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L2-BOUNDEDNESS OF A
SINGULAR INTEGRAL OPERATOR

Dashan Fan and Yibiao Pan*

Abstract
In this paper we study a singular integral operator T with rough
kernel. This operator has singularity along sets of the form
{x = Q(|y|)y′}, where Q(t) is a polynomial satisfying Q(0) = 0.
We prove that T is a bounded operator in the space L2(Rn), n ≥ 2,
and this bound is independent of the coefficients of Q(t).

We also obtain certain Hardy type inequalities related to this
operator.

1. Introduction

Let Sn−1 be the unit sphere in R
n, n ≥ 2, with normalized Lebesgue

measure dσ = dσ(x′). Let Ω(x)|x|−n be a homogeneous function of
degree −n, with Ω ∈ L1(Sn−1) and

(1.1)
∫

Sn−1
Ω(x′) dσ(x′) = 0,

where x′ = x/|x| for any x �= 0.
Suppose b(|x|) is an L∞ function. We consider the distribution K =

p.v. b(|x|)Ω(x)|x|−n and study the boundedness of the singular integral
operator TQ,b(f) defined by

(1.2) TQ,b(f)(x) =
∫

Rn

K(y)f(x−Q(|y|)y′) dy

where y′ = y/|y| ∈ Sn−1 and Q(t) =
m∑

k=1

bkt
k is a polynomial of degree m.
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For the sake of simplicity, we denote TQ,b = Tb if Q(t) = t and TQ,b = T
if Q(t) = t and b(x) ≡ 1.

The maximal operator T ∗
b (f)(x) now is defined by

(1.3) T ∗
b (f)(x) = sup

ε>0

∣∣∣∣∣
∫
|y|>ε

K(y)f(x− y) dy

∣∣∣∣∣ .
The singular integral operator Tf was first studied by Calderón and

Zygmund in their pioneering papers [CZ1] and [CZ2]. In [CZ2], Cal-
derón and Zygmund proved that if Ω ∈ LLog+ L(Sn−1) satisfies the
mean zero condition (1.1) then the operator T with kernel Ω(x′)|x|−n is
a bounded operator in Lp(Rn), 1 < p < ∞. Below let us recall briefly
the idea used in Calderón-Zygmund’s proof.

Suppose that Ω ∈ L′(Sn−1) is an odd function, then one can easily
show that Tf(x) is equal to

(1.4)
∫

Rn

f(x− y)Ω(y′)|y|−n dy

=
1
2

∫
Sn−1

Ω(y′)
{∫ ∞

−∞
f(x− ty′)t−1 dt

}
dσ(y′).

By the method of rotation and the well-known Lp boundedness of the
Hilbert transform one then obtains the Lp boundedness of T under the
weak condition Ω ∈ L1(Sn−1).

For even kernels, the condition Ω ∈ L1(Sn−1) is insufficient. It turns
out the right condition is Ω ∈ LLog+ L(Sn−1) (as far as the size of Ω
is concerned). The idea of Calderón-Zygmund is to compose the oper-
ator T with the Riesz transform Rj , 1 ≤ j ≤ n, and show that RjT is
a singular integral operator with an appropriate odd kernel. Thus
‖RjTψ‖p ≤ Cp‖ψ‖p for all test functions ψ ∈ L. Furthermore, one
can obtain

‖Tψ‖p =

∥∥∥∥∥∥

 n∑

j=1

R2
j


Tψ

∥∥∥∥∥∥
p

≤
n∑

j=1

‖Rj(RjTψ)‖p ≤ nap‖RjTψ‖p ≤ napCp‖ψ‖p

for all ψ ∈ L, since
n∑

j=1

R2
j is equal to the identity map.
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In [Fe], R. Fefferman generalized this Calderón-Zygmund singular in-
tegral by replacing the kernel Ω(x′)|x|−n by b(|x|)Ω(x′)|x|−n, where b is
an arbitrary L∞ function. This allows the kernel to be rough not only
on the sphere, but also in the radial direction. For the singular integral
opeator Tb with the kernel K(x) = b(|x|)Ω(x′)|x|−n, the formula (1.4)
now is

(1.4’) Tbf(x) =
∫

Sn−1
Ω(y′)

{∫ ∞

0

f(x− ty′)b(t)t−1 dt

}
dσ(y′).

Clearly, the method by Calderón and Zygmund can no longer be used to
estimate the above integral in (1.4’) even if Ω is odd, since the integral
in the parenthesis can not be reduced to the Hilbert transform for an
arbitrary b(t). Thus one needs to find a new approach.

Using a method which is different from Calderón and Zygmund, in
[Fe] R. Fefferman showed that if Ω satisfies a Lipschitz condition then
Tb is bounded on Lp(Rn) for 1 < p < ∞. J. Namazi [Na] improved
Fefferman’s theorem by using the assumption Ω ∈ Lq(Sn−1). The same
Lp result was also obtained by L. Chen for the maximal operator T ∗

b

(see [Ch]). In [Fa], one of the authors obtained the L2 boundedness
for Tb under the significantly weaker condition Ω ∈ H1(Sn−1), where
H1(Sn−1) is the Hardy space on Sn−1. The condition b ∈ L∞ is also
replaced by a weaker conditon

(1.5) R−1

∫ R

0

|b(ρ)|q dρ ≤ A, for all R > 0 and some q > 1

(see also [St] or [DR]).
The definition of Hardy space will be reviewed in Section 2. But we

should mention here that on Sn−1, it is well-known that for q > 1,

Lq ⊆ LLog+ L ⊆ H1(Sn−1) ⊆ L1

and all inclusions are proper.
The main purpose of this paper is to study the L2 boundedness for the

more general singular integral operator TQ,b(f) defined in (1.2) as well
as the maximal operator T ∗

b (f) with Ω ∈ H1(Sn−1). In a forthcoming
paper, we will study the Lp boundedness for another singular integral
TΦ that also takes Tb as a model case.

The following is the main theorem in this paper:

Theorem 1. Let TQ,b be the singular integral operator defined by (1.2)
and T ∗

b be the maximal operator defined in (1.3). If Ω ∈ H1(Sn−1)
satisfies (1.1) then both these two operators are bounded in L2(Rn).
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More precisely, we have

‖TQ,b(f)‖2 ≤ C‖b‖∞ ‖Ω‖H1(Sn−1) ‖f‖2;(1.6)

‖T ∗
b (f)‖2 ≤ C‖b‖∞ ‖Ω‖H1(Sn−1) ‖f‖2,(1.7)

where C is a constant independent of b, Ω, f and the coefficients of Q.

By the proof in Theorem 1, we can further obtain the following result:

Theorem 2 (Hardy-type inequalities).

(i) Let Q(t) =
m∑

k=1

bkt
k be a polynomial in R and Ω ∈ H1(Sn−1)

satisfy the mean zero property (1.1). Then we have

(1.8)
∫

Rn

|x|−n

∣∣∣∣
∫

Sn−1
eiQ(|x|)〈x′,ξ′〉)Ω(ξ′) dσ(ξ′)

∣∣∣∣ dx

≤ C‖Ω‖H1(Sn−1),

where C is a constant independent of Ω and the coefficients of Q.
(ii) If Ω is a distribution in the Hardy space Hp(Sn−1), 0 < p < 1,

with property (1.1) then

(1.9)
∫

Rn

|x|(1−n)(2−p)−1

∣∣∣∣
∫

Sn−1
ei〈x,ξ′〉Ω(ξ′) dσ(ξ′)

∣∣∣∣
p

dx

≤ Cp‖Ω‖p
Hp(Sn−1),

where C is a constant independent of Ω.

Throughout this paper, the letter C will denote a positive constant
that may vary at each occurrence but independent of the essential vari-
ables.

2. Definitions and Lemmas

Recall that the Poisson kernel on Sn−1 is defined by

Pry′(x′) = (1 − r2)/|ry′ − x′|n,

where 0 ≤ r < 1 and x′, y′ ∈ Sn−1.
For any f ∈ L′(Sn−1), we define the radial maximal function P+f(x′)

by

P+f(x′) = sup
0≤r<1

∣∣∣∣
∫

Sn−1
f(y′)Prx′(y′) dσ(y′)

∣∣∣∣ ,
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where L′(Sn−1) is the space of Schwartz distributions on Sn−1. The
Hardy space Hp(Sn−1), 0 < p ≤ 1, is the linear space of distribution
f ∈ L′(Sn−1) with the finite norm ‖f‖Hp(Sn−1) = ‖P+f‖Lp(Sn−1) < ∞.
The space Hp(Sn−1) was studied in [Co] (see also [CTW]). In particular,
it is known that

Hp(Sn−1) ⊇ L1(Sn−1) ⊇ H1(Sn−1) ⊇ L log+ L(Sn−1) ⊇ Lq(Sn−1)

for any q > 1 > p > 0.
Another important property of Hp(Sn−1) is the atomic decomposition,

which will be reviewed below.
An exceptional atom is an L∞ function E(x) satisfying ‖E‖∞ ≤ 1. A

regular (p, q) atom is an Lq (1 < q ≤ ∞) function a(·) that satisfies

(2.1) supp(a) ⊂ {x′ ∈ Sn−1, |x′ − x′
0| < ρ

for some x′
0 ∈ Sn−1 and ρ > 0};

(2.2)
∫

Sn−1
a(ξ′)Y (ξ′) dσ(ξ′) = 0,

for any spherical harmonic polynomial with degree ≤ N , where N is any
fixed integer larger than [(n− 1)(1/p− 1)];

(2.3) ‖a‖q ≤ ρ(n−1)(1/q−1/p).

From [Co] or [CTW], we find that any Ω ∈ Hp(Sn−1) has an atomic
decomposition Ω =

∑
λjaj , where the aj ’s are either exceptional atoms

or regular (p, q) atoms and
∑

|λj |p ≤ C‖Ω‖p
Hp(Sn−1). In particular, if

Ω ∈ Hp(Sn−1) has the mean zero property (1.1) then all the atoms aj

in the atomic decomposition can be chosen to be regular (p, q) atoms.
In the rest of the paper, for any non-zero ξ = (ξ1, . . . , ξn) ∈ R

n, we
write ξ/|ξ| = ξ′ = (ξ′1, . . . , ξ

′
n) = (ζ1, . . . , ζn) = ζ. Thus ζ ∈ Sn−1. Also

we use ζ∗ to denote (ζ2, . . . , ζn) and use ξ∗ to denote (ξ2, . . . , ξn).
The following lemma is essentially Proposition 2.5 in [FP].

Lemma 2.1. Suppose n ≥ 3 and a(·) is a (1,∞) atom on Sn−1 sup-
ported in Sn−1 ∩ B(ζ, ρ), where B(ζ, ρ) is the ball with radius ρ and
center ζ = ξ′ ∈ Sn−1. Let

Fa(s) = (1 − s2)(n−3)/2χ(−1,1)(s)
∫

Sn−2
a(s, (1 − s2)1/2ỹ) dσ(ỹ).
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Then, up to a constant multiplier independent of a(·), Fa(s) is a (1,∞)
atom on R. More precisely, there are s0 ∈ R and a constant C which is
independent of a(·) such that

(2.4) supp(Fa) ⊆ (s0 − 2r, s0 + 2r);

(2.5) ‖Fa‖∞ ≤ C/r;

(2.6)
∫

R

Fa(s) ds = 0,

where r = r(ξ′) = |ξ|−1|Aρξ| and Aρξ = (ρ2ξ1, ρξ2, . . . , ρξn).

Proof: If ρ < 1/4, the proof can be found in [FP]. Suppose ρ ≥ 1/4,
then, clearly supp(Fa) ⊆ (−1, 1) and ‖Fa‖∞ ≤ C. It is also easy to see
that Fa satisfies (2.6).

Lemma 2.2. Suppose n = 2 and that a(·) is a (1,∞) atom supported
in S1 ∩B(ζ, ρ) and satisfies (2.1)-(2.3) with p = 1. Let

Fa(s) = (1 − s2)−1/2χ(−1,1)(s)
(
a(s, (1 − s2)1/2) + a(s,−(1 − s2)1/2)

)
.

Then, up to a constant multiplier independent of a(·), Fa(s) is a (1, q)
atom on R, where q is any fixed number in the interval (1, 2). The radius
of supp(Fa) is equal to r = r(ξ′) = |ξ|−1(ρ4ξ2

1 + ρ2ξ2
2)1/2.

Proof: By the discussion in Lemma 2.1, without loss of generality, we
may assume that a(·) is supported in Sn−1 ∩ B(ζ, ρ) with a sufficiently
small ρ, where ζ ∈ S1. Let ζ = (ζ1, (1 − ζ2

1 )1/2σ) for σ ∈ {±1}. If
Fa(s) �= 0 then (s, (1− s)2)1/2δ) ∈ B(ζ, ρ) for some δ ∈ {±1}. Therefore
we have

(s− ζ1)2 + {δ(1 − s2)1/2 − σ(1 − ζ2
1 )1/2}2 < ρ2.

Noting that either δ = σ or δ = −σ, we easily see that

(2.7) (s− ζ1)2 + |(1 − s2)1/2 − (1 − ζ2
1 )1/2|2 ≤ ρ2

which implies that

|s− ζ1| ≤ ρ;(2.8)

|(1 − s2)1/2 − (1 − ζ2
1 )1/2| ≤ ρ;(2.9)
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and

(2.10) |s− ζ1| ≤ ρ2 + 2ρ(1 − ζ2
1 )1/2.

Inequalities (2.8) and (2.9) follow from (2.7) trivially. To see (2.10) we
shall consider the following two cases.

Case A: |ζ1| > 3/4. Then by (2.8) and (2.9) we have

|s + ζ1| ≥ 2|ζ1| − |s− ζ1| > 1

and

|s− ζ1| ≤ |s2 − ζ2
1 |

= |(1 − s2)1/2 − (1 − ζ2
1 )1/2|

|2(1 − ζ2
1 )1/2 + (1 − s2)1/2 − (1 − ζ2

1 )1/2|
≤ ρ(ρ + 2(1 − ζ2

1 )1/2) = ρ2 + 2ρ(1 − ζ2
1 )1/2.

Case B: |ζ1| ≤ 3/4. Then (1 − ζ2
1 )1/2 ≥ 1/2. By (2.8) we find

|s− ζ1| ≤ ρ < ρ2 + 2ρ(1 − ζ2
1 )1/2,

which proves (2.10).
Recalling ξ′ = ζ, we easily see that in both Case A and Case B,

|s− ζ1| ≤ 2|ξ|−1|Aρξ|.

By letting s0 = ζ1, r = r(ξ′) = |ξ|−1|Aρξ|, we see that (2.4) and (2.6)
are satisfied.

It remains to show, for 1 < q < 2, ‖Fa‖q ≤ Cr−1+1/q. To this end, we
first assume that (1 − ζ2

1 )1/2 > 99ρ. By (2.9) we find

(2.11) 1/2(1 − ζ2
1 )1/2 ≤ (1 − s2)1/2 ≤ 2(1 − ζ2

1 )1/2.

Thus by the definition of Fa we have ‖Fa‖∞ ≤ Cρ−1(1−ζ2
1 )−1/2 ≤ Cr−1.

Now by the support condition (2.4) we have ‖Fa‖q ≤ Cr−1+1/q.
If (1 − ζ2

1 )1/2 = |ζ2| ≤ 99ρ, then by (2.9) we know (1 − s2)1/2 ≤ 100ρ.
So by the definition of Fa we have

‖Fa‖q ≤ Cρ−1

{∫
1−s2≤10000ρ2

|1 − s2|−q/2 ds

}1/q

.
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Noting that we can assume that ρ is sufficiently small so that 10000ρ2 ≤
1/16, thus we easily show ‖Fa‖q ≤Cρ2(−1+1/q)≤C(ρ2|ζ1|+ρ|ζ2|)−1+1/q ≤
Cr−1+1/q. Lemmma 2.2 is proved.

Remarks.
1. Let a(·) be a (p,∞) atom with support in a ball of radius ρ and

let Fa be defined in Lemma 2.1. Since ρ(1/p−1)(n−1)a(·) is a (1,∞)
atom, by Lemma 2.1 we have

(2.12) ‖Fa‖∞ ≤ r−1ρ(1−1/p)(n−1).

2. Since any spherical harmonic polynomial is the restriction to Sn−1

of a polynomial in R
n, from the condition (2.2) for a(·) we easily

see

(2.13)
∫

R

Fa(s)sk ds = 0 for any integer k ∈ [0, N ],

where N is an integer larger than [(n− 1)(1/p− 1)].

3. Proof of Theorem 1

We first prove (1.6) in Theorem 1. By Fubini’s Theorem we easily see
that the Fourier transform of TQ,b(f) is equal to f̂(ξ)K̃Ω(ξ), where

(3.1) K̃Ω(ξ) =
∫

Rn

|y|−nb(|y|)Ω(y′)e−iQ(|y|)|ξ|〈y′,ξ′〉 dy.

By Plancherel’s Theorem, we only need to prove that

(3.2) ‖K̃Ω‖∞ ≤ C‖b‖∞ ‖Ω‖H1(Sn−1).

Since Ω ∈ H1(Sn−1) satisfies the mean zero property (1.1), we can write
Ω =

∑
λjaj , where

∑
|λj | ≤ C‖Ω‖H1(Sn−1) and each aj is a (1,∞)

atom. Therefore to prove (3.2), it suffices to show

(3.3) ‖K̃aj‖∞ ≤ C‖b‖∞

for any atom aj = a, where C is independent of the coefficients of Q
and the atom a(·). By the method of rotation, we can assume x′ =
(1, 0, . . . , 0). Let y′ = (s, y2, y3, . . . , yn). Then it is easy to see that

(3.4) K̃a(x) =
∫ ∞

0

b(t)t−1

∫
R

Fa(s)e−iQ(t)|x|s ds dt
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where Fa(s) is the function defined in Lemma 2.1 or Lemma 2.2. By
Lemma 2.1 and Lemma 2.2, without loss of generality, we may assume
that Fa is a (1, q) atom with support in (−r, r) for 1 < q < 2. Thus
A(·) = rFa(r·) is a (1, q) atom with support in the interval (−1, 1).

For the polynomial

Q(t)|x| =
m∑

k=1

|x|bkt
k with bm �= 0,

we let

βk = (|x|rbk) and Q̃(t) = −
m∑

k=1

βkt
k.

Then after changing variables we have

(3.4’) K̃a(x) =
∫ ∞

0

t−1b(t)
∫

R

A(s)eiQ̃(t)s ds dt.

Let |βκ|1/κ = max{|βk|1/k, k = 1, 2, . . . ,m} and β = |βκ|−1/κ.
Then K̃a(x) is bounded by

‖b‖∞
∫ β

0

∣∣∣∣
∫

R

A(s){eiQ̃(t)s − 1} ds
∣∣∣∣ t−1 dt

+ ‖b‖∞
∫ ∞

β

t−1

∣∣∣∣
∫

R

A(s)eiQ̃(t)s ds

∣∣∣∣ dt = I1 + I2.

By the choice of β, it is easy to see that I1 is bounded by

C‖b‖∞
m∑

k=1

|βk|
∫ β

0

t−1+k dt ≤ C‖b‖∞

where C is independent of βk’s.
To estimate I2, we let Rj = [2j , 2j+1) for any integer j and let Ψ ∈

C∞(R) satisfy

Ψ(t) ≡ 1 for |t| ≤ 1
Ψ ≡ 0 for |t| ≥ 2.

Define Tj by

(Tjf)(t) = χRj (t)
∫

R

eisQ̃(t)Ψ(s)f(s) ds.
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From the estimate on page 60 in [Pa], we can find an N > 0 such that

‖Tj‖L2→L2 ≤ C2j/2|βκ|−1/2N2−jκ/2N .

By the trivial estimate ‖Tj‖L1→L∞ ≤ C and interpolation we now have

(3.5) ‖Tj‖Lp→Lq ≤ C2j/q|βκ|−1/qN2−jκ/qN

where 1/p + 1/q = 1 and q ≥ 2.
Choosing an integer J such that 2J ≤ β < 2J+1, then, we have

I2 ≤ ‖b‖∞
∫ ∞

β

t−1

∣∣∣∣
∫

R

A(s)eiQ̃(t)s ds

∣∣∣∣ dt

≤ C‖b‖∞
∑
j≥J

∫ 2j+1

2j

t−1|Tj(A)(t)| dt

≤ C‖b‖∞
∑
j≥J

{∫ 2j+1

2j

t−p dt

}1/p

‖Tj(A)‖Lq .

Thus by (3.5) we have

I2 ≤ C‖b‖∞
∑
j≥J

2−j/q 2j/q‖A‖Lp2−jκ/qN |βκ|−1/qN ≤ C‖b‖∞,

because 2J ≥ (1/2)|βκ|−1/κ.
The first part in Theorem 1 is proved.
To prove (1.7) in Theorem 1, we notice that

T ∗
b f(x) = sup

ε>0

∣∣∣∣∣
∫
|y|>ε

b(|y|)|y|−nΩ(y′)f(x− y) dy

∣∣∣∣∣
≤

∑
|λj | sup

ε>0

∣∣∣∣∣
∫
|y|>ε

b(|y|)|y|−naj(y′)f(x− y) dy

∣∣∣∣∣
where

∑
|λj | ≤ C‖Ω‖H1(Sn−1) and all aj ’s are (1,∞) atoms.

So it suffices to show that for any (1,∞) atom a(·) on Sn−1

(3.6)

∥∥∥∥∥sup
ε>0

∣∣∣∣∣
∫
|y|>ε

b(|y|)|y|−na(y′)f(· − y) dy

∣∣∣∣∣
∥∥∥∥∥

2

≤ C‖b‖∞‖f‖2

with a constant C independent of b, f and a(·). Without loss of general-
ity, we may assume supp a(·) ⊆ B(l, ρ) ∩ Sn−1 where l = (1, 0, . . . , 0).

In order to prove (3.6) we need to prove the following:
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Proposition 3.1. Suppose that b ∈ L∞ and a(·) is a (1,∞) atom
supported in B(l, ρ) ∩ Sn−1. For ε > 0, let

Tb,εf(x) = (a(·)b(| · |)| · |−nχ{|y|>ε}(·) ∗ f)(x).

We have

(3.7)
∥∥∥∥ sup

0<s<∞

1
s

∫ s

0

|Tb,εf(·)| dε
∥∥∥∥

2

≤ C‖b‖∞ ‖f‖2

where C is independent of b, f and a(·).

Proof: The Fourier transform of Tb,εf is mε(ξ)f̂(ξ), where

mε(ξ) =
∫ ∞

ε

b(t)t−1

∫
Sn−1

a(y′)e−it〈ξ,y′〉 dσ(y′) dt.

For each fixed ξ �= 0, we choose a rotation O such that O(ξ) = |ξ| l. Thus

mε(ξ) =
∫ ∞

ε

b(t)t−1

∫
Sn−1

a(O−1(y′))e−it|ξ|〈l,y′〉 dσ(y′) dt.

Now a(O−1(y′)) is an atom supported in B(ζ, ρ) ∩ Sn−1 so that

mε(ξ) =
∫ ∞

ε

b(t)t−1

∫
R

Fa(s)e−it|ξ|s ds dt,

where Fa is the function as in Lemma 2.1 if n > 2 and in Lemma 2.2 if
n = 2. Without loss of generality, we assume supp(Fa) ⊆ (−r, r).

For the above r = r(ξ′), we take a radial function Φ ∈ C∞(Rn) such
that its Fourier transform Φ̂ satisfies Φ̂(ξ) = 1 if |ξ| ≤ 1 and Φ̂(ξ) = 0 if
|ξ| > 2 and define Φε by Φ̂ε(ξ) = Φ̂(εr(ξ′)|ξ|). It is easy to see that the
maximal function Φ∗(f) = sup

ε>0
|Φε ∗ f | is bounded in Lp(Rn). Now we

define a g-function

g(f)(x) =
{∫ ∞

0

|Tb,εf(x) − Φε ∗ Tbf(x)|2ε−1 dε

}1/2

.

Then

1
s

∫ s

0

|Tb,εf(x)| dε ≤ g(f)(x) +
1
s

∫ s

0

|Φε ∗ Tbf(x)| dε.
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Thus
sup
ε>0

1
s

∫ s

0

|Tb,εf(x)| dε ≤ g(f)(x) + Φ∗(Tbf)(x).

By (1.6) we have

‖Φ∗(Tbf)‖2 ≤ C‖Tbf‖2 ≤ C‖b‖∞ ‖f‖2.

So it remains to show

(3.8) ‖g(f)‖2 ≤ C‖b‖∞ ‖f‖2.

By Plancherel’s Theorem we know that

‖g(f)‖2
2 = C

∫
Rn

∫ ∞

0

|mε(ξ) − Φ̂(εr|ξ|)m0(ξ)|2 |f̂(ξ)|2ε−1 dε dξ.

So we only need show

(3.9)
∫ ∞

0

|mε(ξ) − Φ̂(εr(ξ′)|ξ|)m0(ξ)|2ε−1 dε ≤ C‖b‖2
∞

where C is a constant independent of b, ξ and r.
By the definition of mε and changing of variables we have∫ ∞

0

|mε(ξ) − Φ̂(εr|ξ|)m0(ξ)|2ε−1 dε

= C

∫ ∞

0

∣∣∣∣∣
∫ ∞

ε|ξ|
b(t/|ξ|)t−1

∫
Sn−1

a(y′)e−it〈ξ′,y′〉 dσ(y′) dt

−Φ̂(εr|ξ|)
∫ ∞

0

b(t/|ξ|)t−1

∫
Sn−1

a(y′)e−it〈ξ′,y′〉 dσ(y′) dt
∣∣∣∣
2

ε−1 dε

= C

∫ ∞

0

∣∣∣∣
∫ ∞

ε

b(t/|ξ|)t−1

∫
Sn−1

a(y′)e−it〈ξ′,y′〉 dσ(y′) dt

−Φ̂(rε)
∫ ∞

0

b(t/|ξ|)t−1

∫
Sn−1

a(y′)e−it〈ξ′,y′〉 dσ(y′) dt
∣∣∣∣
2

ε−1 dε

≤ C

∫ 1/r

0

∣∣∣∣
∫ ε

0

b(t/|ξ|)t−1

∫
Sn−1

a(y′)e−it〈ξ′,y′〉 dσ(y′) dt
∣∣∣∣
2

ε−1 dε

+ C‖b‖2
∞

∫ 2/r

1/r

ε−1 dε

{∫ ∞

0

t−1

∣∣∣∣
∫

Sn−1
a(y′)e−it〈ξ′,y′〉 dσ(y′)

∣∣∣∣ dt

}2

+ C

∫ ∞

2/r

∣∣∣∣
∫ ∞

ε

b(t/|ξ|)t−1

∫
Sn−1

a(y′)e−it〈ξ′,y′〉 dσ(y′) dt
∣∣∣∣
2

ε−1 dε

= I1 + I2 + I3.
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Using the method of rotation again and the cancellation condition of
Fa we have

I1 ≤ C‖b‖2
∞

∫ 1/r

0

∣∣∣∣
∫ ε

0

t−1

∣∣∣∣
∫

R

Fa(s){e−its − 1} ds
∣∣∣∣ dt

∣∣∣∣
2

ε−1 dε

≤ C‖b‖2
∞

∫ 1/r

0

r2ε dε = C‖b‖2
∞.

I2 ≤ C‖b‖2
∞

{∫ ∞

0

t−1

∣∣∣∣
∫

R

Fa(s)e−its ds

∣∣∣∣ dt

}2

≤ C‖b‖2
∞

{∫ ∞

0

t−1|F̂a(t)| dt
}2

≤ C‖b‖2
∞.

The last inequality is the classical Hardy inequality (page 128 in [St]),
since Fa is an atom on R

I3 ≤ C‖b‖2
∞

∫ ∞

2/r

{∫ ∞

ε

|t−1F̂a(t)| dt
}2

ε−1 dε

≤ C‖b‖2
∞

∫ ∞

2/r

{∫ ∞

ε

t−p dt

}2/p

ε−1 dε‖F̂a‖2
q.

Thus by the Hausdorff-Young inequality we have

I3 ≤ C‖b‖2
∞r2−2/p‖Fa‖2

p ≤ C‖b‖2
∞.

Clearly the constant C in the above estimates is independent of the
essential variables and functions. The proposition is proved.

Now we return to prove (3.6). Let

W (t, ξ) =
∫

Sn−1
a(y′)e−it|ξ|〈ξ′,y′〉 dσ(y′)b(t).

Then
mε(ξ) = C

∫ ∞

ε

W (t, ξ)t−1 dt.

Thus
1
s

∫ s

0

mε(ξ) dε = C
1
s

∫ s

0

∫ ∞

ε

W (t, ξ)t−1 dt dε

=
C

s

{∫ s

0

(∫ t

0

W (t, ξ) dε
)

t−1 dt

+
∫ s

0

∫ ∞

s

W (t, ξ)t−1 dt dε

}

=
C

s

∫ s

0

W (t, ξ) dt + Cms(ξ).
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Thus

sup
ε>0

|Tb,εf(x)|

≤ sup
s>0

1
s

∫ s

0

|Tb,εf(x)| dε + C

{∫ ∞

0

|(W (t, ·)f̂(·))v(x)|2t−1 dt

}1/2

,

where fv(x) is the Fourier inverse of f . By Proposition (3.1) we only
need to prove

J =

∥∥∥∥∥
{∫ ∞

0

|(W (t, ·)f̂(·))v(x)|2t−1 dt

}1/2
∥∥∥∥∥

2

≤ C‖b‖∞ ‖f‖2.

Using Plancherel’s Theorem, we have

J ≤ C

∥∥∥∥∥
{∫ ∞

0

|W (t, ·)|2t−1 dt

}1/2

f̂(·)
∥∥∥∥∥

2

.

So it suffices to show

(3.10) R(ξ) =
∫ ∞

0

|W (t, ξ)|2t−1 dt ≤ C‖b‖2
∞

with C independent of ξ, b(·) and a(·).
In fact,

R(ξ) ≤ C‖b‖2
∞

∫ ∞

0

∣∣∣∣
∫

Sn−1
a(y′)e−it〈ξ′,y′〉 dσ(y′)

∣∣∣∣
2

t−1 dt.

So using the same argument as in estimating (3.4), we have

R(ξ) ≤ C‖b‖2
∞

∫ ∞

0

∣∣∣∣
∫

R

Fa(s)e−its ds

∣∣∣∣
2

t−1 dt

= C‖b‖2
∞

{∫ ∞

1/r

t−1|F̂a(t)|2 dt

+
∫ 1/r

0

t−1

∣∣∣∣
∫

R

Fa(s){e−its − 1} ds
∣∣∣∣ dt

}

≤ C‖b‖2
∞{1 + r1/2‖F̂a‖2

4}
≤ C‖b‖2

∞{1 + r1/2‖Fa‖2
4/3} ≤ C‖b‖2

∞

where C is independent of all the essential variables and functions. The
proof of Theorem is complete.
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Proof of Theorem 2

To prove (1.8), using the atomic decomposition it suffices to show

(4.1)
∫

Rn

|x|−n

∣∣∣∣
∫

Sn−1
eiQ(|x|)〈x′,ξ′〉a(ξ′) dσ(ξ′)

∣∣∣∣ dx ≤ C

where C is independent of the atom a(·). By the polar coordinate, we
can see that the above integral (4.1) is equal to∫

Sn−1

∫ ∞

0

t−1

∣∣∣∣
∫

Sn−1
eiQ(t)〈x′,ξ′〉a(ξ′) dσ(ξ′)

∣∣∣∣ dt dσ(x′).

So similar to the proof in Theorem 1, by the method of rotation, the last
integral is equal to∫

Sn−1

∫ ∞

0

t−1

∣∣∣∣
∫

R

Fa(s)eisQ(t) ds

∣∣∣∣ dt dσ(x′)

where Fa is the function defined in Lemma 2.1 or Lemma 2.2, that de-
pends on x′ ∈ Sn−1. Now following the estimate of (3.4’), we easily
obtain that ∫ ∞

0

t−1

∣∣∣∣
∫

R

Fa(s)eiQ(t)s ds

∣∣∣∣ dt ≤ C

with the constant C independent of x′.
To prove the second part of Theorem 2, for simplicity, we only show

the case of n > 2. In this case, we do not need to use Lemma 2.2 to
estimate the Lq norm of Fa.

By the atomic decomposition of Ω ∈ Hp, it suffices to show

(4.2)
∫

Rn

|x|−1+(p−2)(n−1)

∣∣∣∣
∫

Sn−1
ei〈x,ξ′〉a(ξ′) dσ(ξ′)

∣∣∣∣
p

dt ≤ C,

where the constant C is independent of any (p,∞) atom a(·).
Using the polar coordinate and the method of rotation, we only need

to prove

(4.3) I =
∫ ∞

0

t(n−1)p−n

∣∣∣∣
∫

R

Fa(s)eits ds

∣∣∣∣
p

dt ≤ C.

Without loss of generality, we may assume supp(Fa) ⊆ (−r, r). Now we
write

I =

{∫ 1/r

0

+
∫ ∞

1/r

}
t(n−1)p−n

∣∣∣∣
∫

R

Fa(s)eits ds

∣∣∣∣
p

dt = I1 + I2.
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In I1, choosing an integer N > (1/p − 1)(n − 1) and using the condi-
tions (2.12) and (2.13), we have

∣∣∣∣
∫

R

Fa(s)eits ds

∣∣∣∣ ≤ C(tr)Nρ(1−1/p)(n−1).

Noting r ≤ Cρ, so we further have∣∣∣∣
∫

R

Fa(s)eits ds

∣∣∣∣ ≤ CtNrN+(1−1/p)(n−1).

Now it is easy to see that

I1 ≤ Crp{N+(n−1)(1−1/p)}
∫ 1/r

0

t−1tp{N+(1−1/p)(n−1)} dt ≤ C.

To estimate I2, by Hölder’s inequality,

I2 ≤ ‖F̂a‖p
2

(∫ ∞

1/r

t2(n−np+p)/(p−2) dt

)(2−p)/2

.

By (2.12) we have

‖F̂a‖p
2 ≤ C‖Fa‖p

2 ≤ Cr−1/2ρp(n−1)−(n−1).

So we easily obtain that I2 ≤ C since r ≤ Cρ. The theorem is proved.
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mates for Cesàro and Riesz means on sphere, Indiana Univ. Math.
J. 33(6) (1984), 873–889.

[CZ1] A. P. Calderón and A. Zygmund, On existence of certain
singular integrals, Acta Math. 88 (1952), 85–139.

[CZ2] A. P. Calderón and A. Zygmund, On singular integrals,
Amer. J. Math. 18 (1956), 289–309.



L2-boundedness of a singular integral operator 333

[DR] J. Duoandikoetxea and J. L. Rubio de Francia, Maxi-
mal and singular integral operators via Fourier transform estimates,
Invent. Math. 84 (1986), 541–561.

[Fa] D. Fan, Restriction theorems related to atoms, Illinois J. Math.
40 (1996), 13–20.

[Fe] R. Fefferman, A note on singular integrals, Proc. Amer. Math.
Soc. 74 (1979), 266–270.

[FP] D. Fan and Y. Pan, Oscillatory integral and atoms on the unit
sphere, Manuscripta Math. 89 (1996), 179–192.

[Na] J. Namazi, A singular integral, Ph. D. Thesis, Indiana Univer-
sity, Bloomington (1984).

[Pa] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev.
Mat. Iberoamericana 7(1) (1991), 55–64.

[St] E. M Stein, “Harmonic Analysis: Real-Variable Methods, Or-
thogonality and Oscillatory Integrals,” Princeton University Press,
Princeton, NJ, 1993.

Dashan Fan:
Dept. of Mathematical Sciences
University of Wisconsin-Milwaukee
Milwaukee, WI 53201
U.S.A.

e-mail: Fan@csd4.csd.uwm.edu

Yibiao Pan:
Dept. of Mathematics and Statistics
University of Pittsburgh
Pittsburgh, PA 15260
U.S.A.

e-mail: Yibiao@tomato.math.pitt.edu

Rebut el 31 de Juliol de 1995


