L^{2} HARMONIC FORMS ON ROTATIONALLY SYMMETRIC RIEMANNIAN MANIFOLDS

JOZEF DODZIUK ${ }^{1}$

Abstract

The paper contains a vanishing theorem for L^{2} harmonic forms on complete rotationally symmetric Riemannian manifolds. This theorem requires no assumptions on curvature.

This paper gives necessary and sufficient conditions for existence of L^{2} harmonic forms on a special class of Riemannian manifolds. Manifolds of this class were called models by Greene and Wu and played a crucial part in the study of function theory on open manifolds [GW]. Throughout the paper M will denote a model of dimension n, i.e. a C^{∞} Riemannian manifold such that:
(1) there exists a point $o \in M$ for which the exponential mapping is a diffeomorphism of $T_{o} M$ onto M;
(2) every linear isometry $\varphi: T_{o} M \rightarrow T_{o} M$ is realized as the differential of an isometry $\Phi: M \rightarrow M$, i.e., $\Phi(o)=o$ and $\Phi_{*}(o)=\varphi$.

Clearly, M is complete and can be identified with $T_{o} M$ via $\exp _{o}$. In terms of geodesic polar coordinates $(r, \theta) \in(0, \infty) \times S^{n-1} \simeq M \backslash\{o\}$ the Riemannian metric $d s^{2}$ of M can be written as

$$
\begin{equation*}
d s^{2}=d r^{2}+f(r)^{2} d \theta^{2} \tag{3}
\end{equation*}
$$

where $d \theta^{2}$ denotes the standard metric on S^{n-1} and the function $f(r)$ is C^{∞} on $[0, \infty)$ and satisfies

$$
\begin{equation*}
f(0)=0, \quad f^{\prime}(0)=1, \quad f(r)>0 \quad \text { for } r>0 \tag{4}
\end{equation*}
$$

(cf. [S, pp. 179-183]).
Complete description of the spaces $\mathscr{C}^{*}(M)$ of L^{2} harmonic forms is contained in the following

Theorem. Let M be a model of dimension $n \geqslant 2$. Then
(i) $\mathscr{C}^{q}(M)=\{0\} \quad$ for $q \neq 0, n / 2, n$,
(ii) $\quad \mathscr{K}^{0}(M) \cong \mathscr{H}^{n}(M) \cong \begin{cases}\{0\} & \text { if } \int_{0}^{\infty} f(r)^{n-1} d r=\infty, \\ \mathbf{R} & \text { if } \int_{0}^{\infty} f(r)^{n-1} d r<\infty,\end{cases}$

[^0](iii) $\mathscr{K}^{k}(M)=\{0\}$ if $n=2 k$ and $\int_{1}^{\infty} \frac{d s}{f(s)}=\infty$,
$\mathscr{S}^{k}(M)$ is a Hilbert space of infinite dimension if $n=2 k$ and
$$
\int_{1}^{\infty} \frac{d s}{f(s)}<\infty
$$

Remark. The integral in (ii) is a multiple of the volume of M. Finiteness of the integral $\int_{1}^{\infty} d s / f(s)$ implies that M is conformally equivalent to an open ball in \mathbf{R}^{n}. If $\int_{1}^{\infty} d s / f(s)=\infty$ then M is conformal to \mathbf{R}^{n}.

My interest in L^{2} harmonic forms is motivated in part by the well known conjecture (cf. [C, p. 44]).

Conjecture 1. Let N be a compact Riemannian manifold of dimension $2 k$. If the sectional curvature of N is nonpositive the Euler characteristic $\chi(N)$ satisfies $(-1)^{k} \chi(N) \geqslant 0$.
I. M. Singer suggested that in view of the L^{2} index theorem [A] an appropriate vanishing theorem for L^{2} harmonic forms on the universal covering of N would imply the conjecture. To see what sort of vanishing theorem to expect, I carried out an explicit computation in the case of constant negative curvature. It turned out that the same computation yielded a more general result which is the subject of this paper. The result itself is rather surprising since the curvature of M has no effect on existence of L^{2} harmonic forms of degree $q \neq 0, n / 2, n$. The vanishing in this range is a consequence of duality between forms of degree q and $n-q$. The general question of existence of nontrivial L^{2} harmonic forms on open manifolds is a very difficult one. Nevertheless, I propose hesitantly the following:

Conjecture 2. Let M be a simply connected complete Riemannian manifold of dimension n and of nonpositive sectional curvature. Then there are no nonzero L^{2} harmonic forms on M of degree $q \neq n / 2$.

Conjecture 2 combined with the L^{2} index theorem implies Conjecture 1. Indeed, the L^{2} index theorem, applied to the operator $d+\delta$ whose index is equal to the Euler characteristic, states that L^{2} harmonic forms on the universal covering \tilde{N} of N can be used to reckon the Euler characteristic of N. More precisely $\chi(N)$ is equal to the alternating sum

$$
\sum_{1}^{2 k}(-1)^{p} \operatorname{dim}_{\pi_{1}(N)} \mathscr{F}^{p}(\tilde{N})
$$

where $\operatorname{dim}_{\pi_{1}(N)} \mathcal{K}^{p}(\tilde{N})$ is the normalized dimension of $\mathscr{K}^{p}(\tilde{N})$ with respect to the natural action of $\pi_{1}(N)$ on $\mathscr{K}^{p}(\tilde{N})$ (cf. [A]). Thus, if $\mathscr{H}^{p}(\tilde{N})=\{0\}$ for $p \neq k$,

$$
(-1)^{k} \chi(N)=\operatorname{dim}_{\pi_{1}(N)} \mathscr{H}^{k}(\tilde{N}) \geqslant 0
$$

The following example due to E . Calabi shows that one cannot expect to have $\mathscr{F}^{q}(M)=\{0\}$ for $q \neq 0, n / 2, n$ for every manifold M satisfying (1). Let $\left(M_{i}, d r_{i}^{2}+f_{i}\left(r_{i}\right)^{2} d \theta_{i}^{2}\right)$ be a model of dimension $n_{i}, i=1,2$. Suppose that n_{2} is
even,

$$
\int_{0}^{\infty} f_{1}(s)^{n_{1}-1} d s<\infty, \quad \int_{1}^{\infty} \frac{d s}{f_{2}(s)}<\infty
$$

Then, according to the theorem $\mathscr{F}^{q}\left(M_{1}\right) \neq\{0\}$ for $q=0, n_{1}, \mathscr{F}^{q}\left(M_{2}\right) \neq\{0\}$ when $q=n_{2} / 2$. The Fubini theorem and the identity

$$
\Delta_{M_{1} \times M_{2}}=\Delta_{M_{1}} \otimes I+I \otimes \Delta_{M_{2}}
$$

imply that $\mathscr{S}^{q}\left(M_{1} \times M_{2}\right) \neq\{0\}$ when $q=n_{2} / 2, n_{2} / 2+n_{1}$.
The above construction cannot be used to produce a counterexample to Conjecture 2. In order that $M_{1} \times M_{2}$, when equipped with the product metric, have nonpositive sectional curvature, M_{1} and M_{2} must have the same property. This would force the integral $\int_{0}^{\infty} f_{1}(s)^{n_{1}-1} d s$ to diverge since the volume of complete, simply connected Riemannian manifold of nonpositive sectional curvature is infinite.
I am grateful to E. Calabi and J. Kazdan for many stimulating conversations about L^{2} harmonic forms and related matters.
Proof of theorem. According to a theorem of Andreotti and Vesentini (cf. [dR, Theorem 26]) an L^{2} form ω on M is harmonic if and only if it is closed and coclosed. Thus a $C^{\infty} q$-form ω is in $\mathscr{C}^{q}(M)$ if and only if

$$
\begin{equation*}
\int_{M} \omega \wedge * \omega<\infty, \quad d \omega=0, \quad d * \omega=0 \tag{5}
\end{equation*}
$$

where * denotes the duality operator between forms of degree q and $n-q$. Since $* \omega \wedge *(* \omega)=\omega \wedge * \omega$ for every form $\omega, *$ establishes an isomorphism between $\mathscr{F}^{q}(M)$ and $\mathscr{H}^{n-q}(M)$. Let $d V$ denote the volume element of the Riemannian metric of M, and let \langle,$\rangle and || be the pointwise inner product$ and norm, respectively, of differential forms on M. The global (integrated) inner product and norm are given by

$$
\begin{aligned}
(\omega, \eta) & =\int_{M} \omega \wedge * \eta=\int_{M}\langle\omega, \eta\rangle d V \\
\|\omega\|^{2} & =\int_{M} \omega \wedge * \omega=\int_{M}|\omega|^{2} d V
\end{aligned}
$$

where ω and η are two forms of equal degrees. Corresponding objects on S^{n-1} equipped with the standard metric will have to be considered. They will be denoted by the same symbols as their counterparts on M with a subscript 0 . For example, the volume elements $d V$ and $d V_{0}$ of M and S^{n-1}, respectively, are related by $d V=f(r)^{n-1} d V_{0} \wedge d r$.
The case (ii) of the theorem is now trivial. If ω is an L^{2} harmonic function $d \omega=0$ by (5), i.e., ω is constant. Constants are in L^{2} if and only if the total volume of M is finite, which gives (ii). To study the remaining cases one writes the conditions (5) in terms of geodesic polar coordinates (r, θ). If ω is a $C^{\infty} q$-form on $M \backslash\{o\}$ of degree $q \neq 0, n$, then

$$
\begin{equation*}
\omega=a(r, \theta) \wedge d r+b(r, \theta) \tag{6}
\end{equation*}
$$

where $a(r, \theta), b(r, \theta)$ are smooth forms on S^{n-1}, depending on a parameter $r>0$, of degree $q-1$ and q, respectively. Formally $a=(-1)^{q-1} \iota(\partial / \partial r) \omega$, $b=\omega-a \wedge d r$, where $\iota(\partial / \partial r)$ is the interior product with the radial vector field $\partial / \partial r$. Of course, a and b can be also regarded as forms on $M \backslash\{o\}$.

In terms of decomposition (6) $* \omega$ can be computed as follows:

$$
\begin{equation*}
* \omega=(-1)^{n-p} f^{n-2 q+1} *_{0} a+f^{n-2 q-1_{*}}{ }_{0} b d r . \tag{7}
\end{equation*}
$$

To prove this formula one uses the fact that * consists essentially of taking orthogonal complement together with the identity

$$
\begin{equation*}
{ }_{\lambda^{2} g}=\lambda^{n-2 q_{*}}{ }_{g} \tag{8}
\end{equation*}
$$

relating duality operators on q-forms for two conformal metrics g and $\lambda^{2} g$.
Using (5), (6) and (7) one concludes that for $\omega \in \mathscr{F}^{q}(M)$ the following conditions hold:

$$
\begin{gather*}
\int_{0}^{\infty} \int_{S^{n-1}}\left(f^{n-2 q+1}|a|_{0}^{2}+f^{n-2 q-1}|b|_{0}^{2}\right) d V_{0} d r<\infty \\
d_{0} b=0, \quad d_{0_{0}^{*}} a=0 \tag{9}\\
d_{0} a+(-1)^{q} \frac{\partial b}{\partial r}=0 \\
\frac{\partial}{\partial r}\left(f^{n-2 q+1_{*}} a\right)+f^{n-2 q-1} d_{0}{ }_{0} b=0
\end{gather*}
$$

Moreover the pointwise norm $|\omega|^{2}$ is bounded near $r=0$, i.e.,

$$
|\omega|^{2}=f^{-2(q-1)}|a|_{0}^{2}+f^{-2 q}|b|_{0}^{2} \leqslant C \quad \text { for } r \in(0,1]
$$

Apply $*_{0}$ to the last equation in (9) and use commutativity

$$
\frac{\partial}{\partial r} *_{0}=*_{0} \frac{\partial}{\partial r}
$$

to obtain the following set of conditions satisfied by $\omega=a \wedge d r+b \in$ $\mathcal{S C}^{q}(M)$ on $M \backslash\{o\}$
(a) $d_{0} b=0$,
(b) $\quad d_{0}{ }_{0} a=0$,
(c) $d_{0} a+(-1)^{q} \frac{\partial b}{\partial r}=0$,
(d) $\frac{\partial}{\partial r}\left(f^{n-2 q+1} a\right)+(-1)^{q} f^{n-2 q-1} \delta_{0} b=0$,
(e) $\quad f^{-2(q-1)}|a|_{0}^{2}+f^{-2 q}|b|_{0}^{2}<C \quad$ for $r \in(0,1]$,
(f)

$$
\int_{0}^{\infty} \int_{S^{n-1}}\left(f^{n-2 q+1}|a|_{0}^{2}+f^{n-2 q-1}|b|_{0}^{2}\right) d V_{0} d r<\infty
$$

where δ_{0} is the formal adjoint of d_{0} on S^{n-1}. Observe now that if $\omega \in \mathscr{S}^{q}(M)$ and $b \equiv 0$, then $a \equiv 0$. Indeed, if $b \equiv 0$, then, by (10 b) and (10 c), $a(r, \theta)$ is a harmonic form on S^{n-1} for every fixed $r>0$. Since $0 \leqslant \operatorname{deg} a \leqslant n-2$,
$a(r, \theta)$ can be nonzero only if $q-1=\operatorname{deg} a=0$, in which case $a(r, \theta)$ is independent of θ. On the other hand, by (10d),

$$
\frac{\partial}{\partial r}\left(f^{n-1} a\right)=0
$$

i.e., $a=C_{1} f^{-(n-1)}$ which blows up at $r=0$ contradicting (10 e) unless $C_{1}=$ 0.

Now eliminate $a(r, \theta)$ from the system consisting of equations (10 c) and (10d). Thus apply d_{0} to (10d) and use commutativity $d_{0} \partial / \partial r=(\partial / \partial r) d_{0}$ to obtain

$$
f^{n-2 q-1} d_{0} \delta_{0} b=\frac{\partial}{\partial r}\left(f^{n-2 q+1} \frac{\partial b}{\partial r}\right)
$$

Take the inner product (over S^{n-1}) of both sides of this equation with b keeping $r>0$ fixed to see that

$$
\left(\frac{\partial}{\partial r}\left(f^{n-2 q+1} \frac{\partial b}{\partial r}\right), b\right)_{0}=f^{n-2 q-1}\left(\delta_{0} b, \delta_{0} b\right)_{0} \geqslant 0
$$

Therefore

$$
\frac{d}{d r}\left(f^{n-2 q+1} \frac{\partial b}{\partial r}, b\right)_{0}=\left(\frac{\partial}{\partial r}\left(f^{n-2 q+1} \frac{\partial b}{\partial r}\right), b\right)_{0}+f^{n-2 q+1}\left(\frac{\partial b}{\partial r}, \frac{\partial b}{\partial r}\right)_{0} \geqslant 0
$$

By (10e) and (4) $|b|_{0}^{2}=O\left(r^{2 q}\right)$ for small r. Hence

$$
\left(f^{n-2 q+1} \frac{\partial b}{\partial r}, b\right)_{0}=O\left(r^{n}\right)
$$

It follows that

$$
\frac{d}{d r}(b, b)_{0}=2\left(\frac{\partial b}{\partial r}, b\right)_{0} \geqslant 0
$$

for all $r>0$, i.e. $\|b\|_{0}^{2}$ is a nondecreasing function of r. Now suppose $b \neq 0$. Since $\|b\|_{0}^{2}$ is monotone and

$$
\infty \geqslant\|\omega\|^{2} \geqslant\|b\|^{2}=\int_{0}^{\infty} f^{n-2 q-1}\|b\|_{0}^{2} d r
$$

the integral $\int_{1}^{\infty} f^{n-2 q-1} d r$ is finite. Thus for $q \neq 0, n, \mathscr{C}^{q}(M) \neq\{0\}$ implies that $\int_{1}^{\infty} f^{n-2 q-1} d r$ is finite. By duality $\mathscr{F}^{q}(M) \cong \mathscr{F}^{n-q}(M)$, i.e. if $\mathscr{K}^{q}(M) \neq$ $\{0\}$, then the two integrals $\int_{1}^{\infty} f^{n-2 q-1} d r, \int_{1}^{\infty} f^{-n+2 q-1} d r$ are simultaneously finite. If $n=2 q$ the two integrands are the same. If, on the other hand, $n-2 q \neq 0$ then $(n-2 q-1)(-n+2 q-1)=1-(n-2 q)^{2}$. Thus either one of the exponents is equal to zero, or the two exponents have opposite signs. In both cases one of the integrals has to diverge, which proves that $\mathcal{S}_{\mathcal{G}}(M)=\{0\}$ if $q \neq 0, n / 2, n$. This still leaves the possibility that, for $n=2 k$, $\mathscr{S}^{k}(M) \neq\{0\}$ provided $\int_{1}^{\infty} f^{-1} d r<\infty$. Such is the case and, in fact, $\mathscr{H}^{k}(M)$ has infinite dimension. The last assertion will follow from the following:

Lemma. Let M be a model with the metric $d s^{2}=d r^{2}+f(r)^{2} d \theta^{2}$. Define

$$
R(r)=e^{f_{1}^{\prime} d s / f(s)} .
$$

Then the mapping $F: M \backslash\{o\} \rightarrow \mathbf{R}^{n} \backslash\{o\}$ given (in terms of polar geodesic coordinates (r, θ) on M and polar coordinates on $\left.\mathbf{R}^{r}\right)$ by $F(r, \theta)=(R, \theta)$ extends to a C^{1} conformal diffeomorphism of M onto an open ball of (possible infinite) radius equal to $\int_{1}^{\infty} d s / f(s)$ centered at the origin. Moreover, F is C^{∞} on $M \backslash\{o\}$.

Remark. The lemma is due to Milnor [M] for $n=2$, in which case F is C^{∞} everywhere. The proof for $n>2$ is essentially the same and will not be repeated here. If $n>2$, the restriction of F to every plane through o is C^{∞}. It is likely that F is C^{∞}, but the regularity asserted in the lemma is sufficient for the purpose at hand.

To finish the proof of the theorem assume the lemma and suppose $\operatorname{dim} M=2 k$. By (8) the * operator acting on forms of degree k depends only on the conformal structure. Thus all conditions in (5) are conformally invariant. Assume that $\int_{1}^{\infty} d s / f(s)<\infty$ and let B be the open ball in \mathbf{R}^{n} of radius $\int_{1}^{\infty} d s / f(s)$. The space of all $C^{\infty} k$-forms η on \mathbf{R}^{n} which satisfy the equations $d \eta=0, d * \eta=0$ ($*$ induced by the standard flat metric) has infinite dimension (e.g., if $h\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)$ is a nonconstant harmonic function on \mathbf{R}^{k+1}, then

$$
\eta=d\left(h\left(x_{k}, x_{k+1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{k-1}\right)
$$

satisfies the two equations). Restrictions of such forms to B are clearly in L^{2}. Thus the space \mathscr{H} of k-forms on B satisfying conditions (5) with respect to the flat metric has infinite dimension. By the lemma and the conformal invariance, the space $F^{* \mathcal{H}}$ consists of forms ω of degree k which are continuous, square integrable on M, C^{∞} on $M \backslash\{o\}$ and satisfy $d \omega=d * \omega=$ 0 on $M \backslash\{o\}$. Standard regularity theorem shows that every $\omega \in F^{*} \mathscr{K}$ is in fact C^{∞} and harmonic at every point of M. It follows that F^{*} establishes an isomorphism between \mathcal{H} and $\mathcal{K}^{k}(M)$ and that $\mathscr{K}^{k}(M)$ has infinite dimension.

References

[A] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Astérisque, nos. 32, 33, Société Mathématique de France, Paris, 1976, pp. 43-72.
[C] S. S. Chern, Differential geometry; its past and its future, Actes du Congrès International du Mathématiciens (1970), vol. 1, Gauthier-Villars, Paris, 1971, pp. 41-53.
[GW] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, preprint.
[M] J. Milnor, On deciding whether a surface is parabolic or hyperbolic, Amer. Math. Monthly 84 (1977), 43-46.
[dR] G. de Rham, Variétés différentiables, formes, courants, formes harmoniques, 2nd ed., Actualités Sci. Indust., no. 1222a, Hermann, Paris, 1960.
[S] J. J. Stoker, Differential geometry, Wiley-Interscience, New York, 1969.
Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19174

[^0]: Received by the editors July 27, 1978 and, in revised form, December 4, 1978.
 AMS (MOS) subject classifications (1970). Primary 58G99.
 Key words and phrases. L^{2} harmonic forms, vanishing theorems.
 ${ }^{1}$ Partially supported by NSF Grant MCS 78-02285-A01.

