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L
2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH

WEIGHTED POINCARÉ INEQUALITY

Xiaoli Chao and Yusha Lv

Abstract. In the present note, we deal with L
2 harmonic 1-forms on

complete submanifolds with weighted Poincaré inequality. By supposing
submanifold is stable or has sufficiently small total curvature, we estab-
lish two vanishing theorems for L

2 harmonic 1-forms, which are some
extension of the results of Kim and Yun, Sang and Thanh, Cavalcante
Mirandola and Vitório.

1. Introduction

It is an interesting problem in geometry and topology to find sufficient con-
ditions on the manifold for the space of harmonic k-forms to be trivial.

In case of complete orientable stable minimal hypersurfaces, several results
on the nonexistence of L2 harmonic forms are well-known. Recall that a min-
imal hypersurface M in a Riemannian manifold N is said to be stable, if for
any η ∈ C∞

0 (M),
∫

M

|∇η|2 ≥

∫

M

(Ric(ν, ν) + |A|2)η2, η ∈ C∞

0 (M),(1.1)

where ν is a unite normal vector field of M , A is the second fundamental
form of M , Ric is the Ricci curvature of N . On the other hand, let M be an
immersed hypersurface in Riemannian manifold N , if M satisfies (1.1), we say
M has stability condition. In this case, Palmer [17] proved that the space of
L2 harmonic 1-forms on complete minimal hypersurface in the Euclidean space
R

n+1 is trivial. Thereafter, using Bochners vanishing technique, Miyaoka [16]
showed that a complete orientable noncompact stable minimal hypersurface in
a Riemannnian manifold with nonnegative sectional curvature has no nontrivial
L2 harmonic 1-forms. Tanno [22] extended Miyaoka’s result to ambient spaces
with nonnegative BiRic curvature. Given a Riemannian manifoldM , recall that
the Bi-Ricci curvature is defined by BiRic(X,Y ) = Ric(X,X) + Ric(Y, Y ) −
K(X,Y ) for any orthonormal vector fieldsX and Y onM , whereK is curvature
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operator. Later, Cheng [4] extended Tanno’s result and showed that a complete
noncompact strongly stable hypersurface with constant mean curvature H in
Riemannian manifold Nn+1 has no nontrivial L2 harmonic 1-forms under the
assumption BiRic ≥ (n−5)n2

4 H2. Without the assumption of minimality nor the
condition of constant mean curvature of hypersurface, Kim and Yun [10] proved
that a complete oriented noncompact immersed hypersurfaceMn(2 ≤ n ≤ 4) in
a complete Riemannian manifold Nn+1 with nonnegative sectional curvature
has no nontrivial L2 harmonic 1-forms, if M satisfies the stability condition
(1.1).

Moreover, it turned out that these vanishing theorems hold for more general
Riemannian manifold with property (Pρ). First let us recall the definition of
property (Pρ).

Definition. Let M be an n-dimensional complete Riemannian manifold. We
say that M has property (Pρ), if a weighted Poincaré inequality is valid on M
with some nonnegative weight function ρ, namely

∫

M

ρ(x)η2 ≤

∫

M

|∇η|2, ∀η ∈ C∞

0 (M).

Moreover, the ρ-metric, defined by ds2ρ = ρds2M is complete.
In particular, if λ1(M) is assumed to be positive, then obviouslyM possesses

property (Pρ) with ρ = λ1(M). So, the notion of property (Pρ) may be viewed
as a generalization of the assumption λ1(M) > 0.

In the case of complete Riemannian manifolds satisfying weighted Poincaré
type property, some results on the nonexistence of nontrivial L2 harmonic
1-forms are well-known. Li and Wang [14] proved that complete Riemann-
ian manifold with λ1 > 0 has no nontrivial L2 harmonic 1-form, if Ric ≥
− n

n−1λ1 + τ for some τ > 0. Lam [11] generalized Li and Wang’s theory to
manifolds satisfying a weighted Poincaré inequality, and proved that a complete
Riemannian manifold satisfying weighted Poincaré inequality has no nontrivial
L2 harmonic 1-form, if Ric ≥ − n

n−1ρ+τ, and ρ(x) = o(r2−α), 0 < α < 2, τ > 0.

This result was generalized by Matheus [15] removing the restrictions on the
sign and growth rate of the weight function.

Recently, Seo [20] proved that complete stable minimal hypersurface in H
n+1

with λ1 > (2n− 1)(n − 1) has no nontrivial L2 harmonic 1-forms. Later, this
result was generalized by Dung and Seo [5] to a complete stable minimal hy-
persurface in a Riemannnian manifold with sectional curvature bounded be-
low by a nonpositive constant, and proved that complete noncompact stable
non-totally geodesic minimal hypersurface in Riemannian manifold N with
K ≤ KN (K ≤ 0) has no nontrivial L2 harmonic 1-form under the assumption
of λ1(M) > −K(2n− 1)(n− 1). Later, without the assumption of non-totally
geodesic, this result was extended by Sang and Thanh [18] to hypersurfaces
satisfying weighted Poincaré inequality, and proved the following theorem.
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Theorem 1.1 ([18]). Let N be an (n+1)-dimensional Riemannian manifold,

and M be a complete noncompact stable minimal hypersurface in N with (Pρ)
property for some nonnegative weighted function ρ defined on M . Assume

further that

KN(x) ≥ −
(1 − τ)ρ(x)

(2n− 1)(n− 1)
, ∀x ∈ M

for some 0 < τ ≤ 1. If ρ = o(r2−α) for some 0 < α < 2, then there is no

nontrivial L2 harmonic 1-form on M .

In the first part of this paper, inspired by all above results, we consider the
nonexistence of nontrivial L2 harmonic 1-forms on complete noncompact hyper-
surface satisfying a weighted Poincaré inequality with a nonnegative weighted
function ρ and stability condition (1.1) in a Riemannian manifold N with sec-
tional curvature bounded below by a nonpositive function. More precisely, we
have the following vanishing theorem.

Theorem 1.2. Let Nn+1 be an (n+1)-dimensional Riemannian manifold, and

Mn(2 ≤ n ≤ 4) be a complete noncompact hypersurface satisfying a weighted

Poincaré inequality with a nonnegative weighted function ρ and stability condi-

tion (1.1) in N . Assume further that

KN(x) ≥ −
(1 − τ)ρ(x)

(2n− 1)(n− 1)
, ∀x ∈ M

for some 0 < τ ≤ 1. Then there is no nontrivial L2 harmonic 1-form on M .

Remark 1.3. (i) We do not assume the minimality of hypersurface nor the con-
stant mean curvature condition, and dimension restriction aries in estimating
the Ricci curvature. When H ≡ 0 in Theorem 1.2, we obtain the main Theo-
rem 1.1, and in the proof of Theorem 1.2, we know that the restriction on the
growth rate of the weight function is not needed.

(ii) When ρ(x) ≡ 0, i.e., KN ≥ 0, Theorem 1.2 is duo to Theorem 3.3 in
[10].

If we choose ρ(x) = λ1(M) in Theorem 1.2, we can get the following corollary
which is an extension of Theorem 8 in [5] without the assumption of non-totally
geodesic and minimality of a hypersurface, and dimension restriction arises in
the estimating of the Ricci curvature.

Corollary 1.4. Let Nn+1 be a (n+1)-dimensional Riemannian manifold with

sectional curvature KN ≥ K where K ≤ 0 is a constant. Let Mn(2 ≤ n ≤ 4) be
a complete noncompact hypersurface satisfying stability condition (1.1) in N .

Assume further that

λ1(M) ≥ −(2n− 1)(n− 1)K + τ

for some τ > 0. Then there is no nontrivial L2 harmonic 1-form on M .
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On the other hand, without the assumption of stability, some vanishing
theorems about L2 harmonic 1-forms have also been obtained. In [24], Yun
proved that if M ⊂ R

n+1 is a complete minimal hypersurface with sufficiently
small total scalar curvature ||A||2Ln , then there is no nontrivial L2 harmonic
1-form on M . Later, Seo [19] proved this result is valid for complete minimal
hypersurface in hyperbolic space. Thereafter, it turned out that these van-
ishing theorems hold for more general submanifolds. Carron [2] proved that
if M ⊂ R

n+p is a complete minimal submanifold with sufficiently small total
scalar curvature ||A||2Ln , then there is no nontrivial L2 harmonic 1-form on M .
Given an n-dimensional complete noncompact submanifold with finite total
mean curvature ||H ||2Ln in Euclidean sapce R

n+p, Fu and Li [8] showed that if
there exists a positive constant c(n) such that total curvature ||Φ||2Ln < c(n),
then all space of L2 harmonic forms are trivial. Recently, Cavalcante, Miran-
dola and Vitório [3] extended Yun’s result to ambient spaces with nonpositive
sectional curvature, and showed that a complete noncompact submanifold M
in a Hadamard manifold N with sectional curvature satisfying −k2 ≤ KN ≤ 0
has no nontrivial L2 harmonic 1-forms, if the total curvature ||Φ||2Ln is suffi-

ciently small, and with additional assumption λ1(M) > (n−1)2

n
(k2 − infM H2)

in the case KN 6≡ 0. After that, Dung and Seo [6] proved a similar vanishing
theorem for L2 harmonic 1-forms on complete noncompact submanifolds under
the same assumption as in [3] except that the lower bound of λ1(M) depends
on ||Φ||2Ln .

In the second part of this paper, motivated by above results, we consider the
nonexistence of nontrivial L2 harmonic 1-forms on complete noncompact sub-
manifold with property (Pρ), assuming that the total curvature is sufficiently
small instead of stability condition. More precisely, we have the following the-
orem which is a generalization of Theorem 1.2 in [3].

Theorem 1.5. Let Nn+p be an (n + p)-dimensional Riemannian manifold,

and Mn be a complete noncompact submanifold with property (Pρ) for some

nonnegative function ρ in N . Assume that

0 ≥ KN (x) ≥ −
n

(n− 1)2
(1− τ)ρ(x) − γ inf

M
H2

for some 0 < τ < 1, 0 ≤ γ < 1. If there exists a positive constant Λ such that

||Φ||Ln < Λ, then there is no nontrivial L2 harmonic 1-form on M .

In particular, if we choose ρ(x) = λ1(M) in Theorem 1.5, we can get the
following corollary.

Corollary 1.6. Let Nn+p be an (n+p)-dimensional Riemannian manifold with

0 ≥ KN ≥ K, where K ≤ 0 is a constant. Let Mn be a complete noncompact

submanifold in N . In the case KN 6≡ 0, assume further that

λ1(M) ≥
(n− 1)2

(1− τ)n

(
−K − γ inf

M
H2

)
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for some 0 < τ < 1, 0 ≤ γ < 1. If there exists a positive constant Λ such that

||Φ||Ln < Λ, then there is no nontrivial L2 harmonic 1-form on M .

2. Some lemmas

Let us recall some useful results which will be used in the proof of main
theorems. The first two lemma are Bochner-Weitzenböck formula and refined
Kato inequality for L2-harmonic forms.

Lemma 2.1 ([13]). Given a Riemannian manifold Mn, for any 1-form ω on

Mn, we have

△|ω|2 = 2|∇ω|2 + 2〈△ω, ω〉+ 2Ric(ω♯, ω♯),

where ω♯ is the dual vector field of ω.

Lemma 2.2 ([1]). Given a Riemannian manifold Mn, for any closed and

coclosed k-form ω on Mn, we have

|∇ω|2 ≥ Cn,k|∇|ω||2, where Cn,k =

{
n−k+1
n−k

, 1 ≤ k ≤ n
2

k+1
k

, n
2 ≤ k ≤ n− 1.

What’s more, Shiohama and Xu [21] proved the following estimating on the
Ricci curvature of submanifold.

Lemma 2.3 ([21]). Let M be an n-dimensional complete immersed hypersur-

face in a Riemannian manifold N . If all the sectional curvature of N are

bounded pointwise from below by a function k, then

Ric ≥ (n− 1)(H2 + k)−
n− 1

n
|Φ|2 −

(n− 2)
√
n(n− 1)

n
|H ||Φ|.

We should note in [21], the author assumed that all the sectional curvature
of N are bounded below by a constant k. But according to his argument, this
assumption was only used in the end of the proof, hence this method can be
used to prove the above lemma without any change.

In addition, we will need the conditions for the volume of Riemannian man-
ifold to be infinite. Kim and Yun [10] proved the following important fact.

Lemma 2.4 ([10]). Let M be a complete oriented noncompact immersed hy-

persurface in a complete Riemannian manifold Nn+1 of nonnegative sectional

curvature. If M satisfies the stability condition (1.1), then the volume of M is

infinite.

Besides, we will need the following Hoffman-Spruch inequality.

Lemma 2.5 ([9]). Let x : Mn → N be an isometric immersion of a com-

plete manifold M in a complete simply connected manifold N with nonpositive

sectional curvature. Then for all 1 ≤ p < n, the following inequality holds:
(∫

M

h
pn

n−p dV
)n−p

n

≤ S(n, p)

∫

M

(|∇h|p + (h|H |)p)dV
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for all nonnegative C1-functions h : Mn → R with compact support, where

S(n, p)
1

p = 2p(n−1)
n−p

c(n) and c(n) is the positive constant, depending only on n.

The last but most important lemma was proved by Matheus [15].

Lemma 2.6 ([15]). Let M be a complete manifold satisfying a weighted

Poincaré inequality with a weight function ρ. Suppose a smooth function u
on M satisfies the differential inequality

u△u ≥ −aρu2 + b|∇u|2

for some constant 0 < a < 1 + b, and assume
∫

M

u2 < ∞.

Then the function u is a constant. Moreover, if u is not identically zero, then

the volume of M is finite and the weight function ρ is identically zero.

3. Proof of the main theorems

Proof of Theorem 1.2. Let ω be a L2 harmonic 1-form on M , i.e.,

△ω = 0,

∫

M

|ω|2 < ∞.

Applying Lemma 2.1 we can deduce that

△|ω|2 = 2|∇ω|2 + 2〈△ω, ω〉+ 2Ric(ω♯, ω♯).(3.1)

A simple computation implies

△|ω|2 = 2|ω|△|ω|+ 2|∇|ω||2.(3.2)

Combining equation (3.1), (3.2) with Lemma 2.2, we have that

|ω|△|ω| ≥
1

n− 1
|∇|ω||2 +Ric(ω♯, ω♯).

By Lemma 2.3 and KN ≥ − (1−τ)ρ
(2n−1)(n−1) , we have

|ω|△|ω| ≥
1

n− 1
|∇|ω||2 + (n− 1)H2|ω|2 −

n− 1

n
|Φ|2|ω|2

−
(1− τ)ρ

2n− 1
|ω|2 −

(n− 2)
√
n(n− 1)

n
|H ||Φ||ω|2.(3.3)

The stability condition (1.1) implies that
∫

M

(
|∇η|2 − (|A|2 +Ric(ν, ν))η2

)
≥ 0, ∀η ∈ C∞

0 (M).

Since

Ric(ν, ν) ≥ −
n(1− τ)ρ

(2n− 1)(n− 1)
,
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we have ∫

M

(
|∇η|2 −

(
|A|2 −

n(1− τ)ρ

(2n− 1)(n− 1)

)
η2
)
≥ 0, ∀η ∈ C∞

0 (M).(3.4)

Replacing η by η|ω| in (3.4) and integrating by parts allow us to conclude that

0≤ −

∫

M

η|ω|2△η−

∫

M

η2|ω|△|ω|−2

∫

M

η|ω|〈∇|ω|,∇η〉

−

∫

M

|A|2|ω|2η2+

∫

M

n(1− τ)ρ

(2n− 1)(n− 1)
η2|ω|2

=

∫

M

〈∇(η|ω|2),∇η〉−

∫

M

η2(|ω|△|ω|+|Φ|2|ω|2 + nH2|ω|2)

− 2

∫

M

η|ω|〈∇|ω|,∇η〉+
n(1− τ)

(2n− 1)(n− 1)

∫

M

ρη2|ω|2

≤

∫

M

|ω|2|∇η|2−
1

n−1

∫

M

η2|∇|ω||2+
1−τ

n−1

∫

M

ρη2|ω|2−
1

n

∫

M

|Φ|2|ω|2η2

− (2n− 1)

∫

M

H2|ω|2η2+
(n− 2)

√
n(n− 1)

n

∫

M

|H ||Φ||ω|2η2,(3.5)

where we have used (3.3) in the last inequality. From the assumption on
weighted poincaré inequality, it follows

∫

M

ρη2|ω|2 ≤

∫

M

|∇(η|ω|)|2

=

∫

M

|ω|2|∇η|2 +

∫

M

η2|∇|ω||2 + 2|ω|η〈∇η,∇|ω|〉

≤ (1 +
1

ε
)

∫

M

|ω|2|∇η|2 + (1 + ε)

∫

M

η2|∇|ω||2,(3.6)

where we have used Schwarz inequality and Young’s inequality for any ε > 0
in the last inequality. Combining the inequalities (3.5) with (3.6), we have

0 ≤
(
1 +

1− τ

n− 1
(1 +

1

ε
)
)∫

M

|ω|2|∇η|2 − (2n− 1)

∫

M

H2|ω|2η2

+
((1− τ)(1 + ε)

n− 1
−

1

n− 1

)∫

M

η2|∇|ω||2 −
1

n

∫

M

|Φ|2|ω|2η2

+
(n− 2)

√
n(n− 1)

n

∫

M

|H ||Φ||ω|2η2.(3.7)

Using Cauchy-Schwarz inequality allows us to conclude

(n− 2)
√
n(n− 1)

n

∫

M

|H ||Φ||ω|2η2

≤
1− τ

2

n

∫

M

|Φ|2|ω|2η2 +
(n− 2)2(n− 1)

4(1− τ
2 )

∫

M

H2|ω|2η2.(3.8)
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Inequalities (3.7) and (3.8) imply that
( 1

n− 1
−

(1 − τ)(1 + ε)

n− 1

)∫

M

η2|∇|ω||2 +
τ

2n

∫

M

|Φ|2|ω|2η2

+ F

∫

M

H2|ω|2η2

≤
(
1 +

1− τ

n− 1
(1 +

1

ε
)
)∫

M

|ω|2|∇η|2,(3.9)

where F = (2n− 1)− (n−2)2(n−1)
4(1− τ

2
) . The assumption on n allows us to conclude

that F > 0. Choosing a sufficiently small ε > 0, and we have 1
n−1−

(1−τ)(1+ε)
n−1 >

0. For each r > 0, let Br denote the geodesic ball of radius r on M centered at
some fixed point, and suppose η ∈ C∞

0 (M) be a smooth function such that
{
η = 1 on Br,

η = 0 on M\B2r

and |∇η| ≤ 1
r
on B2r\Br. Using (3.9) with η implies that

( 1

n− 1
−

(1 − τ)(1 + ε)

n− 1

)∫

Br

|∇|ω||2 +
τ

2n

∫

Br

|Φ|2|ω|2 + F

∫

Br

H2|ω|2

≤
(
1 +

1− τ

n− 1
(1 +

1

ε
)
) 1

r2

∫

B2r\Br

|ω|2.

Letting r → ∞, using the fact that ω ∈ L2(M), and then letting ε → 0, we
finally obtain that

∫

M

|∇|ω||2 =

∫

M

|Φ|2|ω|2 =

∫

M

H2|ω|2 = 0,

which implies that

|∇|ω||2 = |Φ|2|ω|2 = H2|ω|2 = 0.

Therefore, |ω| is a constant. Consequently, we can get that ω ≡ 0. Otherwise,
if ρ ≡ 0, i.e., KN ≥ 0, from Lemma 2.4, we can conclude that the volume of M
is infinite. However, the fact ω ∈ L2 infers

∫
M

|ω|2 < ∞, i.e., the volume of M
is finite which is a contradiction. If ρ 6≡ 0, from equation (3.6) we deduce that

∫

M

ρ|ω|2 = 0,

which implies that ρ ≡ 0. So the space of L2 harmonic 1-forms must be
trivial. �

Proof of Theorem 1.5. Let ω be a L2 harmonic 1-form onM . Applying Lemma
2.1 and Lemma 2.2, after a direct computation, we obtain that

|ω|△|ω| ≥
1

n− 1
|∇|ω||2 +Ric(ω♯, ω♯).(3.10)
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Under our hypothesis on the sectional curvature of N , we can estimate the
Ricci curvature of M by using Lemma 2.3

Ric(ω♯, ω♯) ≥ (n− 1)
(
H2 −

( n

(n− 1)2
(1 − τ)ρ+ γ inf

M
H2

))
|ω|2

−
n− 1

n
|Φ|2|ω|2 −

(n− 2)
√
n(n− 1)

n
|H ||Φ||ω|2

= (n− 1)(H2 − γ inf
M

H2)|ω|2 −
n(1− τ)ρ

n− 1
|ω|2

−
n− 1

n
|Φ|2|ω|2 −

(n− 2)
√
n(n− 1)

n
|H ||Φ||ω|2.

Plugging this inequality into (3.10), we have that

|ω|△|ω| ≥
1

n− 1
|∇|ω||2 + (n− 1)(H2 − γ inf

M
H2)|ω|2 −

n(1− τ)ρ

n− 1
|ω|2

−
n− 1

n
|Φ|2|ω|2 −

(n− 2)
√
n(n− 1)

n
|H ||Φ||ω|2.(3.11)

Let η ∈ C∞
0 (M) be a smooth function on M with compact support. Multi-

plying both sides of (3.11) by η2 and integrating by parts allow us to conclude
that

0 ≤ − 2

∫

M

η|ω|〈∇η,∇|ω|〉 −
n

n− 1

∫

M

η2|∇|ω||2

+
(n− 2)

√
n(n− 1)

n

∫

M

η2|H ||Φ||ω|2 +
n− 1

n

∫

M

η2|Φ|2|ω|2

+
n(1− τ)

n− 1

∫

M

ρη2|ω|2 + (n− 1)

∫

M

(
γ inf

M
H2 −H2

)
η2|ω|2.(3.12)

For each a > 0, we apply the Cauchy-Schwarz inequality in (3.12) to obtain

0 ≤ − 2

∫

M

η|ω|〈∇η,∇|ω|〉 −
n

n− 1

∫

M

η2|∇|ω||2 +
n(1− τ)

n− 1

∫

M

ρη2|ω|2

+ (n− 1)γ inf
M

H2

∫

M

η2|ω|2 + C

∫

M

H2η2|ω|2 +B

∫

M

η2|Φ|2|ω|2,(3.13)

where

B = B(n, a) =
(n− 2)

√
n(n− 1)

2an
+

n− 1

n
,

C = C(n, a) = −(n− 1) +
a(n− 2)

√
n(n− 1)

2n
.(3.14)

On the other hand, since n ≥ 3, we use the Hölder inequality and Lemma 2.5
to get

∫

M

η2|Φ|2|ω|2 ≤ ||Φ||2Ln

(∫

M

(η|ω|)
2n

n−2

)n−2

n
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≤ S||Φ||2Ln

∫

M

(|∇(η|ω|)|2 + η2|ω|2H2)

= S||Φ||2Ln

∫

M

(
|ω|2|∇η|2 + η2|∇|ω||2 + 2η|ω|〈∇η,∇|ω|〉

)

+ S||Φ||2Ln

∫

M

η2|ω|2H2,(3.15)

where ||Φ||2Ln = (
∫
supp(η)

|Φ|n)
2

n and S = S(n, 2) is a constant in Lemma 2.5.

Thus, Combining (3.13) with (3.15) we infer that
( n

n− 1
−BS||Φ||2Ln

) ∫

M

η2|∇|ω||2 − (C +BS||Φ||2Ln)

∫

M

H2η2|ω|2

≤ BS||Φ||2Ln

∫

M

|ω|2|∇η|2 +
n(1− τ)

n− 1

∫

M

ρη2|ω|2

+ 2
(
BS||Φ||2Ln − 1

)∫

M

η|ω|〈∇η,∇|ω|〉+ (n− 1)γ inf
M

H2

∫

M

η2|ω|2.(3.16)

From the assumption on weighted poincaré inequality, it follows
∫

M

ρη2|ω|2 ≤

∫

M

|∇(η|ω|)|2

=

∫

M

|ω|2|∇η|2 +

∫

M

η2|∇|ω||2 + 2|ω|η〈∇η,∇|ω|〉.(3.17)

Plugging (3.17) into (3.16) implies that

D

∫

M

η2|∇|ω||2 −G

∫

M

H2η2|ω|2

≤ E

∫

M

|ω|2|∇η|2 + 2F

∫

M

η|ω|〈∇η,∇|ω|〉 + (n− 1)γ inf
M

H2

∫

M

η2|ω|2,

where

D =
n

n− 1
−BS||Φ||2Ln −

n(1− τ)

n− 1
,

E = BS||Φ||2Ln +
n(1− τ)

n− 1
,

F = BS||Φ||2Ln +
n(1− τ)

n− 1
− 1,

G = C +BS||Φ||2Ln .

Moreover, for all ε > 0, using the Cauchy-Schwarz inequality

2
∣∣∣
∫

M

η|ω|〈∇η,∇|ω|〉
∣∣∣ ≤ ε

∫

M

η2|∇|ω||2 +
1

ε

∫

M

|ω|2|∇η|2,

we see that
(
D − |F |ε

)∫

M

η2|∇|ω||2 −G

∫

M

H2η2|ω|2
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≤
(
E + |F |

1

ε

) ∫

M

|ω|2|∇η|2 + (n− 1)γ inf
M

H2

∫

M

η2|ω|2.(3.18)

Choose 0 < d < 1
2 , a = a(d) > 0 and Λ = Λ(d) > 0 satisfying:

{
a(n−2)

√
n(n−1)

2n < (n− 1)d,

BSΛ2 < (n− 1)d.
(3.19)

Now we set

D =
n

n− 1
−BSΛ2 −

n(1− τ)

n− 1
,

E = BSΛ2 +
n(1− τ)

n− 1
,

F = BSΛ2 +
n(1− τ)

n− 1
− 1,

G = C +BSΛ2.(3.20)

Assume that the total curvature of x satisfies ||Φ||Ln(M) < Λ. Plugging the
above choices in (3.18) we obtain

(
D − |F |ε

)∫

M

η2|∇|ω||2 −G

∫

M

H2η2|ω|2

≤
(
E + |F |

1

ε

) ∫

M

|ω|2|∇η|2 + (n− 1)γ inf
M

H2

∫

M

η2|ω|2.(3.21)

Using (3.14) and (3.19) we get:

−G = −C −BSΛ2

> (n− 1)−
a(n− 2)

√
n(n− 1)

2n
− (n− 1)d

> (n− 1)(1− 2d) > 0.

Thus (3.21) becomes

(
D − |F |ε

)∫

M

η2|∇|ω||2 − (G+ (n− 1)γ) inf
M

H2

∫

M

η2|ω|2

≤
(
E + |F |

1

ε

)∫

M

|ω|2|∇η|2.(3.22)

Then we can choose d, ε sufficiently small satisfying that

D − |F |ε =
n

n− 1
−BSΛ2 −

n(1− τ)

n− 1
− |F |ε >

nτ

n− 1
− (n− 1)d− |F |ε > 0,

−G− (n− 1)γ > (n− 1)(1− γ − 2d) > 0.
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For each r > 0, let Br denote the geodesic ball of radius r on M centered at
some fixed point and let η ∈ C∞

0 (M) be a smooth function such that
{
η = 1 on Br,

η = 0 on M\B2r

and |∇η| ≤ 1
r
on B2r\Br. Using (3.22) with η we can get that

(
D − |F |ε

) ∫

Br

η2|∇|ω||2 −
(
G+ (n− 1)γ

)
inf
M

H2

∫

Br

η2|ω|2

≤
(
E + |F |

1

ε

)∫

B2r\Br

|ω|2|∇η|2.

Using the fact that
∫
M

|ω|2 < ∞, and taking r → ∞ allow us to conclude that

|∇|ω||2 = inf
M

H2|ω|2 = 0,(3.23)

which implies |ω| is a constant. Using (3.21) with η and taking r → ∞ infer
that H2|ω|2 = 0. From (3.15) and the fact ||Φ||Ln < Λ, applying same way,
we can obtain that |Φ|2|ω|2 = 0. Thus combining (3.11) with Cauchy-Schwarz
inequality

0 ≤ 2|H ||Φ||ω|2 ≤ (H2|ω|2 + |Φ|2|ω|2) = 0

implies that

|ω|△|ω| ≥
1

n− 1
|∇|ω||2 −

n(1 − τ)ρ

n− 1
|ω|2.(3.24)

Consequently, we conclude that ω ≡ 0. Otherwise, if |ω| 6≡ 0, Lemma 2.6
implies that ρ ≡ 0 and the volume of M is finite, meanwhile (3.23) infers that
inf
M

H2 = 0. Thus the condition on KN becomes KN ≥ 0. The conclusion

H2|ω|2 = |Φ|2|ω|2 = 0 implies that M is totally geodesic in N . Thus M has
nonnegative Ricci curvature, which gives the conclusion that the volume of M
is infinite [23], which is a contradiction. So the space of L2 harmonic 1-forms
must be trivial. �
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