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0. Introduction.

The Bernstein conjecture states that any complete minimal graph in E™*!
is a hyperplane. This was proved to be true for m<7 by Bernstein [2] (m=2),
De Giorgi [5] (m=3), Almgren (m=4) and Simons (m<7); and false
for m=8 by Bombieri, De Giorgi and Giusti [3].

On the other hand, do Carmo and Peng [6] and Fischer-Colbrie and Schoen
[8] showed that complete orientable and stable minimal surfaces in E*® are
planes. Palmer studied a topological restriction of a complete minimal
hypersurface M in E™"* which implies instability of M. This topological
restriction is related to the existence of nonzero L? harmonic 1-forms by Dodziuk’s
result [7].

We denote the space of all L? harmonic p-forms on a complete orientable
Riemannian manifold M by %?(M). 4P(M) consists of p-forms which are
closed and coclosed by a theorem of Andreotti and Vesentini. It is well known
that HP(E™)={0} for all p; ngﬁn\z.

A complete minimal graph in E™*! is minimizing, and any minimizing
minimal hypersurface is stable. Therefore, concerning the Bernstein problem
we can pose the following problem: For a complete orientable and stable
minimal hypersurface M in E™*', does HP(M)=1{0} hold for all p; 0Sp=m.

The case where m—=2 is trivial by the result of do Carmo and Peng,
Fischer-Colbrie and Schoen as stated in the above. A catenoid shows that the
assumption of stability in our problem is essential. Here we have the following :

THEOREM A. Let MCE™"! be a complete orientable and stable minimal
hypersurface. If m=4, then HP(M)={0} holds for all p; 0<p=m.

Palmer used the norm of an L? harmonic 1-form on M to define a variation
vector field and proved that a complete orientable minimal hypersurface MC E™**
admitting a nontrivial L? harmonic 1-form is unstable. So, Theorem A for the
case where m=3 is due to Palmer [10]. To prove Theorem A it suffices to
show the following : Let MC E® be a complete, orientable minimal hypersurface ;
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If M admits a nontrivial L? harmonic 2-form, then M is unstable (Theorem 2.1)).
In §3 we give definition of P, positivity of sectional curvature, as a

condition weaker than positivity of sectional curvature. In §4 (Theorem 4.1))
we prove the following :

THEOREM B. Let M be a complete noncompact orientable minimal hyper-
surface of a Riemannian manifold M*. We assume that the sectional curvature

of M* is P, nonnegative. If M is stable, then there are no nontrivial L* harmonic
1-forms on M.

This is a generalization of Palmer’s result (where M*=FE™*') and
Miyaoka’s resuit (where M* is of nonnegative sectional curvature).

For the case where m=2, complete stable minimal surfaces of M* with
nonnegative scalar curvature were classified by Fischer-Colbrie and Schoen [8],
Schoen and Yau [1I].

The author is very grateful to the referee whose comments on the infinite-
ness of the volume of M simplified the proof of [Theorem 2.1l

1. L? harmonic 2-forms.

et w be an L? harmonic 2-form on a complete orientable Riemannian
manifold M=(M, g). It is known that w is closed and coclosed. The Riemannian
curvature tensor, the Ricci curvature tensor and the Riemannian connection are
denoted by R=(R%,;), o=(R;) and V. The expression of Aw is given by

Aw;; =V Vawy;—Riw,;—Rjw i+ R w,s = 0.
Putting |w|*=w,sw™ and |Vw|?=V,w;;V w*, we obtain
1.1) Alwl®* = 4(o ; w, w)—2([R]Jw, wy>+2{Vw|?
where [R] denotes the curvature operator and
(o;w, w) = Rw™w®, <[RJw, w)= R w,wv.

On the other hand, we obtain
(1.2) Allw|f* = 2| wllAfw [ +2[V]w]]*

= 2lwlAlw|+2|Vw|*—2F(w),

where we have put F(w)={|Vw|?—||V]wl|||?2. F(w)=0 is Kato’s inequality. The
equality F(w)=0 holds, if and only if

(1.3) 2w *Viw; = Velw|? wyj,
ie., w/|w| is parallel, if |w]+0. By and we get
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(1.4) —lwlalwl = —=2(0 ; w, w)+<{[Rlw, w)—F(w).

Next we prove the following Lemma for later use in the next section:

LEMMA 1. Let A, B be mXm real matrices such that

(i) A is symmetric and trace free,
(ii) B s skew-symmetric.

If 2<m=4, then |A|*|B|*+2Tr(AB)*+2Tr A?B*=0.

PrOOF. First we diagonalize A to the form (a;0;;) by an orthogonal trans-
formation. Let B=(b;;). Then we have the following:

TAIZIBII® = (2 ai)(Zixi b%)
Tr(ABY = — X4 a:a5b%,
Tr AB® = — 3, a%bi;.
Therefore, we obtain
| All2| Bl 4+2Tr(AB)*+2Tr A*B?
= 2BaLaft @it -+ ah—2a,a,] 2650 T+ - 285l ].
By assumption Tr A=0 we have
ai+ai+ - +a%h—2a,a, = ait+ai+ - +ah+2ai+2a.a4 - +2a5a,.
Thus, for m=2, 3, 4 we obtain —2a,a,=2a%=0, and
ai—2a,a, = a3+(a,+a3)* = 0,
ai+ai—2a.a, = (a:+as)*+(a,+a,)* 2 0,
etc.. So, the proof is completed.
REMARK. Note that, if m=5, for example:
ai+ai+-ai—2a,a, = —3 <0

holds for a,=3, a,=2, a;=a,=—2, as;=—1. Thus, considering a matrix B with
components (b,,=—b,,#0, otherwise =0), we see that the condition m<4 in
is essential.

2. Minimal hypersurfaces of a Riemannian manifold.

Let M be an orientable minimal hypersurface of an (m+1)-dimensional
orientable Riemannian manifold M*=(M*, {,>). Let n be a unit normal vector
field on M and let A denote the shape operator with respect to n. We denote
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the Riemannian curvature tensor and the Ricci curvature tensor of M* by R*
and p*.

We assume that M admits a nontrivial L? harmonic 2-form w. After Palmer
we use the following cut off function k. Let p be a point of M. By B.(p)
we denote the geodesic r-ball centered at p (r-neighborhood of p in M). h is
a smooth function such that 0<A<1 and

(i) h=1 on B,,(p) and h=0 outside B.,(p),
(ii) JIVh||®’<c/r? where ¢ is a constant.

We consider V=nhllw|n as a variation vector field of M. Then the second
variation formula is given by

a”(0) = SM(W*VHZ"P*(V, V)— APV %)
= _SM/lz(HwHAlllep*(n, n)llwll“rHAHz“wll2)+5MHWIHZHWHZ-
By we obtain

a”(0) = —SMhz[Z(p; w, w)—<[Rlw, wy+Fw)+p*n, m)|w|*+I1Al*|w|*]

+{ Ivarwpe
Let {e;, e,=n; 1=<7<m} be a local orthonormal frame along M. Then
2.1) Riw = R¥j+AkA;— AjAss,
(2.2) Rj; = R*;;—R*},,— A A,,.

Therefore we obtain

(o5 w, w)=(p*; w, w)—(RE; w, w)—<Aw, Aw},

(RJw, w) =<[R*¥Jw, w)—2A%w,, AYw;,
where (p*; w, w)=p*;w w',, (R¥; w, w)=R*},w’w'", and

CAw, Awy = Alw™ Awdy, ([R¥]w, w) = R*;nww*,

Consequently, we get

a’0) = —{ WIP*w)+Fw)+ D)1+ IValhel,
where we have put
2.3) PX*w) = 2(p*; w, w)—2(R§ ; w, w)—<{[R¥]w, w)>+p*(n, n)|w|?
(2.4) D(w) = | AP w]*—2<Aw, Aw)+2A* w4y AYw;; .
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Now we assume that M* is the (m-+1)-dimensional Euclidean space E™**. Then
we have

@5) a'@ = ={ wF@)+ D)1+ { Ivaiiwl®

THEOREM 2.1. Let MCE® be a complete, orientable minimal hypersurface.
If M admits a nontrivial L* harmonic 2-form, then M is unstable.

PrOOF. We assume that a complete orientable minimal hypersurface M in
E® is stable and M admits a nontrivial L? harmonic 2-form w. implies
that D(w)=0 holds on M. Then implies the following :

0z = -|,  [Fw+Dwl+e/m| Il

r/2
Letting r— oo, we obtain F(w)=D(w)=0. The equality F(w)=0 shows [I.3)
We consider on an open set where w=+0. dw=0 implies that w*;V,||w||*=0
holds. dw=0 is equivalent to V,w;+V,w;,+V,w,;=0. By and the last
equality multiplied by w*, we get V,[|w|*=0, and hence |w]| is constant. This
is a contradiction, because the volume of any complete minimal hypersurface of
E™*! is infinite (cf. Burago and Zalgaller [4], p. 215). g.e.d.

PrOOF OF THEOREM A. It suffices to show the case m=4. By the assump-
tion that MC E® is stable we see that 4 '(M)= {0} holds by Palmer’s result
and #3%M)=1{0} holds by the duality. On the other hand we have 4°(M)=
H4M)={0}. Combining these with [Theorem 2.1, proof is completed.

REMARK. It is not clear to the author if there is some nice curvature
condition of M* which implies P*(w)=0. If there is some, then one may obtain
some generalized version of [Theorem 2.1l.

3. P, positivity of sectional curvature.

Let M=(M, g) be an m-dimensional Riemannian manifold. Let p be a point
of M and let {e,, e,, ---, en} be an orthonormal basis of the tangent space 7,M
at p. By K, we denote the sectional curvature ; K(e,, ¢;). The scalar curvature
of M is denoted by S.

DEFINITION. The sectional curvature of M is said to be P, positive (P,
nonnegative), if for any point p of M and for any orthonormal pair {X, Y} at p

oX, X)+poY, V)—K(X,Y)>0 (=0, resp.).

It is clear that positivity of sectional curvature of M implies P, positivity
of sectional curvature of M.
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If m=2, then p(e, e,)+p(es, e;)—Kiz=p(e,, ¢,)=S/2, and P, positivity is
equivalent to the fact that the scalar curvature is positive.

If m=3, then p(e;, e,)+p(es, ¢:)—K,»=S/2, etc., and P, positivity is equiv-
alent to the fact that the scalar curvature is positive.

If m=4, for i, j (1=:<j<m) we define P;; by

Pij = Zr. $#t, j,r<s K'rs .
Then the scalar curvature S is given by ,_,C,S=23;<; P;;, and
p(ei) e‘i)+p(ejy ej)_Kij = S/Z‘_P”

Therefore, P, positivity is expressed by S/2—P;;>0.
For example, if m=5, we have S=2X); K;;, and P,,=K;,+Kss+Ks.  So,

S—2P;, = 2(K12+K13+K14+K15+K23+K24+K25)-
Here we give a simple example of a Riemannian manifold which is not of
positive sectional curvature, but the sectional curvature is P, positive. Let

(8™ g,) be the odd dimensional unit sphere in E™*!, m=2n-+1. It admits a
standard contact structure . We define a Riemannian metric g(¢) by

gty =t""'go+t(t" 1)y,

where ¢ is a real number which is determined later. For ¢>1, the sectional
curvature and the Ricci curvature are bounded as follows:

H4—3t") < Ko(X, Y) < 1,
(mA+Dt—2t" < oy (X, X) < (m—1)tm

for any orthonormal pair {X, Y} with respect to g(t) (cf. S. Tanno [13], [14],
etc.). Let ¢ be a small positive number, and define ¢ by —e=4—3¢". Then
for any orthonormal pair {X, Y}, we obtain

ew X, X)+owY,Y)—Kuy(X, Y) = 2(m+1)t—5t™+!
= [2m~+2—(20/3)—(5/3)e]t.

The above is positive by suitable choice of ¢; while some sectional curvature is
negative.

4. L? harmonic 1-forms.

Let M be a complete orientable minimal hypersurface of an orientable
Riemannian manifold M*=(M#%*, {,>). We assume that M admits a nontrivial
L? harmonic 1-form u. We consider the variation of M by V=#h||u|n as Palmer
and Miyaoka did. We put
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W(u) = | A"l u]*—<Au, Auy 20,
E(u) = [Vu[*—|V]ul|* 20,

where ||ul|?2=wu,;u’. Since Tr A=0, W(u)=0 holds, if and only if A or u vanishes.
E(u)=0 holds, if and only if 2|u||®?V,u,;=V,||u|® u;.
On the other hand, the second variation formula is given by

a”(0) = —SMW[II ullAllul+p*(n, n)lull®+ 1 AN ul 2]+SM¥IVh ¥,

Corresponding to and [1.2), we obtain
Afjull* = 2p(u*, u*)+2|vul?
Allull* = 2 ul|Allul+2IVul —2E(w),

where u* denotes the vector field dual to u with respect to the Riemannian
metric. Hence, using we obtain

—lulAlul = —p(u*, u*)+{R*(n, u*)u*, nd>+<Au, Aud—Ew).

Therefore, we obtain

'@ = —|_wrera+Ew+wawi+{ Ivapetuy,
where we have put

Q*(u) = p*(u*, u*)—<{(R*(n, u*)u*, ny+p*(n, n)lul’

THEOREM 4.1. Let MCM* be a complete orientable and stable minimal
hypersurface. We assume that the sectional curvature of M* is P, nonnegative.

(i) If M is compact and if M admits a nontrivial harmonic 1-form u, then
u is parallel, M is totally geodesic in M* and p*(n, n)=0.

(i) If M is noncompact, then there are no nontrivial L* harmonic 1-forms
on M.

PrROOF. We assume that M is noncompact and there is a nontrivial LZ
harmonic 1-form u. P, nonnegativity of the sectional curvature of M* shows
Q*(u)=0. So we have

0= a”(0) = —S (p)[Q*(u)—I—E(u)+W(u)]+(c/r2)SMIlullz.

Br2

Letting »— o, we have Q*(u)=E(u)=W(u)=0. The equality E(x)=0 implies
20u)®Vu,;=V;||lul?u;. So du=0 implies u'V,||ul|?=0. Furthermore, du=0 implies
flu|l is constant and u is parallel. W(u)=0 implies that M is totally geodesic in
M*. We check the condition Q*(u)=0. means Q*(u)=p(u¥, u*)+
o*(n, n)ljull*=0. Since u is parallel, o(u*, u¥)=0, and hence p*(n, n)=0. Let
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e be an arbitrary unit tangent vector to M. P, nonnegativity for an ortho-
normal pair {e, n} implies

p*(e, e)+p*(n, n)—K*e, n) = 0.

By and p*(n, n)=0, the left hand side of the last inequality is equal to
o(e, e). Thus the Ricci curvature of M is nonnegative. Because M is complete
and noncompact, the volume of M is infinite. This is a contradiction.

Next, if M is compact, it suffices to put A=1 in the above discussion.

REMARK. By Dodziuk’s result [7] the existence of a nontrivial L* harmonic
1-form follows from a topological condition that there exists a cycle of
codimension one in M which does not disconnect M (cf. Palmer [10]).
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