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Abstract. We consider a strictly hyperbolic n × n system of conservation laws in
one space dimension

ut + f(u)x = 0,

together with Cauchy initial data

u(0, x) = ū(x),

that is a small BV ∩ L1 perturbation of fixed Riemann data (u−

0
, u+

0
). We a priori

assume that the latter problem is solved by M large shocks (2 ≤ M ≤ n) of different
characteristic families, each of them Majda stable and Lax compressive.

We prove that under a suitable Finiteness Condition the problem has a unique
solution defined globally in space and time, while a stronger Stability Condition
guarantees the existence of a Lipschitz semigroup of solutions.

1. Introduction

In this paper we consider a strictly hyperbolic system of conservation laws in
one space dimension:

ut + f(u)x = 0. (1.1)

In the n-dimensional state space M + 1 (M ∈ {2 . . . n}) distinct states {uq
0}

M
q=0 are

fixed, with their corresponding open disjoint neighbourhoods {Ωq}M
q=0 such that:

• f : Ω −→ Rn is smooth and defined on Ω =
⋃M

q=0 Ωq ⊂ Rn.

• f is strictly hyperbolic in Ω, that is: at every point u ∈ Ω the matrix Df(u)
has n real and simple eigenvalues λ1(u) < . . . < λn(u). Note that conse-
quently one has:

|λk(u) − λs(v)| ≥ c ∀k 6= s ∀q : 0 . . .M ∀u, v ∈ Ωq (1.2)

with some positive constant c, if only the neighbourhoods Ωq are sufficiently
small.

• Each characteristic field of (1.1) is either linearly degenerate or genuinely
nonlinear, that is: with a basis {rk(u)}

n

k=1 of corresponding right eigenvectors
of Df(u), Df(u)rk(u) = λk(u)rk(u), each of the n directional derivatives
rk∇λk vanishes either identically or nowhere.

We assume that the Riemann problem (1.1) with:

u(0, ·) = ū, (1.3)

ū(x) =

{
u0

0 x < 0

uM
0 x > 0

(1.4)
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has an M -shock solution:

u(t, x) =





u0
0 x < Λ1t

uq
0 Λqt < x < Λq+1t, q : 1 . . .M − 1

uM
0 x > ΛM t,

(1.5)

in which the ’basic’ states uq
0 are joined by M (large) shocks (uq−1

0 , uq
0), q : 1 . . .M ,

travelling with respective speeds Λq.
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The goal of this article is to treat the Cauchy problem (1.1) (1.3), if the initial
data is a small perturbation of ū in (1.4).

The following standard conditions on the nature of the large shocks are assumed.
For (1.5) to be a distributional solution of (1.1) (1.3) (1.4), we need that for every
shock q : 1 . . .M the Rankine-Hugoniot conditions are satisfied:

f(uq−1
0 ) − f(uq

0) = Λq(uq−1
0 − uq

0). (1.6)

Moreover, the shocks (uq−1
0 , uq

0) are said to belong to the corresponding iq-chara-
cteristic families (1 ≤ i1 < i2 < . . . < iM ≤ n) and assumed to be compressive in
the sense of Lax [L]:

λiq (u
q−1
0 ) > Λq > λiq (u

q
0). (1.7)

Note that (1.7) yields in particular that the shocks of characteristic families carrying
bigger indices travel with the faster speed: Λ1 < . . . < ΛM , as in Figure 1.1.

We require that all large shocks are stable in the sense of Majda [M], that is:

The n vectors

r1(u
q−1
0 ), . . . , riq−1(u

q−1
0 ), uq

0 − uq−1
0 , riq+1(u

q
0), . . . , rn(uq

0)

are linearly independent.

(1.8)

for every q : 1 . . .M .

The assumptions introduced so far are not sufficient to ensure global-in-time
wellposedness of system (1.1) near its multiple shock solution (1.5). We will use
the following Finiteness and Stability conditions.
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Finiteness Condition

There exist a constant θ ∈ (0, 1) and positive weights wq
1 , . . . , wq

n (for every
q : 0 . . .M ) such that the following holds. Consider a small wave of a

family k ≤ iq, hitting from the right the large initial iq-shock (uq−1
0 , uq

0), as
in Figure 1.2. Then

iq−1∑

s=1

wq−1
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣+
n∑

s=iq+1

wq
s

wq
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < θ (1.9)

at ǫin
1 = . . . = ǫin

k = . . . = ǫin
n = 0.
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Symetrically, in case when a small k-wave with k ≥ iq hits the shock

(uq−1
0 , uq

0) from the left (compare Figure 1.3), there holds:

iq−1∑

s=1

wq−1
s

wq−1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣+
n∑

s=iq+1

wq
s

wq−1
k

·

∣∣∣∣
∂

∂ǫin
k

ǫout
s

∣∣∣∣ < θ (1.10)

at ǫin
1 = . . . = ǫin

k = . . . = ǫin
n = 0.

Remark. Regarding wq
s as the weight given to an s-wave located in the region

between the q − 1 and the q-th large shock, conditions (1.9) (1.10) simply say
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that, every time a small wave hits a large shock, the total weighted strength of the
outgoing small waves is smaller than the weighted strength of the incoming wave.

Stability Condition

In the setting of Figure 1.2:

iq−1∑

s=1

wq−1
s

wq
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣

+

n∑

s=iq+1

wq
s

wq
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣ < θ

(1.11)

at ǫin
1 = . . . = ǫin

k = . . . = ǫin
n = 0, while in the setting of Figure 1.3:

iq−1∑

s=1

wq−1
s

wq−1
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣

+
n∑

s=iq+1

wq
s

wq−1
k

·

∣∣∣∣∣
∂

∂ǫin
k

(
ǫout
s · (λout

s − Λq)

(λin
k − Λq)

)∣∣∣∣∣ < θ

(1.12)

at ǫin
1 = . . . = ǫin

k = . . . = ǫin
n = 0.

Observe that it is always possible to define the weights {w0
k} and {wM

k } such
that (1.9) - (1.12) are satisfied, provided that the suitable weights {wq

k}, q /∈ {0, M}
exist.

Another remark is that our Stability Condition (1.11) (1.12) is indeed stronger
than the Finiteness Condition (1.9) (1.10); see Theorem 3.1 in [Le1].

Assume that the neighbourhoods Ωq of the basic states uq
0 have been chosen

sufficiently small. We start our analysis recalling a basic fact on the solvability of
Riemann problems with initial states in Ω. This issue has been addressed in [Le2];
in our particular setting the conditions (1.6) (1.7) (1.8) guarantee

Proposition 1.1. Let the Finiteness Condition (1.9) (1.10) hold. With any Rie-
mann data (u−, u+), u− ∈ Ωi, u+ ∈ Ωj , 0 ≤ i ≤ j ≤ M , (1.1) has a unique
self-similar solution, attaining n + 1 states, consecutively connected by:

- weak waves of the corresponding families (if both left and right states of a pair
under consideration belong to the same set Ωq, i ≤ q ≤ j),

- j − i large shocks, joining the states belonging to different sets Ωq,

as in Figure 1.4.
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Now we turn to the main point of this article. Define the domain D̃δ0 by:

D̃δ0 = cl

{
u : R −→ Rn; there exist points x1 < x2 < . . . < xM in R

such that calling ũ(x) =





u0
0 x < x1

uq
0 xq < x < xq+1, q : 1 . . .M − 1

uM
0 x > xM

(1.13)

we have: u − ũ ∈ L1(R,Rn) and T.V.(u − ũ) ≤ δ0

}
,

with the closure taken in L1
loc(R,Rn).

Our main results are the following:

Theorem A If the Finiteness Condition (1.9) (1.10) is satisfied then there exists

δ0 > 0 such that for every ū ∈ D̃δ0 (1.1) (1.3) has a solution (defined for all times
t ≥ 0).

Theorem B If the Stability Condition (1.11) (1.12) is satisfied then there exists

δ0 > 0, L > 0, a closed domain Dδ0 ⊂ L1
loc(R,Rn) containing D̃δ0 , and a continuous

semigroup S : [0,∞) ×Dδ0 −→ Dδ0 such that:

(i) S(0, ū) = ū,
S(t + s, ū) = S(t, S(s, ū)) ∀t, s ≥ 0 ∀ū ∈ Dδ0 .

(ii) ‖ S(t, ū) − S(s, w̄) ‖L1≤ L · (|t − s|+ ‖ ū − w̄ ‖L1) ∀t, s ≥ 0 ∀ū, w̄ ∈ Dδ0 .
(iii) Each trajectory t 7→ S(t, ū) is a solution of (1.1) (1.3).

The paper is organised as follows. Towards the proof of Theorem A, in Section
2 we explicitely define the Glimm potentials, measuring the total strength of all
small waves in the approximate solutions of (1.1), and the possible amount of
interaction between themselves or with the large shocks. Section 3 contains the
definition of the Lyapunov functional and the basic L1 stability estimates for the
wave front tracking approximations. Our functional is motivated by the similar one
in [BLY]; the difference is that it now contains some extra terms accounting for the
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interactions and coupling of the small waves against the large shocks. In Section 4
we prove the stated stability estimates, concluding the proof of Theorem B.

We now comment on the relation of this article to other papers. In [Scho],
Schochet was the first to introduce a finiteness condition, giving positive answer to
question A. This condition is formulated inductively with respect to the number of
large shocks M and uses the language of matrix analysis. As shown and accompa-
nied by a more detailed discussion in [Le1], the Schochet finiteness condition and
our conditions (1.9) (1.10) are equivalent.

In [BC], Bressan and Colombo consider the general Riemann problem for sys-
tems of two equations and assuming the corresponding stability condition, answer
question B positively. More recently, the paper [LT] proves Theorems A and B (for
systems of n ≥ 2 equations) in the presence of only two large shocks, of charac-
teristic families i and j > i; indeed in the case M = 2, i1 = i, i2 = j, the above
Finiteness and Stability Conditions reduce to the corresponding conditions of [LT].
Substantial differences between M = 2 and M > 2 occur in particular in the proof
of Theorem B. Namely, the straightforward generalization of the Lyapunov func-
tional introduced in [LT] does not provide a functional decreasing along the wave
front tracking solutions, when M > 2. On the other hand, our new functional
defined in Section 3, reduces when M = 2 to a Lyapunov functional that can be
seen as a simplification of the one from [LT].

Also, instead of Majda’s criterion (1.8), the paper [LT], following [BC], used a
differently stated assumption; the forthcoming article [Le1] shows the equivalence
of the two conditions.

The Stability Condition (1.11) (1.12), which came up naturally in the investi-
gations leading to this paper, was earlier introduced in [BM] (formulae (3.42) and
(3.43)), to guarantee the wellposedness of associated linearized variational systems.

2. Wave front tracking approximations

and Glimm’s functionals

The purpose of this Section is to establish Theorem A. As, much differently from
that of Theorem B, this proof hardly depends on the number of M of large shocks
in the reference solution, we are somewhat brief in this Section and refer the reader
wishing to see further details to [LT] where Theorem A has been shown for the case
M = 2.

Given a Cauchy problem (1.1) (1.3), its solution is obtained as a limit (with
ǫ → 0) of piecewise constant ǫ-approximate solutions, given by the wave front
tracking algorithm, as described in [LT]. Since the large waves of different families
travel with strictly different speeds, they never interact, and thus the analysis in
[LT] applies, provided a suitable Glimm’s type functional [Gl] [B1] [LT] can be
found.

Let u(t, x) be a piecewise constant approximate solution, generated by the wave
front tracking algorithm. At a fixed time t > 0, the function u(t, ·) is piecewise
constant, with jumps located at the wave front positions. There are precisely M
large jumps, while the others are small, their left and right states belonging to the
same set Ωk.

Definition 2.1. (Approaching waves)
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(i) We say that two small (possibly non-physical) fronts α and β, located at points
xα < xβ and belonging to the characteristic families kα, kβ ∈ {1 . . . n + 1}
respectively, approach each other iff the following two conditions hold simul-
taneously:

– xα and xβ lay together in one of the M + 1 intervals (M of them un-
bounded) into which R is partitioned by the locations of large shocks. In
other words: the states joined by the fronts under consideration both be-
long to the same set Ωk.

– Either kα < kβ or else kα = kβ and at least one of the waves is a genuinely
nonlinear shock.

In this case we write: (α, β) ∈ A.
(ii) We say that a small wave α of the characteristic family kα ∈ {1 . . . n + 1}

located at xα approaches a large shock of family kβ = ik, for some k : 1 . . .M ,
located at a point xβ iff one of the following conditions hold:

– The states u−, u+ joined by the small wave under consideration both be-
long to Ωk−1 and kα ≥ ik.

– The states u−, u+ belong to Ωk and kα ≤ ik.
We then write: α ∈ Aik

.

We adopt the following notation. For a small wave of family k and strength ǫk,
connecting two states u1 and u2, we define its weighted strength as

bk = wq
k · ǫk if u1, u2 ∈ Ωq. (2.1)

The strength of any large wave, connecting two states u1 ∈ Ωq, u2 ∈ Ωq+1 is set to
be equal to some fixed number B ≤ 1, bigger than all the possible strengths of the
small waves.

Definition 2.2. For a fixed t > 0 we define the following (weighted) total variation
and interaction potentials:

V (t) =
∑

{|bα|; α - the small waves of all families},

QA(t) =
∑

(α,β)∈A

|bαbβ |,

Qik
(t) =

∑

α∈Aik

|bα|, k : 1 . . .M,

Q(t) = κQA(t) +

M∑

k=1

Qik
(t),

γ(t) = V (t) + κ̃Q(t) +

M−1∑

k=1

|qk(t) − uk
0 |,

where κ, κ̃ > 0 are constants to be specified later. The vectors qk(t) are the right
states of the ik-th large shock in u(t, ·), respectively.

The following result (analogous to Proposition 3.4. in [LT]) is implied by the
assumed Finiteness Condition (1.9) (1.10).

Proposition 2.3. Assume that the Finiteness Condition holds. Then for some
constants c, κ, κ̃, δ > 0 the following is satisfied. If u(0, ·) is piecewise constant and
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belongs to D̃δ, then for any t > 0 when two wave fronts of families α and β interact
we have:

(i)

∆Q(t) = Q(t+) − Q(t−)

≤

{
−c|bα · bβ| if both waves are small

−c|bα| if α is a small wave and β is a large shock.

(ii) The same estimate as in (i) above holds for ∆γ(t) = γ(t+) − γ(t−).

The above proposition implies the validity of all the main properties acquired
by the wave front tracking approximate solutions (Theorem 3.5. in [LT]). Conse-
quently, Theorem A can be proved, as in [LT] [BLY].

3. The Lyapunov functional

This Section serves to define and discuss the properties of the Lyapunov func-
tional Φ [LY1] [LY2] [LY3] [BLY] [LT], measuring the L1 distance between the time
profiles of two arbitrary ǫ-approximate solutions u, v : [0,∞) × R −→ Rn con-
structed by wave front tracking algorithm. The two crucial features of Φ are the
following:

1

C
· ‖ u(t, ·) − v(t, ·) ‖L1≤ Φ(u(t, ·), v(t, ·)) ≤ C· ‖ u(t, ·) − v(t, ·) ‖L1 , (3.1)

Φ(u(t, ·), v(t, ·)) ≤ Φ(u(s, ·), v(s, ·)) + O(1) · ǫ · (t − s) ∀t > s ≥ 0. (3.2)

Fix a time t > 0 and consider a space point x ∈ R which is not a discontinuity
point of the functions u = u(t, ·), v = v(t, ·). Let u(x) ∈ Ωi, v(x) ∈ Ωj , for some
i, j : 0 . . .M. We define the scalar quantities {bk(x)}n

k=1 as the weighted strengths of
the corresponding shock waves in the jump (u(x), v(x)). More precisely, we consider
the Riemann data:

(w−, w+) =

{
(u(x), v(x)) if i ≤ j

(v(x), u(x)) if i > j.
(3.3)

By a slight modification of Proposition 1.1 one can see that the Riemann problem
(1.1) (3.3) has a unique self-similar solution, whose all small waves are shocks
(possibly nonadmissible). The weighted strengths of the waves in this solution
are to be called bk(x). In particular, if for example u(x), v(x) ∈ Ω0, then for every
k : 1 . . . n we have: bk(x) = w0

k ·ǫk(x) where the strengths {ǫk(x)}n
k=1 are implicitely

defined by:

v(x) = Sn(. . . ,S1(u(x), ǫ1(x)), . . . , ǫn(x)).

By λk(x) we denote the corresponding speed of the k-th wave ǫk(x).

We define the functional:

Φ(u, v) :=

n∑

k=1

∫ ∞

−∞

|bk(x)|Wk(x)dx,

where the weights Wk are given by:

Wk(x) := 1 + κ1Ak(x) + κ2[Q(u) + Q(v)]. (3.4)



L1 STABILITY OF PATTERNS ... 9

The constants κ1, κ2 in (3.4) are to be defined later. Q is our Glimm’s interaction
potential, introduced in Definition 2.2. The amount Ak(x) of waves in u and v,
approaching the wave ǫk(x) is defined in the following way:

Ak(x) =






Bk(x) + Ck(x) if k-wave bk(x) is small, joining

the states in Ωs, s : 0 . . .M

Dk(x) + Fk(x) if k-wave bk(x) = B is large,

k = is for some s : 1 . . .M

(3.5)

+





Gk(x) if k-field is genuinely nonlinear and k-wave bk(x)

is small, joining the states Ωs, s : 0 . . .M

0 otherwise

The summands in (3.5) are defined:

Bk(x) =




∑

α∈LS, kα∈{is,is+1}

xα<x, kα>k

+
∑

α∈LS, kα∈{is,is+1}

xα>x, kα<k



 |ǫα|

+





∑

α∈LS
xα<x, kα=is

|ǫα| if k = is

∑

α∈LS
xα>x, kα=is+1

|ǫα| if k = is+1,

Ck(x) =




∑

α∈J\LS, xα<x, k<kα≤n,

both states joined by α
are located in Ωs

+
∑

α∈J\LS, xα>x, 1≤kα<k,

both states joined by α
are located in Ωs


 |ǫα|,

Dk(x) =




∑

α∈LS,
xα>x, kα=is−1

+
∑

α∈LS,
xα<x, kα=is+1



 |ǫα|,

Fk(x) =




∑

α∈J\LS, xα<x, k<kα≤n,

both states joined by α

are located in Ωs−1 or in Ωs

+
∑

α∈J\LS, xα>x, 1≤kα<k,

both states joined by α

are located in Ωs−1 or in Ωs


 |ǫα|

+




∑

α∈J\LS, xα<x, kα=k,

both states joined by α

are located in Ωs−1

+
∑

α∈J\LS, xα>x, kα=k,

both states joined by α
are located in Ωs


 |ǫα|,

Gk(x) =









∑

α∈J (u)\LS, xα<x, kα=k,

both states joined by α
are located in Ωs

+
∑

α∈J (v)\LS, xα>x, kα=k,

both states joined by α
are located in Ωs


 |ǫα| if bk(x) < 0




∑

α∈J (v)\LS, xα<x, kα=k,

both states joined by α
are located in Ωs

+
∑

α∈J (u)\LS, xα>x, kα=k,

both states joined by α
are located in Ωs


 |ǫα| if bk(x) > 0.
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Here ǫα stands for the (nonweighted) strength of the wave α ∈ J , located at point
xα and belonging to the characteristic family kα. J = J (u) ∪ J (v) is the set
of all waves in u and v, by LS,R,S, C we denote respectively: the large shocks,
rarefactions, (weak) shocks and non-physical waves in u and v.

We assume the convention that in the above definitions we sum only the terms
whose indices lie in their admissible ranges; for example if s = M , then obviously
there are no large waves with the index is+1 and thus we do not treat the corre-
sponding terms calling the strengths of these waves.

We comment briefly on the formula (3.5). The summands Bk(x) and Dk(x)
account for the large waves approaching the k-wave under consideration. However,
only these large waves are considered, whose right or left state belongs to the set
Ωs containing at least one of the states joined by the k-wave.

Ck(x) and Gk(x) are the usual summands, identical with the ones in the corre-
sponding definition of Ak(x) in [BLY]. Their presence says that a small k-wave is
approached by any wave of a faster family, located to the left and any wave of a
slower family, located to the right. Only small physical waves, ’living’ in the same
set Ωs as the k-wave, are involved.

The summand Fk(x) contains the strengths of the small physical waves approach-
ing a large k-wave under consideration, according to their locations and speeds. The
convention as in the definition of Bk(x) is valid. The presence of the second term
in Fk(x) is due to the assumed Lax stability of large shocks.

Let α be a wave in u (or v), located at a point xα, with speed ẋα. Following
[BLY], define:

Eα,k = |bk(xα+)|Wk(xα+)(λk(xα+) − ẋα) − |bk(xα−)|Wk(xα−)(λk(xα−) − ẋα).

The standard argument [BLY] [LT] shows that (3.1) (3.2) are implied by:

n∑

k=1

Eα,k = O(1) · |ǫα| ∀α ∈ C (3.6)

∑

α∈J\C

n∑

k=1

Eα,k = O(1) · ǫ (3.7)

If t is an interaction time of two fronts in u or v then all weights
Wk(x) decrease across time t. (3.8)

The statements (3.6) and (3.8) are proved as in [LT], using Definition 2.2. In
the remaining part of the article we will focus on (3.7). As usual, if no ambiguity
created, we abbreviate the notation and for a particular wave α under consideration
write: b+

k instead of bk(xα+), W−
k instead of Wk(xα−), etc.

Keeping in mind a possible ’representative’ configuration of wave locations in u
and v, as in Figure 3.1 we formulate the following condition:

At least for one wave α ∈ LS (of the family is) both wave vectors
{b−k }

n
k=1 and {b+

k }
n
k=1 contain a large wave of the same family ik.

(3.9)

The proof of (3.7) will be performed according to if (3.9) holds or is violated.
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+
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i r+1

i r+1
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Ωr Ωs-1
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Ωs
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xα

i
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u

s-1

s

...

...

...

...

is+1

a) b)

s: 1 ... M
r: 0 ... s-1

. . . 

 . . .

Figure 3.1

Case 1. – (3.9) holds.
Note that one may always take ik ∈ {is−1, is+1} so that, by (3.5):

Eik
= B ·

[
(W+

ik
− W−

ik
)(λ±

ik
− ẋα) + W∓

ik
(λ+

ik
− λ−

ik
)
]
≤ −κ1B

2c, (3.10)

where c > 0 is a small uniform constant, bounded away from zero. The inequality
in (3.10) follows from the fact that λ+

ik
− λ−

ik
in there is of the order of the sum of

all small waves in {ǫ−k }
n
k=1 and {ǫ+k }

n
k=1.

We thus see that Eik
provides a big negative term that eventually overwhelms

all the other terms Ek, because:

Ek = B · W±
k (λ+

k − λ−
k ) if b+

k = b−k = B and k /∈ {is−1, is+1},

Ek = |b+
k | · W

+
k (λ+

k − ẋα) − |b−k | · W
−
k (λ−

k − ẋα) if both b+
k and b−k are small,

Eis = B · W±
is

(λ±
is
− ẋα) − |b∓is

| · W∓
is
|λ∓

is
− ẋα| ≤ B · W±

is
(λ±

is
− ẋα).

In all the above cases:

Ek = O(1) ·




n∑

k=1
αk /∈LS

|ǫ−k | +
n∑

k=1
αk /∈LS

|ǫ+k |


 . (3.11)

Similar analysis works for Eβ
k with β ∈ LS, β 6= α. In case α ∈ S ∪R, the following

estimate will be shown in Section 4:
n∑

k=1

Ek = O(1) · |ǫα|. (3.12)

Observing that by Proposition 2.3 the quantity
∑

α∈J\LS

|ǫα|

is bounded (uniformly in time), one sees that (3.10) - (3.12) imply (3.7) if only κ1

is big and δ0 in (1.13) is small enough.

Case 2. – (3.9) is violated.
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The above is possible if and only if no large wave can be found between the locations
of any pair of the large shocks of the same family (occuring in u and v). In other
words: one of the immediate large successors or predecessors of any large wave in
u or v, must be of the same characteristic family as this wave – see Figure 3.2.

i 1
i 1

i
2

i
M i

M

i
2

v

u

u

v

Figure 3.2

For a fixed s : 1 . . . M , denote by α the wave in v of the family is, and by β the
large jump in u of the same family. Then, as shown in Section 5:

n∑

k=1

Eα,k +

n∑

k=1

Eβ,k ≤ 0, (3.13)

and
n∑

k=1

Eα,k = O(1) · ǫ · |ǫα| ∀α ∈ S ∪R. (3.14)

Certainly (3.13) and (3.14) imply (3.7).

4. Proofs of the stability estimates

Case of large shocks
– the estimate (3.13)

We assume that the waves location pattern looks as in Figure 4.1, all the other
possible configurations can be treated in entirely the same way.

i1 i s-1

i
s+1

i
M

i1

i
s+1

i
M

i s-1

i
s

i
s

i
s

{b  }k
-

u-

u+
{b  }+

k

Ωs-1

xα
xβ

xα
.

xβ
.

{b  }k

i
s

i
s

Ωs--

v
v

+

u

v ...

...

...

...

B

B

,

,

a) b)
s: 1 ... M

Figure 4.1
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Using notation of Figure 4.1, we will show that:

n∑

k=1

Eα,k+

n∑

k=1

Eβ,k =

n∑

k=1

[
|bk| · Wk(λk − ẋα) − |b−k | · W

−
k (λ−

k − ẋα)
]

+

n∑

k=1

[
|b+

k | · W
+
k (λ+

k − ẋβ) − |bk| · Wk(λk − ẋβ)
]
≤ 0.

(4.1)

First, we estimate
∑n

k=1 Eα,k. By Lemma 5.1. in [LT] and definitions (3.5) we get:

Eα,is = B · O(1) ·
∑

k≥is

|b−k | − |b−is
| · (O(1) + 2κ1B) · |λ−

is
− ẋα|, (4.2)

∑

k≤is−1

Eα,k =
∑

k≤is−1

[
|bk| · (λk − ẋα)(Wk − W−

k )

+ W−
k

(
|bk|(λk − ẋα) − |b−k |(λ

−
k − ẋα)

) ]

≤
∑

k≤is−1

[
− |bk| · |λk − ẋα|κ1B

+ 2κ1B
(
|b−k ||λ

−
k − ẋα| − |bk||λk − ẋα|

) ]

+ O(1) ·



∑

k<is

|bk| +
∑

k≥is

|b−k |




= −3κ1B ·
∑

k≤is−1

|bk||λk − ẋα| + 2κ1B ·
∑

k≤is−1

|b−k ||λ
−
k − ẋα|

+ O(1) ·



∑

k<is

|bk| +
∑

k≥is

|b−k |


 ,

(4.3)

∑

is−1<k<is

Eα,k =
∑

is−1<k<is

[
|bk| · (λk − ẋα)(Wk − W−

k )

+ W−
k

(
|bk|(λk − ẋα) − |b−k |(λ

−
k − ẋα)

) ]

≤
∑

is−1<k<is

[
− |bk| · |λk − ẋα|κ1B

]

+ O(1) ·



∑

k<is

|bk| +
∑

k≥is

|b−k |


 ,

(4.4)
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∑

is<k<is+1

Eα,k =
∑

is<k<is+1

[
|b−k | · (λ

−
k − ẋα)(Wk − W−

k )

+ Wk

(
|bk|(λk − ẋα) − |b−k |(λ

−
k − ẋα)

) ]

≤
∑

is<k<is+1

[
− |b−k | · |λ

−
k − ẋα|κ1B

+ κ1B
(
|bk||λk − ẋα| − |b−k ||λ

−
k − ẋα|

) ]

+ O(1) ·
∑

k≥is

|b−k |

= −2κ1B ·
∑

is<k<is+1

|b−k ||λ
−
k − ẋα|

+ κ1B ·
∑

is<k<is+1

|bk||λk − ẋα| + O(1) ·
∑

k≥is

|b−k |,

(4.5)

∑

k≥is+1

Eα,k =
∑

k≥is+1

[
|bk| · (λk − ẋα)(Wk − W−

k )

+ W−
k

(
|bk|(λk − ẋα) − |b−k |(λ

−
k − ẋα)

) ]

≤
∑

k≥is+1

[
|bk| · |λk − ẋα|κ1B

+ 2κ1B
(
|bk||λk − ẋα| − |b−k ||λ

−
k − ẋα|

) ]

+ O(1) ·
∑

k≥is

|b−k |

= −2κ1B ·
∑

k≥is+1

|b−k ||λ
−
k − ẋα| + 3κ1B ·

∑

k≥is+1

|bk||λk − ẋα|

+ O(1) ·
∑

k≥is

|b−k |.

(4.6)

As usual, we do not take into account these terms in the above formulae, that
contain the ’nonexisting’ indices is−1 or is+1.

Summing the inequalities (4.2) - (4.6) we obtain:

n∑

k=1

Eα,k ≤− 3κ1B ·
∑

k≤is−1

|bk||λk − ẋα| − κ1B ·
∑

is−1<k<is

|bk||λk − ẋα|

+ κ1B ·
∑

is<k<is+1

|bk||λk − ẋα| + 3κ1B ·
∑

k≥is+1

|bk||λk − ẋα|

+ 2κ1B ·
∑

k≤is−1

|b−k ||λ
−
k − ẋα| − 2κ1B ·

∑

k≥is

|b−k ||λ
−
k − ẋα|

+ O(1) ·



∑

k<is

|bk| +
∑

k≥is

|b−k |


 .

(4.7)

Now we estimate different terms in
∑n

k=1 Eβ,k:

Eβ,is = B · O(1) ·
∑

k≤is

|b+
k | − |b+

is
| · (O(1) + 2κ1B) · |λ+

is
− ẋβ |, (4.8)
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∑

k≤is−1

Eβ,k =
∑

k≤is−1

[
|bk| · (λk − ẋβ)(Wk − W−

k )

+ W+
k

(
|b+

k |(λ
+
k − ẋβ) − |bk|(λk − ẋβ)

) ]

≤
∑

k≤is−1

[
|bk| · |λk − ẋβ |κ1B

+ 2κ1B
(
|bk||λk − ẋβ | − |b+

k ||λ
+
k − ẋβ |

) ]

+ O(1) ·



∑

k≤is

|b+
k | +

∑

k>is

|bk|




= 3κ1B ·
∑

k≤is−1

|bk||λk − ẋβ | − 2κ1B ·
∑

k≤is−1

|b+
k ||λ

+
k − ẋβ |

+ O(1) ·




∑

k≤is

|b+
k | +

∑

k>is

|bk|



 ,

(4.9)

∑

is−1<k<is

Eβ,k =
∑

is−1<k<is

[
|b+

k | · (λ
+
k − ẋβ)(Wk − W−

k )

+ Wk

(
|b+

k |(λ
+
k − ẋβ) − |bk|(λk − ẋβ)

) ]

≤
∑

is−1<k<is

[
− |b+

k | · |λ
+
k − ẋα|κ1B

]

+ κ1B
(
|bk||λk − ẋβ | − |b+

k ||λ
+
k − ẋβ |

) ]

+ O(1) ·



∑

k≤is

|b+
k | +

∑

k>is

|bk|




= −2κ1B ·
∑

is−1<k<is

|b+
k ||λ

+
k − ẋβ |

+ κ1B ·
∑

is−1<k<is

|bk||λk − ẋβ |

+ O(1) ·




∑

k≤is

|b+
k | +

∑

k>is

|bk|



 ,

(4.10)

∑

is<k<is+1

Eβ,k =
∑

is<k<is+1

[
|bk| · (λk − ẋβ)(Wk − W−

k )

+ W+
k

(
|b+

k |(λ
+
k − ẋβ) − |bk|(λk − ẋβ)

) ]

≤
∑

is<k<is+1

[
− |bk| · |λk − ẋα|κ1B

]

+ O(1) ·



∑

k≤is

|b+
k | +

∑

k>is

|bk|


 ,

(4.11)
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∑

k≥is+1

Eβ,k =
∑

k≥is+1

[
|bk| · (λk − ẋβ)(Wk − W−

k )

+ W+
k

(
|b+

k |(λ
+
k − ẋβ) − |bk|(λk − ẋβ)

) ]

≤
∑

k≥is+1

[
− |bk| · |λk − ẋβ |κ1B

+ 2κ1B
(
|b+

k ||λ
+
k − ẋβ | − |bk||λk − ẋβ |

) ]

+ O(1) ·



∑

k≤is

|b+
k | +

∑

k>is

|bk|




= −3κ1B ·
∑

k≥is+1

|bk||λk − ẋβ | + 2κ1B ·
∑

k≥is+1

|b+
k ||λ

+
k − ẋβ |

+ O(1) ·




∑

k≤is

|b+
k | +

∑

k>is

|bk|



 .

(4.12)

Thus, in view of (4.8) - (4.12), we get:

n∑

k=1

Eβ,k ≤3κ1B ·
∑

k≤is−1

|bk||λk − ẋβ | + κ1B ·
∑

is−1<k<is

|bk||λk − ẋβ |

− κ1B ·
∑

is<k<is+1

|bk||λk − ẋβ | − 3κ1B ·
∑

k≥is+1

|bk||λk − ẋβ |

− 2κ1B ·
∑

k≤is

|b+
k ||λ

+
k − ẋβ | + 2κ1B ·

∑

k≥is+1

|b+
k ||λ

+
k − ẋβ |

+ O(1) ·




∑

k≤is

|b+
k | +

∑

k>is

|bk|



 .

(4.13)

Summing (4.7) with (4.13) and recalling that:

|ẋα − ẋβ | = O(1) ·




∑

k≥is

|b−k | +
∑

k≤is

|b+
k |



 ,

we receive:

n∑

k=1

Eα,k +

n∑

k=1

Eβ,k

≤2κ1B ·
( ∑

k≤is−1

|b−k ||λ
−
k − ẋα| −

∑

k≥is

|b−k ||λ
−
k − ẋα|

−
∑

k≤is

|b+
k ||λ

+
k − ẋβ | +

∑

k≥is+1

|b+
k ||λ

+
k − ẋβ |

)

+ O(1) ·



∑

k≥is

|b−k | +
∑

k 6=is

|bk| +
∑

k≤is

|b+
k |


 .

(4.14)
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Since

∑

k 6=is

|bk| = O(1) ·




∑

k≥is

|b−k | +
∑

k≤is

|b+
k |



 ,

we see that once we fix γ ∈ (0, 1), without loss of generality the following estimate
holds:

n∑

k=1

Eα,k +

n∑

k=1

Eβ,k

≤2κ1B ·
[ ∑

k≤is−1

|b−k ||λ
−
k − ẋβ | +

∑

k≥is+1

|b+
k ||λ

+
k − ẋβ |

− γ ·
( ∑

k≥is

|b−k ||λ
−
k − ẋβ | +

∑

k≤is

|b+
k ||λ

+
k − ẋβ |

)]
.

(4.15)

Note that if γ > θ then the right hand side of (4.15) is nonpositive by the following
two estimates:

∑

k≤is−1

|bk(λk − Λs) − b−k (λ−
k − Λs)| +

∑

k≥is+1

|bk||λk − Λs|

≤ γ ·
∑

k≥is

|b−k ||λ
−
k − Λs|,

(4.16)

∑

k≥is+1

|bk(λk − Λs) − b+
k (λ+

k − Λs)| +
∑

k≤is−1

|bk||λk − Λs|

≤ γ ·
∑

k≤is

|b+
k ||λ

+
k − Λs|,

(4.17)

that are the consequences of the Stability Condition (1.11) (1.12) and can be proved
as in Lemma 5.5. in [LT]. Indeed, summing (4.16) with (4.17), we have:

γ ·
( ∑

k≥is

|b−k ||λ
−
k − Λs| + |b+

k ||λ
+
k − Λs|

)

≥
[ ∑

k≤is−1

|b−k ||λ
−
k − Λs| −

∑

k≤is−1

|bk||λk − Λs| +
∑

k≥is+1

|bk||λk − Λs|
]

+
[ ∑

k≥is+1

|b+
k ||λ

+
k − Λs| −

∑

k≥is+1

|bk||λk − Λs| +
∑

k≤is−1

|bk||λk − Λs|
]

=
∑

k≤is−1

|b−k ||λ
−
k − Λs| +

∑

k≥is+1

|b+
k ||λ

+
k − Λs|

]
,

that implies (3.13) in view of (4.15).

Case of small physical waves
– the estimates (3.12) and (3.14)

Denote by ẏα the ’real’ speed of the α wave under consideration, that is: ẏα =
λkα(v−, v+) in case α ∈ S or ẏα = λkα(v+) in case α ∈ R. For k : 1 . . . n let’s
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estimate the difference between Ek and a similar expression where ẏα replaces ẋα :

Ek −
[
|b+

k |W
+
k (λ+

k − ẏα) − |b−k |W
−
k (λ−

k − ẏα)
]

= (ẏα − ẋα)
[
|b+

k |W
+
k − |b−k |W

−
k

]
= O(1) · ǫ · |ǫα|,

(4.18)

because |ẏα − ẋα| ≤ ǫ.
Below we will assume that ẏα = ẋα and prove that under this hypothesis (3.12)

holds in Case 1, while

n∑

k=1

Ek ≤ 0 (4.19)

holds in Case 2. These together with (4.18) will yield, respectively, (3.12) and
(3.14).

We assume that α – the wave under consideration is located in Ωs, for some
s : 0, . . . , M . In other words: both states joined by α belong to Ωs.

Case A. Assume first that both wave vectors {b−k }
n
k=1 and {b+

k }
n
k=1 contain a

large wave of the family ik ∈ {is, is+1}. We treat here the case ik = is with wave
configuration as in Figure 4.2, the other cases being similar. We have:

kα

kα εα

{b  }k
-

{b  }k
+

i si s

i si1

i1 i r ir+1 i M

i s+1 i M

-
v

v
+

i s

i s

ir+1

ir+1

i s-1

i s-1

Ωr Ωs-1

-u

Ωs

,
αx

u

v

a)

s: 1 ... M,  r: 0 ... s-1

. .
 . 

. .
 

. .
 . 

. .
 

...

......

...

...

...

b)

Figure 4.2

Eis = B ·
[
(W+

is
− W−

is
)(λ±

is
− ẋα| + W∓

is
(λ±

is
− λ∓

is
)
]

≤ −Bcκ1 · |ǫα| + O(1) · B · |ǫα|
(4.20)

(the choice of the upper or lower superindices depends on the family number kα).

For indices k such that b+
k and b−k are small, as in [LT] we obtain:

Ek = |b±k | · (W
+
k − W−

k ) · (λ±
k − ẋα)

+ W∓
k

(
|b+

k |(λ
+
k − ẋα) − |b−k |(λ

−
k − ẋα)

)

≤ (O(1) + 4κ1B) ·
(
O(1) · |b+

k − b−k | + O(1) · |b−k ||ǫα|
)

+ O(1) · |ǫα|.

(4.21)
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If k wave is large b+
k = b−k = B, but k 6= is, then W+

k = W−
k and

Ek = B · W+
k (λ+

k − λ−
k )) = O(1) · (O(1) + 4κ1B) · |ǫα|. (4.22)

Now, summing (4.20) with (4.21) we receive:

Eis +
∑

k:1...n

b
±
k

6=B

Ek ≤− Bκ1c · |ǫα| + O(1) · |ǫα|

+ O(1) · 4κ1B ·
∑

k:1...n

b
±
k

6=B

[
|b+

k − b−k | + |b−k ||ǫα|
]
≤ 0,

(4.23)

if only κ1 is big enough and all the weights ws
k small.

Note that in Case 2:
n∑

k=1

Ek = Eis +
∑

k:1...n

b
±
k

6=B

Ek,

so (4.19) follows from (4.23).

In Case 1 some terms of the form (4.22) may be added to (4.23), thus we can
hope only for the weaker inequality (3.12). Indeed, it follows from (4.20) (4.21)
(4.22).

Case B. – Figure 4.3

kα
i1 i s

i s+1
i
M

i1 i s i s+1 i
M

kα

-
v

+
v

{b  }k
-

{b  }k
+

εαu ,
-

Ωs

b)

xα

v

u

...

...

...

...

a)

s: 0 ... M

Figure 4.3

This case has been treated in [BLY]. If the constant B is small enough and κ1 big
(with respect to the uniform constants O(1) in all the formulae), we get (4.19) as
in [BLY].
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