L^{2}-BOUNDEDNESS OF A SINGULAR INTEGRAL OPERATOR

Dashan Fan and Yibiao Pan*

Abstract

In this paper we study a singular integral operator T with rough kernel. This operator has singularity along sets of the form $\left\{x=Q(|y|) y^{\prime}\right\}$, where $Q(t)$ is a polynomial satisfying $Q(0)=0$. We prove that T is a bounded operator in the space $L^{2}\left(R^{n}\right), n \geq 2$, and this bound is independent of the coefficients of $Q(t)$.

We also obtain certain Hardy type inequalities related to this operator.

1. Introduction

Let S^{n-1} be the unit sphere in $\mathbb{R}^{n}, n \geq 2$, with normalized Lebesgue measure $d \sigma=d \sigma\left(x^{\prime}\right)$. Let $\Omega(x)|x|^{-n}$ be a homogeneous function of degree $-n$, with $\Omega \in L^{1}\left(S^{n-1}\right)$ and

$$
\begin{equation*}
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{1.1}
\end{equation*}
$$

where $x^{\prime}=x /|x|$ for any $x \neq 0$.
Suppose $b(|x|)$ is an L^{∞} function. We consider the distribution $K=$ p.v. $b(|x|) \Omega(x)|x|^{-n}$ and study the boundedness of the singular integral operator $T_{Q, b}(f)$ defined by

$$
\begin{equation*}
T_{Q, b}(f)(x)=\int_{\mathbb{R}^{n}} K(y) f\left(x-Q(|y|) y^{\prime}\right) d y \tag{1.2}
\end{equation*}
$$

where $y^{\prime}=y /|y| \in S^{n-1}$ and $Q(t)=\sum_{k=1}^{m} b_{k} t^{k}$ is a polynomial of degree m.

[^0]For the sake of simplicity, we denote $T_{Q, b}=T_{b}$ if $Q(t)=t$ and $T_{Q, b}=T$ if $Q(t)=t$ and $b(x) \equiv 1$.

The maximal operator $T_{b}^{*}(f)(x)$ now is defined by

$$
\begin{equation*}
T_{b}^{*}(f)(x)=\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} K(y) f(x-y) d y\right| \tag{1.3}
\end{equation*}
$$

The singular integral operator $T f$ was first studied by Calderón and Zygmund in their pioneering papers [CZ1] and [CZ2]. In [CZ2], Calderón and Zygmund proved that if $\Omega \in L \log ^{+} L\left(S^{n-1}\right)$ satisfies the mean zero condition (1.1) then the operator T with kernel $\Omega\left(x^{\prime}\right)|x|^{-n}$ is a bounded operator in $L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$. Below let us recall briefly the idea used in Calderón-Zygmund's proof.

Suppose that $\Omega \in L^{\prime}\left(S^{n-1}\right)$ is an odd function, then one can easily show that $T f(x)$ is equal to

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} f(x-y) \Omega\left(y^{\prime}\right)|y|^{-n} d y \tag{1.4}\\
&=\frac{1}{2} \int_{S^{n-1}} \Omega\left(y^{\prime}\right)\left\{\int_{-\infty}^{\infty} f\left(x-t y^{\prime}\right) t^{-1} d t\right\} d \sigma\left(y^{\prime}\right)
\end{align*}
$$

By the method of rotation and the well-known L^{p} boundedness of the Hilbert transform one then obtains the L^{p} boundedness of T under the weak condition $\Omega \in L^{1}\left(S^{n-1}\right)$.
For even kernels, the condition $\Omega \in L^{1}\left(S^{n-1}\right)$ is insufficient. It turns out the right condition is $\Omega \in L \log ^{+} L\left(S^{n-1}\right)$ (as far as the size of Ω is concerned). The idea of Calderón-Zygmund is to compose the operator T with the Riesz transform $R_{j}, 1 \leq j \leq n$, and show that $R_{j} T$ is a singular integral operator with an appropriate odd kernel. Thus $\left\|R_{j} T \psi\right\|_{p} \leq C_{p}\|\psi\|_{p}$ for all test functions $\psi \in \mathcal{L}$. Furthermore, one can obtain

$$
\begin{array}{r}
\|T \psi\|_{p}=\left\|\left(\sum_{j=1}^{n} R_{j}^{2}\right) T \psi\right\|_{p} \\
\leq \sum_{j=1}^{n}\left\|R_{j}\left(R_{j} T \psi\right)\right\|_{p} \leq n a_{p}\left\|R_{j} T \psi\right\|_{p} \leq n a_{p} C_{p}\|\psi\|_{p}
\end{array}
$$

for all $\psi \in \mathcal{L}$, since $\sum_{j=1}^{n} R_{j}^{2}$ is equal to the identity map.

In $[\mathbf{F e}]$, R. Fefferman generalized this Calderón-Zygmund singular integral by replacing the kernel $\Omega\left(x^{\prime}\right)|x|^{-n}$ by $b(|x|) \Omega\left(x^{\prime}\right)|x|^{-n}$, where b is an arbitrary L^{∞} function. This allows the kernel to be rough not only on the sphere, but also in the radial direction. For the singular integral opeator T_{b} with the kernel $K(x)=b(|x|) \Omega\left(x^{\prime}\right)|x|^{-n}$, the formula (1.4) now is

$$
T_{b} f(x)=\int_{S^{n-1}} \Omega\left(y^{\prime}\right)\left\{\int_{0}^{\infty} f\left(x-t y^{\prime}\right) b(t) t^{-1} d t\right\} d \sigma\left(y^{\prime}\right)
$$

Clearly, the method by Calderón and Zygmund can no longer be used to estimate the above integral in (1.4') even if Ω is odd, since the integral in the parenthesis can not be reduced to the Hilbert transform for an arbitrary $b(t)$. Thus one needs to find a new approach.

Using a method which is different from Calderón and Zygmund, in $[\mathbf{F e}]$ R. Fefferman showed that if Ω satisfies a Lipschitz condition then T_{b} is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$. J. Namazi [Na] improved Fefferman's theorem by using the assumption $\Omega \in L^{q}\left(S^{n-1}\right)$. The same L^{p} result was also obtained by L. Chen for the maximal operator T_{b}^{*} (see $[\mathbf{C h}]$). In $[\mathbf{F a}]$, one of the authors obtained the L^{2} boundedness for T_{b} under the significantly weaker condition $\Omega \in H^{1}\left(S^{n-1}\right)$, where $H^{1}\left(S^{n-1}\right)$ is the Hardy space on S^{n-1}. The condition $b \in L^{\infty}$ is also replaced by a weaker conditon

$$
\begin{equation*}
R^{-1} \int_{0}^{R}|b(\rho)|^{q} d \rho \leq A, \text { for all } R>0 \text { and some } q>1 \tag{1.5}
\end{equation*}
$$

(see also [St] or [DR]).
The definition of Hardy space will be reviewed in Section 2. But we should mention here that on S^{n-1}, it is well-known that for $q>1$,

$$
L^{q} \subseteq L \log ^{+} L \subseteq H^{1}\left(S^{n-1}\right) \subseteq L^{1}
$$

and all inclusions are proper.
The main purpose of this paper is to study the L^{2} boundedness for the more general singular integral operator $T_{Q, b}(f)$ defined in (1.2) as well as the maximal operator $T_{b}^{*}(f)$ with $\Omega \in H^{1}\left(S^{n-1}\right)$. In a forthcoming paper, we will study the L^{p} boundedness for another singular integral T_{Φ} that also takes T_{b} as a model case.

The following is the main theorem in this paper:
Theorem 1. Let $T_{Q, b}$ be the singular integral operator defined by (1.2) and T_{b}^{*} be the maximal operator defined in (1.3). If $\Omega \in H^{1}\left(S^{n-1}\right)$ satisfies (1.1) then both these two operators are bounded in $L^{2}\left(\mathbb{R}^{n}\right)$.

More precisely, we have

$$
\begin{align*}
\left\|T_{Q, b}(f)\right\|_{2} & \leq C\|b\|_{\infty}\|\Omega\|_{H^{1}\left(S^{n-1}\right)}\|f\|_{2} ; \tag{1.6}\\
\left\|T_{b}^{*}(f)\right\|_{2} & \leq C\|b\|_{\infty}\|\Omega\|_{H^{1}\left(S^{n-1}\right)}\|f\|_{2}, \tag{1.7}
\end{align*}
$$

where C is a constant independent of b, Ω, f and the coefficients of Q.
By the proof in Theorem 1, we can further obtain the following result:

Theorem 2 (Hardy-type inequalities).

(i) Let $Q(t)=\sum_{k=1}^{m} b_{k} t^{k}$ be a polynomial in \mathbb{R} and $\Omega \in H^{1}\left(S^{n-1}\right)$ satisfy the mean zero property (1.1). Then we have

$$
\begin{align*}
& \int_{\mathbb{R}^{n}}|x|^{-n}\left|\int_{S^{n-1}} e^{\left.i Q(|x|)\left\langle x^{\prime}, \xi^{\prime}\right\rangle\right)} \Omega\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right)\right| d x \tag{1.8}\\
& \leq C\|\Omega\|_{H^{1}\left(S^{n-1}\right)}
\end{align*}
$$

where C is a constant independent of Ω and the coefficients of Q.
(ii) If Ω is a distribution in the Hardy space $H^{p}\left(S^{n-1}\right), 0<p<1$, with property (1.1) then

$$
\begin{align*}
& \int_{\mathbb{R}^{n}}|x|^{(1-n)(2-p)-1}\left|\int_{S^{n-1}} e^{i\left\langle x, \xi^{\prime}\right\rangle} \Omega\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right)\right|^{p} d x \tag{1.9}\\
& \leq C_{p}\|\Omega\|_{H^{p}\left(S^{n-1}\right)}^{p}
\end{align*}
$$

where C is a constant independent of Ω.
Throughout this paper, the letter C will denote a positive constant that may vary at each occurrence but independent of the essential variables.

2. Definitions and Lemmas

Recall that the Poisson kernel on S^{n-1} is defined by

$$
P_{r y^{\prime}}\left(x^{\prime}\right)=\left(1-r^{2}\right) /\left|r y^{\prime}-x^{\prime}\right|^{n},
$$

where $0 \leq r<1$ and $x^{\prime}, y^{\prime} \in S^{n-1}$.
For any $f \in \mathcal{L}^{\prime}\left(S^{n-1}\right)$, we define the radial maximal function $P^{+} f\left(x^{\prime}\right)$ by

$$
P^{+} f\left(x^{\prime}\right)=\sup _{0 \leq r<1}\left|\int_{S^{n-1}} f\left(y^{\prime}\right) P_{r x^{\prime}}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|,
$$

where $\mathcal{L}^{\prime}\left(S^{n-1}\right)$ is the space of Schwartz distributions on S^{n-1}. The Hardy space $H^{p}\left(S^{n-1}\right), 0<p \leq 1$, is the linear space of distribution $f \in \mathcal{L}^{\prime}\left(S^{n-1}\right)$ with the finite norm $\|f\|_{H^{p}\left(S^{n-1}\right)}=\left\|P^{+} f\right\|_{L^{p}\left(S^{n-1}\right)}<\infty$. The space $H^{p}\left(S^{n-1}\right)$ was studied in $[\mathbf{C o}]$ (see also $[\mathbf{C T W}]$). In particular, it is known that

$$
H^{p}\left(S^{n-1}\right) \supseteq L^{1}\left(S^{n-1}\right) \supseteq H^{1}\left(S^{n-1}\right) \supseteq L \log ^{+} L\left(S^{n-1}\right) \supseteq L^{q}\left(S^{n-1}\right)
$$

for any $q>1>p>0$.
Another important property of $H^{p}\left(S^{n-1}\right)$ is the atomic decomposition, which will be reviewed below.
An exceptional atom is an L^{∞} function $E(x)$ satisfying $\|E\|_{\infty} \leq 1$. A regular (p, q) atom is an $L^{q}(1<q \leq \infty)$ function $a(\cdot)$ that satisfies

$$
\begin{align*}
& \operatorname{supp}(a) \subset\left\{x^{\prime} \in S^{n-1},\left|x^{\prime}-x_{0}^{\prime}\right|<\rho\right. \tag{2.1}\\
& \left.\qquad \text { for some } x_{0}^{\prime} \in S^{n-1} \text { and } \rho>0\right\}
\end{align*}
$$

$$
\begin{equation*}
\int_{S^{n-1}} a\left(\xi^{\prime}\right) Y\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right)=0 \tag{2.2}
\end{equation*}
$$

for any spherical harmonic polynomial with degree $\leq N$, where N is any fixed integer larger than $[(n-1)(1 / p-1)]$;

$$
\begin{equation*}
\|a\|_{q} \leq \rho^{(n-1)(1 / q-1 / p)} \tag{2.3}
\end{equation*}
$$

From [Co] or [CTW], we find that any $\Omega \in H^{p}\left(S^{n-1}\right)$ has an atomic decomposition $\Omega=\sum \lambda_{j} a_{j}$, where the a_{j} 's are either exceptional atoms or regular (p, q) atoms and $\sum\left|\lambda_{j}\right|^{p} \leq C\|\Omega\|_{H^{p}\left(S^{n-1}\right)}^{p}$. In particular, if $\Omega \in H^{p}\left(S^{n-1}\right)$ has the mean zero property (1.1) then all the atoms a_{j} in the atomic decomposition can be chosen to be regular (p, q) atoms.

In the rest of the paper, for any non-zero $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$, we write $\xi /|\xi|=\xi^{\prime}=\left(\xi_{1}^{\prime}, \ldots, \xi_{n}^{\prime}\right)=\left(\zeta_{1}, \ldots, \zeta_{n}\right)=\zeta$. Thus $\zeta \in S^{n-1}$. Also we use ζ_{*} to denote $\left(\zeta_{2}, \ldots, \zeta_{n}\right)$ and use ξ_{*} to denote $\left(\xi_{2}, \ldots, \xi_{n}\right)$.

The following lemma is essentially Proposition 2.5 in $[\mathbf{F P}]$.
Lemma 2.1. Suppose $n \geq 3$ and $a(\cdot)$ is a $(1, \infty)$ atom on S^{n-1} supported in $S^{n-1} \cap B(\zeta, \rho)$, where $B(\zeta, \rho)$ is the ball with radius ρ and center $\zeta=\xi^{\prime} \in S^{n-1}$. Let

$$
F_{a}(s)=\left(1-s^{2}\right)^{(n-3) / 2} \chi_{(-1,1)}(s) \int_{S^{n-2}} a\left(s,\left(1-s^{2}\right)^{1 / 2} \tilde{y}\right) d \sigma(\tilde{y})
$$

Then, up to a constant multiplier independent of $a(\cdot), F_{a}(s)$ is a $(1, \infty)$ atom on \mathbb{R}. More precisely, there are $s_{0} \in \mathbb{R}$ and a constant C which is independent of $a(\cdot)$ such that

$$
\begin{equation*}
\operatorname{supp}\left(F_{a}\right) \subseteq\left(s_{0}-2 r, s_{0}+2 r\right) ; \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\left\|F_{a}\right\|_{\infty} \leq C / r \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\mathbb{R}} F_{a}(s) d s=0 \tag{2.6}
\end{equation*}
$$

where $r=r\left(\xi^{\prime}\right)=|\xi|^{-1}\left|A_{\rho} \xi\right|$ and $A_{\rho} \xi=\left(\rho^{2} \xi_{1}, \rho \xi_{2}, \ldots, \rho \xi_{n}\right)$.
Proof: If $\rho<1 / 4$, the proof can be found in [FP]. Suppose $\rho \geq 1 / 4$, then, clearly $\operatorname{supp}\left(F_{a}\right) \subseteq(-1,1)$ and $\left\|F_{a}\right\|_{\infty} \leq C$. It is also easy to see that F_{a} satisfies (2.6).

Lemma 2.2. Suppose $n=2$ and that $a(\cdot)$ is a $(1, \infty)$ atom supported in $S^{1} \cap B(\zeta, \rho)$ and satisfies (2.1)-(2.3) with $p=1$. Let

$$
F_{a}(s)=\left(1-s^{2}\right)^{-1 / 2} \chi_{(-1,1)}(s)\left(a\left(s,\left(1-s^{2}\right)^{1 / 2}\right)+a\left(s,-\left(1-s^{2}\right)^{1 / 2}\right)\right)
$$

Then, up to a constant multiplier independent of $a(\cdot), F_{a}(s)$ is a $(1, q)$ atom on \mathbb{R}, where q is any fixed number in the interval $(1,2)$. The radius of $\operatorname{supp}\left(F_{a}\right)$ is equal to $r=r\left(\xi^{\prime}\right)=|\xi|^{-1}\left(\rho^{4} \xi_{1}^{2}+\rho^{2} \xi_{2}^{2}\right)^{1 / 2}$.

Proof: By the discussion in Lemma 2.1, without loss of generality, we may assume that $a(\cdot)$ is supported in $S^{n-1} \cap B(\zeta, \rho)$ with a sufficiently small ρ, where $\zeta \in S^{1}$. Let $\zeta=\left(\zeta_{1},\left(1-\zeta_{1}^{2}\right)^{1 / 2} \sigma\right)$ for $\sigma \in\{ \pm 1\}$. If $F_{a}(s) \neq 0$ then $\left.\left(s,(1-s)^{2}\right)^{1 / 2} \delta\right) \in B(\zeta, \rho)$ for some $\delta \in\{ \pm 1\}$. Therefore we have

$$
\left(s-\zeta_{1}\right)^{2}+\left\{\delta\left(1-s^{2}\right)^{1 / 2}-\sigma\left(1-\zeta_{1}^{2}\right)^{1 / 2}\right\}^{2}<\rho^{2} .
$$

Noting that either $\delta=\sigma$ or $\delta=-\sigma$, we easily see that

$$
\begin{equation*}
\left(s-\zeta_{1}\right)^{2}+\left|\left(1-s^{2}\right)^{1 / 2}-\left(1-\zeta_{1}^{2}\right)^{1 / 2}\right|^{2} \leq \rho^{2} \tag{2.7}
\end{equation*}
$$

which implies that

$$
\begin{align*}
\left|s-\zeta_{1}\right| & \leq \rho ; \tag{2.8}\\
\left|\left(1-s^{2}\right)^{1 / 2}-\left(1-\zeta_{1}^{2}\right)^{1 / 2}\right| & \leq \rho ;
\end{align*}
$$

and

$$
\begin{equation*}
\left|s-\zeta_{1}\right| \leq \rho^{2}+2 \rho\left(1-\zeta_{1}^{2}\right)^{1 / 2} \tag{2.10}
\end{equation*}
$$

Inequalities (2.8) and (2.9) follow from (2.7) trivially. To see (2.10) we shall consider the following two cases.

Case $A:\left|\zeta_{1}\right|>3 / 4$. Then by (2.8) and (2.9) we have

$$
\left|s+\zeta_{1}\right| \geq 2\left|\zeta_{1}\right|-\left|s-\zeta_{1}\right|>1
$$

and

$$
\begin{aligned}
\left|s-\zeta_{1}\right| \leq & \left|s^{2}-\zeta_{1}^{2}\right| \\
= & \left|\left(1-s^{2}\right)^{1 / 2}-\left(1-\zeta_{1}^{2}\right)^{1 / 2}\right| \\
& \left|2\left(1-\zeta_{1}^{2}\right)^{1 / 2}+\left(1-s^{2}\right)^{1 / 2}-\left(1-\zeta_{1}^{2}\right)^{1 / 2}\right| \\
\leq & \rho\left(\rho+2\left(1-\zeta_{1}^{2}\right)^{1 / 2}\right)=\rho^{2}+2 \rho\left(1-\zeta_{1}^{2}\right)^{1 / 2} .
\end{aligned}
$$

Case B : $\left|\zeta_{1}\right| \leq 3 / 4$. Then $\left(1-\zeta_{1}^{2}\right)^{1 / 2} \geq 1 / 2$. By (2.8) we find

$$
\left|s-\zeta_{1}\right| \leq \rho<\rho^{2}+2 \rho\left(1-\zeta_{1}^{2}\right)^{1 / 2}
$$

which proves (2.10).
Recalling $\xi^{\prime}=\zeta$, we easily see that in both Case A and Case B,

$$
\left|s-\zeta_{1}\right| \leq 2|\xi|^{-1}\left|A_{\rho} \xi\right|
$$

By letting $s_{0}=\zeta_{1}, r=r\left(\xi^{\prime}\right)=|\xi|^{-1}\left|A_{\rho} \xi\right|$, we see that (2.4) and (2.6) are satisfied.
It remains to show, for $1<q<2,\left\|F_{a}\right\|_{q} \leq C r^{-1+1 / q}$. To this end, we first assume that $\left(1-\zeta_{1}^{2}\right)^{1 / 2}>99 \rho$. By (2.9) we find

$$
\begin{equation*}
1 / 2\left(1-\zeta_{1}^{2}\right)^{1 / 2} \leq\left(1-s^{2}\right)^{1 / 2} \leq 2\left(1-\zeta_{1}^{2}\right)^{1 / 2} \tag{2.11}
\end{equation*}
$$

Thus by the definition of F_{a} we have $\left\|F_{a}\right\|_{\infty} \leq C \rho^{-1}\left(1-\zeta_{1}^{2}\right)^{-1 / 2} \leq C r^{-1}$. Now by the support condition (2.4) we have $\left\|F_{a}\right\|_{q} \leq C r^{-1+1 / q}$.

If $\left(1-\zeta_{1}^{2}\right)^{1 / 2}=\left|\zeta_{2}\right| \leq 99 \rho$, then by (2.9) we know $\left(1-s^{2}\right)^{1 / 2} \leq 100 \rho$.
So by the definition of F_{a} we have

$$
\left\|F_{a}\right\|_{q} \leq C \rho^{-1}\left\{\int_{1-s^{2} \leq 10000 \rho^{2}}\left|1-s^{2}\right|^{-q / 2} d s\right\}^{1 / q}
$$

Noting that we can assume that ρ is sufficiently small so that $10000 \rho^{2} \leq$ $1 / 16$, thus we easily show $\left\|F_{a}\right\|_{q} \leq C \rho^{2(-1+1 / q)} \leq C\left(\rho^{2}\left|\zeta_{1}\right|+\rho\left|\zeta_{2}\right|\right)^{-1+1 / q} \leq$ $\mathrm{Cr}^{-1+1 / q}$. Lemmma 2.2 is proved.

Remarks.

1. Let $a(\cdot)$ be a (p, ∞) atom with support in a ball of radius ρ and let F_{a} be defined in Lemma 2.1. Since $\rho^{(1 / p-1)(n-1)} a(\cdot)$ is a $(1, \infty)$ atom, by Lemma 2.1 we have

$$
\begin{equation*}
\left\|F_{a}\right\|_{\infty} \leq r^{-1} \rho^{(1-1 / p)(n-1)} . \tag{2.12}
\end{equation*}
$$

2. Since any spherical harmonic polynomial is the restriction to S^{n-1} of a polynomial in \mathbb{R}^{n}, from the condition (2.2) for $a(\cdot)$ we easily see

$$
\begin{equation*}
\int_{\mathbb{R}} F_{a}(s) s^{k} d s=0 \text { for any integer } k \in[0, N] \tag{2.13}
\end{equation*}
$$

where N is an integer larger than $[(n-1)(1 / p-1)]$.

3. Proof of Theorem 1

We first prove (1.6) in Theorem 1. By Fubini's Theorem we easily see that the Fourier transform of $T_{Q, b}(f)$ is equal to $\hat{f}(\xi) \tilde{K}_{\Omega}(\xi)$, where

$$
\begin{equation*}
\tilde{K}_{\Omega}(\xi)=\int_{\mathbb{R}^{n}}|y|^{-n} b(|y|) \Omega\left(y^{\prime}\right) e^{-i Q(|y|)|\xi|\left\langle y^{\prime}, \xi^{\prime}\right\rangle} d y \tag{3.1}
\end{equation*}
$$

By Plancherel's Theorem, we only need to prove that

$$
\begin{equation*}
\left\|\tilde{K}_{\Omega}\right\|_{\infty} \leq C\|b\|_{\infty}\|\Omega\|_{H^{1}\left(S^{n-1}\right)} \tag{3.2}
\end{equation*}
$$

Since $\Omega \in H^{1}\left(S^{n-1}\right)$ satisfies the mean zero property (1.1), we can write $\Omega=\sum \lambda_{j} a_{j}$, where $\sum\left|\lambda_{j}\right| \leq C\|\Omega\|_{H^{1}\left(S^{n-1}\right)}$ and each a_{j} is a $(1, \infty)$ atom. Therefore to prove (3.2), it suffices to show

$$
\begin{equation*}
\left\|\tilde{K}_{a_{j}}\right\|_{\infty} \leq C\|b\|_{\infty} \tag{3.3}
\end{equation*}
$$

for any atom $a_{j}=a$, where C is independent of the coefficients of Q and the atom $a(\cdot)$. By the method of rotation, we can assume $x^{\prime}=$ $(1,0, \ldots, 0)$. Let $y^{\prime}=\left(s, y_{2}, y_{3}, \ldots, y_{n}\right)$. Then it is easy to see that

$$
\begin{equation*}
\tilde{K}_{a}(x)=\int_{0}^{\infty} b(t) t^{-1} \int_{\mathbb{R}} F_{a}(s) e^{-i Q(t)|x| s} d s d t \tag{3.4}
\end{equation*}
$$

where $F_{a}(s)$ is the function defined in Lemma 2.1 or Lemma 2.2. By Lemma 2.1 and Lemma 2.2, without loss of generality, we may assume that F_{a} is a $(1, q)$ atom with support in $(-r, r)$ for $1<q<2$. Thus $A(\cdot)=r F_{a}(r \cdot)$ is a $(1, q)$ atom with support in the interval $(-1,1)$.
For the polynomial

$$
Q(t)|x|=\sum_{k=1}^{m}|x| b_{k} t^{k} \text { with } b_{m} \neq 0
$$

we let

$$
\beta_{k}=\left(|x| r b_{k}\right) \text { and } \tilde{Q}(t)=-\sum_{k=1}^{m} \beta_{k} t^{k}
$$

Then after changing variables we have

$$
\begin{equation*}
\tilde{K}_{a}(x)=\int_{0}^{\infty} t^{-1} b(t) \int_{\mathbb{R}} A(s) e^{i \tilde{Q}(t) s} d s d t \tag{3.4'}
\end{equation*}
$$

Let $\left|\beta_{\kappa}\right|^{1 / \kappa}=\max \left\{\left|\beta_{k}\right|^{1 / k}, k=1,2, \ldots, m\right\}$ and $\beta=\left|\beta_{\kappa}\right|^{-1 / \kappa}$.
Then $\tilde{K}_{a}(x)$ is bounded by

$$
\begin{aligned}
& \|b\|_{\infty} \int_{0}^{\beta}\left|\int_{\mathbb{R}} A(s)\left\{e^{i \tilde{Q}(t) s}-1\right\} d s\right| t^{-1} d t \\
& \quad+\|b\|_{\infty} \int_{\beta}^{\infty} t^{-1}\left|\int_{\mathbb{R}} A(s) e^{i \tilde{Q}(t) s} d s\right| d t=I_{1}+I_{2}
\end{aligned}
$$

By the choice of β, it is easy to see that I_{1} is bounded by

$$
C\|b\|_{\infty} \sum_{k=1}^{m}\left|\beta_{k}\right| \int_{0}^{\beta} t^{-1+k} d t \leq C\|b\|_{\infty}
$$

where C is independent of β_{k} 's.
To estimate I_{2}, we let $R_{j}=\left[2^{j}, 2^{j+1}\right)$ for any integer j and let $\Psi \in$ $C^{\infty}(\mathbb{R})$ satisfy

$$
\begin{aligned}
\Psi(t) \equiv 1 & \text { for }|t| \leq 1 \\
\Psi \equiv 0 & \text { for }|t| \geq 2
\end{aligned}
$$

Define T_{j} by

$$
\left(T_{j} f\right)(t)=\chi_{R_{j}}(t) \int_{\mathbb{R}} e^{i s \tilde{Q}(t)} \Psi(s) f(s) d s
$$

From the estimate on page 60 in $[\mathbf{P a}]$, we can find an $N>0$ such that

$$
\left\|T_{j}\right\|_{L^{2} \rightarrow L^{2}} \leq C 2^{j / 2}\left|\beta_{\kappa}\right|^{-1 / 2 N} 2^{-j \kappa / 2 N}
$$

By the trivial estimate $\left\|T_{j}\right\|_{L^{1} \rightarrow L^{\infty}} \leq C$ and interpolation we now have

$$
\begin{equation*}
\left\|T_{j}\right\|_{L^{p} \rightarrow L^{q}} \leq C 2^{j / q}\left|\beta_{\kappa}\right|^{-1 / q N} 2^{-j \kappa / q N} \tag{3.5}
\end{equation*}
$$

where $1 / p+1 / q=1$ and $q \geq 2$.
Choosing an integer J such that $2^{J} \leq \beta<2^{J+1}$, then, we have

$$
\begin{aligned}
I_{2} & \leq\|b\|_{\infty} \int_{\beta}^{\infty} t^{-1}\left|\int_{\mathbb{R}} A(s) e^{i \tilde{Q}(t) s} d s\right| d t \\
& \leq C\|b\|_{\infty} \sum_{j \geq J} \int_{2^{j}}^{2^{j+1}} t^{-1}\left|T_{j}(A)(t)\right| d t \\
& \leq C\|b\|_{\infty} \sum_{j \geq J}\left\{\int_{2^{j}}^{2^{j+1}} t^{-p} d t\right\}^{1 / p}\left\|T_{j}(A)\right\|_{L^{q}}
\end{aligned}
$$

Thus by (3.5) we have

$$
I_{2} \leq C\|b\|_{\infty} \sum_{j \geq J} 2^{-j / q} 2^{j / q}\|A\|_{L^{p}} 2^{-j \kappa / q N}\left|\beta_{\kappa}\right|^{-1 / q N} \leq C\|b\|_{\infty}
$$

because $2^{J} \geq(1 / 2)\left|\beta_{\kappa}\right|^{-1 / \kappa}$.
The first part in Theorem 1 is proved.
To prove (1.7) in Theorem 1, we notice that

$$
\begin{aligned}
& T_{b}^{*} f(x)=\left.\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} b(|y|)\right| y\right|^{-n} \Omega\left(y^{\prime}\right) f(x-y) d y \mid \\
& \quad \leq\left.\sum\left|\lambda_{j}\right| \sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} b(|y|)\right| y\right|^{-n} a_{j}\left(y^{\prime}\right) f(x-y) d y \mid
\end{aligned}
$$

where $\sum\left|\lambda_{j}\right| \leq C\|\Omega\|_{H^{1}\left(S^{n-1}\right)}$ and all a_{j} 's are $(1, \infty)$ atoms.
So it suffices to show that for any $(1, \infty)$ atom $a(\cdot)$ on S^{n-1}

$$
\begin{equation*}
\left\|\left.\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} b(|y|)\right| y\right|^{-n} a\left(y^{\prime}\right) f(\cdot-y) d y \mid\right\|_{2} \leq C\|b\|_{\infty}\|f\|_{2} \tag{3.6}
\end{equation*}
$$

with a constant C independent of b, f and $a(\cdot)$. Without loss of generality, we may assume $\operatorname{supp} a(\cdot) \subseteq B(\mathbf{l}, \rho) \cap S^{n-1}$ where $\mathbf{l}=(1,0, \ldots, 0)$.

In order to prove (3.6) we need to prove the following:

Proposition 3.1. Suppose that $b \in L^{\infty}$ and $a(\cdot)$ is a $(1, \infty)$ atom supported in $B(\mathbf{l}, \rho) \cap S^{n-1}$. For $\varepsilon>0$, let

$$
T_{b, \varepsilon} f(x)=\left(a(\cdot) b(|\cdot|)|\cdot|^{-n} \chi_{\{|y|>\varepsilon\}}(\cdot) * f\right)(x)
$$

We have

$$
\begin{equation*}
\left\|\sup _{0<s<\infty} \frac{1}{s} \int_{0}^{s}\left|T_{b, \varepsilon} f(\cdot)\right| d \varepsilon\right\|_{2} \leq C\|b\|_{\infty}\|f\|_{2} \tag{3.7}
\end{equation*}
$$

where C is independent of b, f and $a(\cdot)$.
Proof: The Fourier transform of $T_{b, \varepsilon} f$ is $m_{\varepsilon}(\xi) \hat{f}(\xi)$, where

$$
m_{\varepsilon}(\xi)=\int_{\varepsilon}^{\infty} b(t) t^{-1} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t
$$

For each fixed $\xi \neq 0$, we choose a rotation O such that $O(\xi)=|\xi| \mathbf{l}$. Thus

$$
m_{\varepsilon}(\xi)=\int_{\varepsilon}^{\infty} b(t) t^{-1} \int_{S^{n-1}} a\left(O^{-1}\left(y^{\prime}\right)\right) e^{-i t|\xi|\left\langle\mathbf{1}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t
$$

Now $a\left(O^{-1}\left(y^{\prime}\right)\right)$ is an atom supported in $B(\zeta, \rho) \cap S^{n-1}$ so that

$$
m_{\varepsilon}(\xi)=\int_{\varepsilon}^{\infty} b(t) t^{-1} \int_{\mathbb{R}} F_{a}(s) e^{-i t|\xi| s} d s d t
$$

where F_{a} is the function as in Lemma 2.1 if $n>2$ and in Lemma 2.2 if $n=2$. Without loss of generality, we assume $\operatorname{supp}\left(F_{a}\right) \subseteq(-r, r)$.

For the above $r=r\left(\xi^{\prime}\right)$, we take a radial function $\Phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that its Fourier transform $\hat{\Phi}$ satisfies $\hat{\Phi}(\xi)=1$ if $|\xi| \leq 1$ and $\hat{\Phi}(\xi)=0$ if $|\xi|>2$ and define Φ_{ε} by $\hat{\Phi}_{\varepsilon}(\xi)=\hat{\Phi}\left(\varepsilon r\left(\xi^{\prime}\right)|\xi|\right)$. It is easy to see that the maximal function $\Phi^{*}(f)=\sup _{\varepsilon>0}\left|\Phi_{\varepsilon} * f\right|$ is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$. Now we define a g-function

$$
g(f)(x)=\left\{\int_{0}^{\infty}\left|T_{b, \varepsilon} f(x)-\Phi_{\varepsilon} * T_{b} f(x)\right|^{2} \varepsilon^{-1} d \varepsilon\right\}^{1 / 2}
$$

Then

$$
\frac{1}{s} \int_{0}^{s}\left|T_{b, \varepsilon} f(x)\right| d \varepsilon \leq g(f)(x)+\frac{1}{s} \int_{0}^{s}\left|\Phi_{\varepsilon} * T_{b} f(x)\right| d \varepsilon
$$

Thus

$$
\sup _{\varepsilon>0} \frac{1}{s} \int_{0}^{s}\left|T_{b, \varepsilon} f(x)\right| d \varepsilon \leq g(f)(x)+\Phi^{*}\left(T_{b} f\right)(x)
$$

By (1.6) we have

$$
\left\|\Phi^{*}\left(T_{b} f\right)\right\|_{2} \leq C\left\|T_{b} f\right\|_{2} \leq C\|b\|_{\infty}\|f\|_{2}
$$

So it remains to show

$$
\begin{equation*}
\|g(f)\|_{2} \leq C\|b\|_{\infty}\|f\|_{2} \tag{3.8}
\end{equation*}
$$

By Plancherel's Theorem we know that

$$
\|g(f)\|_{2}^{2}=C \int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left|m_{\varepsilon}(\xi)-\hat{\Phi}(\varepsilon r|\xi|) m_{0}(\xi)\right|^{2}|\hat{f}(\xi)|^{2} \varepsilon^{-1} d \varepsilon d \xi
$$

So we only need show

$$
\begin{equation*}
\int_{0}^{\infty}\left|m_{\varepsilon}(\xi)-\hat{\Phi}\left(\varepsilon r\left(\xi^{\prime}\right)|\xi|\right) m_{0}(\xi)\right|^{2} \varepsilon^{-1} d \varepsilon \leq C\|b\|_{\infty}^{2} \tag{3.9}
\end{equation*}
$$

where C is a constant independent of b, ξ and r.
By the definition of m_{ε} and changing of variables we have

$$
\begin{aligned}
& \int_{0}^{\infty}\left|m_{\varepsilon}(\xi)-\hat{\Phi}(\varepsilon r|\xi|) m_{0}(\xi)\right|^{2} \varepsilon^{-1} d \varepsilon \\
& \quad=C \int_{0}^{\infty} \mid \int_{\varepsilon|\xi|}^{\infty} b(t /|\xi|) t^{-1} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t \\
& -\left.\hat{\Phi}(\varepsilon r|\xi|) \int_{0}^{\infty} b(t /|\xi|) t^{-1} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t\right|^{2} \varepsilon^{-1} d \varepsilon \\
& \quad=C \int_{0}^{\infty} \mid \int_{\varepsilon}^{\infty} b(t /|\xi|) t^{-1} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t \\
& -\left.\hat{\Phi}(r \varepsilon) \int_{0}^{\infty} b(t /|\xi|) t^{-1} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t\right|^{2} \varepsilon^{-1} d \varepsilon \\
& \leq C \int_{0}^{1 / r}\left|\int_{0}^{\varepsilon} b(t /|\xi|) t^{-1} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t\right|^{2} \varepsilon^{-1} d \varepsilon \\
& +C\|b\|_{\infty}^{2} \int_{1 / r}^{2 / r} \varepsilon^{-1} d \varepsilon\left\{\int_{0}^{\infty} t^{-1}\left|\int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right)\right| d t\right\}^{2} \\
& +C \int_{2 / r}^{\infty}\left|\int_{\varepsilon}^{\infty} b(t /|\xi|) t^{-1} \int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) d t\right|^{2} \varepsilon^{-1} d \varepsilon \\
& =I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Using the method of rotation again and the cancellation condition of F_{a} we have

$$
\begin{aligned}
& I_{1} \leq C\|b\|_{\infty}^{2} \int_{0}^{1 / r}\left|\int_{0}^{\varepsilon} t^{-1}\right| \int_{\mathbb{R}} F_{a}(s)\left\{e^{-i t s}-1\right\} d s|d t|^{2} \varepsilon^{-1} d \varepsilon \\
& \leq C\|b\|_{\infty}^{2} \int_{0}^{1 / r} r^{2} \varepsilon d \varepsilon=C\|b\|_{\infty}^{2}
\end{aligned}
$$

$$
\begin{aligned}
I_{2} \leq C\|b\|_{\infty}^{2}\left\{\int_{0}^{\infty} t^{-1} \mid\right. & \left.\int_{\mathbb{R}} F_{a}(s) e^{-i t s} d s \mid d t\right\}^{2} \\
& \leq C\|b\|_{\infty}^{2}\left\{\int_{0}^{\infty} t^{-1}\left|\hat{F}_{a}(t)\right| d t\right\}^{2} \leq C\|b\|_{\infty}^{2}
\end{aligned}
$$

The last inequality is the classical Hardy inequality (page 128 in [$\mathbf{S t}]$), since F_{a} is an atom on \mathbb{R}

$$
\begin{aligned}
I_{3} & \leq C\|b\|_{\infty}^{2} \int_{2 / r}^{\infty}\left\{\int_{\varepsilon}^{\infty}\left|t^{-1} \hat{F}_{a}(t)\right| d t\right\}^{2} \varepsilon^{-1} d \varepsilon \\
& \leq C\|b\|_{\infty}^{2} \int_{2 / r}^{\infty}\left\{\int_{\varepsilon}^{\infty} t^{-p} d t\right\}^{2 / p} \varepsilon^{-1} d \varepsilon\left\|\hat{F}_{a}\right\|_{q}^{2}
\end{aligned}
$$

Thus by the Hausdorff-Young inequality we have

$$
I_{3} \leq C\|b\|_{\infty}^{2} r^{2-2 / p}\left\|F_{a}\right\|_{p}^{2} \leq C\|b\|_{\infty}^{2}
$$

Clearly the constant C in the above estimates is independent of the essential variables and functions. The proposition is proved.
Now we return to prove (3.6). Let

$$
W(t, \xi)=\int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t|\xi|\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right) b(t)
$$

Then

$$
m_{\varepsilon}(\xi)=C \int_{\varepsilon}^{\infty} W(t, \xi) t^{-1} d t
$$

Thus

$$
\begin{aligned}
\frac{1}{s} \int_{0}^{s} m_{\varepsilon}(\xi) d \varepsilon= & C \frac{1}{s} \int_{0}^{s} \int_{\varepsilon}^{\infty} W(t, \xi) t^{-1} d t d \varepsilon \\
= & \frac{C}{s}\left\{\int_{0}^{s}\left(\int_{0}^{t} W(t, \xi) d \varepsilon\right) t^{-1} d t\right. \\
& \left.+\int_{0}^{s} \int_{s}^{\infty} W(t, \xi) t^{-1} d t d \varepsilon\right\} \\
= & \frac{C}{s} \int_{0}^{s} W(t, \xi) d t+C m_{s}(\xi)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sup _{\varepsilon>0}\left|T_{b, \varepsilon} f(x)\right| \\
& \quad \leq \sup _{s>0} \frac{1}{s} \int_{0}^{s}\left|T_{b, \varepsilon} f(x)\right| d \varepsilon+C\left\{\int_{0}^{\infty}\left|(W(t, \cdot) \hat{f}(\cdot))^{v}(x)\right|^{2} t^{-1} d t\right\}^{1 / 2}
\end{aligned}
$$

where $f^{v}(x)$ is the Fourier inverse of f. By Proposition (3.1) we only need to prove

$$
J=\left\|\left\{\int_{0}^{\infty}\left|(W(t, \cdot) \hat{f}(\cdot))^{v}(x)\right|^{2} t^{-1} d t\right\}^{1 / 2}\right\|_{2} \leq C\|b\|_{\infty}\|f\|_{2}
$$

Using Plancherel's Theorem, we have

$$
J \leq C\left\|\left\{\int_{0}^{\infty}|W(t, \cdot)|^{2} t^{-1} d t\right\}^{1 / 2} \hat{f}(\cdot)\right\|_{2}
$$

So it suffices to show

$$
\begin{equation*}
R(\xi)=\int_{0}^{\infty}|W(t, \xi)|^{2} t^{-1} d t \leq C\|b\|_{\infty}^{2} \tag{3.10}
\end{equation*}
$$

with C independent of $\xi, b(\cdot)$ and $a(\cdot)$.
In fact,

$$
R(\xi) \leq C\|b\|_{\infty}^{2} \int_{0}^{\infty}\left|\int_{S^{n-1}} a\left(y^{\prime}\right) e^{-i t\left\langle\xi^{\prime}, y^{\prime}\right\rangle} d \sigma\left(y^{\prime}\right)\right|^{2} t^{-1} d t
$$

So using the same argument as in estimating (3.4), we have

$$
\begin{aligned}
R(\xi) \leq & C\|b\|_{\infty}^{2} \int_{0}^{\infty}\left|\int_{\mathbb{R}} F_{a}(s) e^{-i t s} d s\right|^{2} t^{-1} d t \\
= & C\|b\|_{\infty}^{2}\left\{\int_{1 / r}^{\infty} t^{-1}\left|\hat{F}_{a}(t)\right|^{2} d t\right. \\
& \left.+\int_{0}^{1 / r} t^{-1}\left|\int_{\mathbb{R}} F_{a}(s)\left\{e^{-i t s}-1\right\} d s\right| d t\right\} \\
\leq & C\|b\|_{\infty}^{2}\left\{1+r^{1 / 2}\left\|\hat{F}_{a}\right\|_{4}^{2}\right\} \\
\leq & C\|b\|_{\infty}^{2}\left\{1+r^{1 / 2}\left\|F_{a}\right\|_{4 / 3}^{2}\right\} \leq C\|b\|_{\infty}^{2}
\end{aligned}
$$

where C is independent of all the essential variables and functions. The proof of Theorem is complete.

Proof of Theorem 2

To prove (1.8), using the atomic decomposition it suffices to show

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|x|^{-n}\left|\int_{S^{n-1}} e^{i Q(|x|)\left\langle x^{\prime}, \xi^{\prime}\right\rangle} a\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right)\right| d x \leq C \tag{4.1}
\end{equation*}
$$

where C is independent of the atom $a(\cdot)$. By the polar coordinate, we can see that the above integral (4.1) is equal to

$$
\int_{S^{n-1}} \int_{0}^{\infty} t^{-1}\left|\int_{S^{n-1}} e^{i Q(t)\left\langle x^{\prime}, \xi^{\prime}\right\rangle} a\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right)\right| d t d \sigma\left(x^{\prime}\right)
$$

So similar to the proof in Theorem 1, by the method of rotation, the last integral is equal to

$$
\int_{S^{n-1}} \int_{0}^{\infty} t^{-1}\left|\int_{\mathbb{R}} F_{a}(s) e^{i s Q(t)} d s\right| d t d \sigma\left(x^{\prime}\right)
$$

where F_{a} is the function defined in Lemma 2.1 or Lemma 2.2, that depends on $x^{\prime} \in S^{n-1}$. Now following the estimate of (3.4'), we easily obtain that

$$
\int_{0}^{\infty} t^{-1}\left|\int_{\mathbb{R}} F_{a}(s) e^{i Q(t) s} d s\right| d t \leq C
$$

with the constant C independent of x^{\prime}.
To prove the second part of Theorem 2, for simplicity, we only show the case of $n>2$. In this case, we do not need to use Lemma 2.2 to estimate the L^{q} norm of F_{a}.

By the atomic decomposition of $\Omega \in H^{p}$, it suffices to show

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|x|^{-1+(p-2)(n-1)}\left|\int_{S^{n-1}} e^{i\left\langle x, \xi^{\prime}\right\rangle} a\left(\xi^{\prime}\right) d \sigma\left(\xi^{\prime}\right)\right|^{p} d t \leq C \tag{4.2}
\end{equation*}
$$

where the constant C is independent of any (p, ∞) atom $a(\cdot)$.
Using the polar coordinate and the method of rotation, we only need to prove

$$
\begin{equation*}
I=\int_{0}^{\infty} t^{(n-1) p-n}\left|\int_{\mathbb{R}} F_{a}(s) e^{i t s} d s\right|^{p} d t \leq C \tag{4.3}
\end{equation*}
$$

Without loss of generality, we may assume $\operatorname{supp}\left(F_{a}\right) \subseteq(-r, r)$. Now we write

$$
I=\left\{\int_{0}^{1 / r}+\int_{1 / r}^{\infty}\right\} t^{(n-1) p-n}\left|\int_{\mathbb{R}} F_{a}(s) e^{i t s} d s\right|^{p} d t=I_{1}+I_{2}
$$

In I_{1}, choosing an integer $N>(1 / p-1)(n-1)$ and using the conditions (2.12) and (2.13), we have

$$
\left|\int_{\mathbb{R}} F_{a}(s) e^{i t s} d s\right| \leq C(t r)^{N} \rho^{(1-1 / p)(n-1)} .
$$

Noting $r \leq C \rho$, so we further have

$$
\left|\int_{\mathbb{R}} F_{a}(s) e^{i t s} d s\right| \leq C t^{N} r^{N+(1-1 / p)(n-1)}
$$

Now it is easy to see that

$$
I_{1} \leq C r^{p\{N+(n-1)(1-1 / p)\}} \int_{0}^{1 / r} t^{-1} t^{p\{N+(1-1 / p)(n-1)\}} d t \leq C
$$

To estimate I_{2}, by Hölder's inequality,

$$
I_{2} \leq\left\|\hat{F}_{a}\right\|_{2}^{p}\left(\int_{1 / r}^{\infty} t^{2(n-n p+p) /(p-2)} d t\right)^{(2-p) / 2}
$$

By (2.12) we have

$$
\left\|\hat{F}_{a}\right\|_{2}^{p} \leq C\left\|F_{a}\right\|_{2}^{p} \leq C r^{-1 / 2} \rho^{p(n-1)-(n-1)} .
$$

So we easily obtain that $I_{2} \leq C$ since $r \leq C \rho$. The theorem is proved.

References

[Ch] L. Chen, On a singular integral, Studia Math. TLXXXV (1987), 61-72.
[Co] L. Colzani, Hardy spaces on sphere, Ph. D. Thesis, Washington University, St. Louis (1982).
[CTW] L. Colzani, M. Taibleson and G. Weiss, Maximal estimates for Cesàro and Riesz means on sphere, Indiana Univ. Math. J. 33(6) (1984), 873-889.
[CZ1] A. P. Calderón and A. Zygmund, On existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[CZ2] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 18 (1956), 289-309.
[DR] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[Fa] D. FAn, Restriction theorems related to atoms, Illinois J. Math. 40 (1996), 13-20.
[Fe] R. Fefferman, A note on singular integrals, Proc. Amer. Math. Soc. 74 (1979), 266-270.
[FP] D. Fan and Y. Pan, Oscillatory integral and atoms on the unit sphere, Manuscripta Math. 89 (1996), 179-192.
[Na] J. NAMAZI, A singular integral, Ph. D. Thesis, Indiana University, Bloomington (1984).
[Pa] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7(1) (1991), 55-64.
[St] E. M Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals," Princeton University Press, Princeton, NJ, 1993.
Dashan Fan:
Dept. of Mathematical Sciences
University of Wisconsin-Milwaukee
Milwaukee, WI 53201
U.S.A.
e-mail: Fan@csd4.csd.uwm.edu

Yibiao Pan:
Dept. of Mathematics and Statistics
University of Pittsburgh
Pittsburgh, PA 15260
U.S.A.
e-mail: Yibiao@tomato.math.pitt.edu

[^0]: *Supported in part by a grant from the National Science Foundation.

