaluating biologic aberrations in
the brains of patients with schizophrenia. However, chronic
treatment with antipsychotics in rats has been shown to de-
crease brain KYNA concentrations,45 a finding also supported
by postmortem findings in patients with schizophrenia.46

These findings argue against an influence of treatment in the
present study. In addition, the observed association between
the KMO SNP rs1053230 and KYNA concentrations was simi-
lar among the larger group of drug-free healthy participants.

Conclusion

The present findings indicate that increased levels of CSF
concentrations of KYNA, as previously reported in patients
with schizophrenia, are influenced by a nonsynonymous
missense polymorphism in KMO.
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