
https://doi.org/10.1007/s10846-017-0748-6

L* Algorithm—A Linear Computational Complexity Graph Searching
Algorithm for Path Planning

Adam Niewola1 · Leszek Podsȩdkowski1

Received: 13 May 2017 / Accepted: 22 November 2017

© The Author(s) 2017. This article is an open access publication

Abstract

The state-of-the-art graph searching algorithm applied to the optimal global path planning problem for mobile robots is

the A* algorithm with the heap structured open list. In this paper, we present a novel algorithm, called the L* algorithm,

which can be applied to global path planning and is faster than the A* algorithm. The structure of the open list with the

use of bidirectional sublists (buckets) ensures the linear computational complexity of the L* algorithm because the nodes in

the current bucket can be processed in any sequence and it is not necessary to sort the bucket. Our approach can maintain

the optimality and linear computational complexity with the use of the cost expressed by floating-point numbers. The paper

presents the requirements of the L* algorithm use and the proof of the admissibility of this algorithm. The experiments

confirmed that the L* algorithm is faster than the A* algorithm in various path planning scenarios. We also introduced a

method of estimating the execution time of the A* and the L* algorithm. The method was compared with the experimental

results.

Keywords Computational complexity · Graph searching · A* Algorithm · Shortest path planning · Bucket priority queue

1 Introduction

The graph searching algorithms are used for various

applications. One of them is the mobile robot optimal

path planning. The optimal1 path planning problem has

been widely investigated in the last 50 years. Many path

planning methods for collision-free optimal path finding

were discovered and developed. They can be divided into

two main groups:

• roadmap methods (e.g., Voronoi diagrams [23], visibil-

ity graphs [22], probabilistic roadmaps [24]),

1For the most of the path planning methods, the optimal path means

the shortest path. In this paper, the experimental work presents the

solutions of the shortest path planning problem on 2D grid type maps

as well as the optimal path planning problem with respect to applied

optimization criteria.

� Adam Niewola

adam.niewola@gmail.com

Leszek Pods ¸edkowski

lpodsedk@p.lodz.pl

1 Institute of Machine, Tools and Production Engineering,

Łódź University of Technology, Łódź, Poland

• potential methods (e.g., potential fields [10]).

The main focus of interest of this paper is the global path

planning problem. It can be defined as a process of finding

an ordered set of intermediate points connecting the start

point and the goal point. Each point of this set must be

located in the free configuration space of the mobile robot.

One of the most popular graph searching algorithms

is the A* algorithm. It was presented by Nilsson, Hart,

and Raphael in 1968 [8]. It was widely investigated and

commonly used for developing new modified methods of

mobile robot path planning. In this paper, our algorithm will

be compared with the best version of the A* algorithm (with

the heap structured open list).

For comparison of various algorithms, the notion of the

computational complexity is used [1]. It says how fast the

number of the basic operations of the algorithm increases

with the growth of the input of the algorithm. The space

complexity says how fast the memory resources increase

with the increase of the input of the algorithm.

In this paper, we present a new method of graph

searching, in particular, applied to the path planning

problem. It is a modification of the A* algorithm. The

L* algorithm uses a modified heuristic cost function and

a modified open list based on the bucket structure. It is

Journal of Intelligent & Robotic Systems (2018) 91:425–444

/ Published online: December 201711

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-017-0748-6&domain=pdf
mailto:adam.niewola@gmail.com
mailto:lpodsedk@p.lodz.pl


not necessary to maintain each bucket sorted. The proposed

algorithm has a linear computational complexity. For this

reason, it is called the L* algorithm. We present this graph

searching algorithm in the path planning on a 2D occupancy

grid map as a leading example. This approach was widely

used in other works concerning path planning for the

holonomic mobile robots which have the 2D configuration

space, e.g., [9, 13, 19]. It is usually assumed that a

mobile robot can move to one of four or eight neighboring

cells. However, the same algorithms of graph searching

can be used for the nonholonomic mobile robots with

3D configuration space (position x, position y, orientation

o) [16]. This paper also presents the admissibility of the

L* algorithm and shows our method of estimation of

the execution time of both L* and A* graph searching

algorithms. The main purpose of the paper is a presentation

of the properties of the L* algorithm.

The rest of this paper is organized as follows: in

Section 2 the problem is formulated. The most popular

graph searching methods are described in Section 3.

Section 4 presents the modification of the A* algorithm—

the L* algorithm with the restrictions for its use. Section 5

presents the properties of the L* algorithm with its most

significant advantage—linear computational complexity.

Section 6 contains the results of the simulation tests of the

path planning with the use of the A* and the L* algorithm.

We compared our L* algorithm to A* with heap based open

list as well as the bucket based open list. In Section 7,

conclusions are presented.

2 Problem Statement

The A* algorithm nowadays is used in the global path

planning. However, in the case of detecting new obstacles

on the map, the path replanning is executed with the use

of modifications of the A* algorithm (e.g., dynamic A*

algorithm—the D* algorithm [19] and similar [18, 20]).

These algorithms can react better to the changes in the

workspace and do not need to explore all of the nodes

again after detecting the change. Most of these dynamic path

planning algorithms also need to use the list of nodes for

expansion that has to be sorted by the key value.

Most of the graph searching algorithms use the open

list as a priority queue of the nodes expansion. In the A*

algorithm, the nodes on this list are sorted by the f cost

which is the total cost of the node:

f (N) = g(N) + h(N), (1)

where: g(N) is the cost of the path from the start node to the

node N and h(N) is the heuristic estimate of the cost of the

path from the node N to the goal. The g(N) is calculated as

follows:

g(N) = g(pred(N)) + dg(pred(N), N), (2)

where: pred(N) is the predecessor node of the node N in

the graph and dg is the cost of the graph edge from the node

pred(N) to N .

If the heuristic function h fulfills the admissibility

restriction, the A* algorithm always returns the optimal

path from the start node to the goal node if it exists.

Such algorithm is said to be admissible. The admissibility

restriction can be written as follows:

0 ≤ h(N) ≤ h ∗ (N), (3)

where h ∗ (N) is the true cost of the path from node N to

the goal node Ng .

Moreover, if the heuristic function fulfills the monotone

requirement, it ensures that for every node selected for the

expansion from the open list, the algorithm has already

found the optimal path. The monotone restriction can be

formulated as follows:

0 ≤ h(N) ≤ dg(N,N ′) + h(N ′), (4)

where N ′ is the successor node of the node N in the current

spanning tree

In the A* algorithm and its modifications, the most

effective approach is the use of the heap structure of the

open list. In the path planning problems, the common

approach is that the number of edges connected to each node

is the same (or it can be bounded above). Given so, we can

assume that the complexity of the algorithm depends on the

total number of nodes in the graph. The binary heap open list

structure provides the O(nlog(n)) computational complexity

of the algorithm, where n is the total number of nodes in

the graph. This feature, for huge maps, may cause longer

computation time which rises rapidly with the growth of the

open list.

Considering the increasing requirements for the data

processing systems of the mobile robots, the necessity of

the path planning on larger and larger maps, the need of

considering more parameters (not only the length) in the

optimal path planning problem, the idea of lowering the

computational complexity of the graph searching algorithm

can be crucial. Therefore, the L* algorithm can be a good

alternative to the A* algorithm.

3 RelatedWork

Although the A* algorithm was presented in 1968, it is still

one of the most popular graph searching algorithms used in

the path planning problem. This algorithm also has many

modifications, e.g., the LPA* algorithm [12], D* algorithm

J Intell Robot Syst (2018) 91:425–444426



[19], D* Lite [13] or Focused D* [20], Theta* algorithm [3].

All of these graph searching algorithms require the priority

queue in order to find the optimal path. All of the algorithms

mentioned above are based on the expansion of the nodes

collected on the open list in the non-descending order of

the key value. The typical approach is to use a binary heap

as a data structure for the open list. It strongly affects

the computational complexity of the algorithm. However,

there were several efforts for decreasing the computational

complexity of the graph searching algorithm.

One of the first approaches for decreasing of the

computational complexity of graph searching was Dial’s

algorithm [4] based on Dijkstra’s algorithm. This method

assumes that the cost of each edge is expressed by a positive

integer number. Therefore, the cost of each path in the

spanning tree is also expressed by the integer value. The

open list is divided into a set of buckets. Each bucket

contains only the nodes with a specified value of the f cost.

Because all of the nodes in each bucket have the same value

of the cost, it is not necessary to sort the buckets, hence, the

computational complexity of the graph searching algorithm

can be decreased.

The main disadvantage of this algorithm is the lack

of the heuristic function. It causes that many more nodes

have to be expanded than in the A* algorithm in order

to find the path to a specific goal node. Moreover, the

assumption that the cost is expressed with the integers can

be ineffective, especially for the cost functions including

components dependent on height differences between the

nodes, surface quality or terrain roughness (which are

common in non-urbanized terrain path planning).

Bucket based open lists can also be used for the A*

algorithm [5]. The method is similar to Dial’s algorithm.

The cost is expressed as the integer numbers. The open list

is divided into the buckets. Each bucket contains the nodes

with the same f value. In order to speed up the computation,

the second level of the buckets can be used [7]. In the

second level of buckets, the nodes are sorted by the g cost.

The strong limitation of this method is the requirement of

expressing the cost of the path by the integers. The integer-

domain cost functions can be only used in straightforward

graph searching problems. In more complex problems,

the cost function is usually expressed by floating-point

numbers. Obviously, the transition from floating-point

numbers to integers can be easily introduced by using the

10P multiplier (where P is a natural number greater than 0)

and omitting the fractional part of the cost after multiplying.

However, there is always a problem with selection a priori

the appropriate value of the P parameter. Selection of

too small multiplier may cause non-optimality of the final

path (costs are rounded). Selection of too big multiplier

value can cause the huge amount of empty buckets. The

number of empty buckets limits the performance of the

algorithm. However, it was experimentally proved that, in

some workspaces, this approach provides better results than

heap structured open list A* algorithm; in particular, when

an appropriate value of the multiplier is selected. The bucket

based open list is valuable only if the number of nodes with

the same total cost is big and the difference between the cost

of the nodes is relatively small [11].

If the f cost is expressed by the floating-point numbers,

the nodes can also be divided into the buckets. Each bucket

contains the nodes with a specific range of cost. In this

situation, while selecting a new node from the open list for

expansion, the algorithm has to determine the node with

the lowest f cost—the only optimal node in the current

bucket. Each bucket can be simply sorted by searching node

by node. This approach is effective if the number of nodes

in each bucket is relatively small. This approach can also

give good results in several domains, but the selection of

the appropriate range of buckets cost can be crucial. It can

be tough to determine the proper range of buckets f cost

before starting the graph searching. The number of nodes

in each bucket strongly affects the computation time of the

algorithm.

Reducing the computational complexity of the A*

algorithm can also be obtained with the use of the modified

method of the open list processing. The binary heap is one

of the most common approaches. However, there are several

modifications of this kind of data structure. The modified

approaches ensure lower computational complexities in

terms of specific conditions. One of them is the Fibonacci

heap [6]. It is a modification of the binomial queues. The

Fibonacci heap consists of a set of heap-ordered trees. It

improves the operation of inserting a new node to the heap

and the operation of decreasing the cost of a node in the heap

(complexity O(1)). The operation of deleting the lowest cost

node has the complexity O(log(n)).

A relatively novel approach is to improve the time of

heap operation with the use of a strict Fibonacci heap

[2]. This method is a pointer-based implementation of a

standard Fibonacci heap. It achieves the complexity of the

Fibonacci heap in the worst case. In the A* algorithm, the

heap structured open list is a more general solution than the

bucket based open list up to now.

4 L* Algorithm

4.1 General Idea of the L* Graph Searching Algorithm

In the typical A* algorithm used in the mobile robot path

planning, the computational complexity is O(log(n)), where

n is the total number of nodes. In the heap based A* as well

as the bucket based A*, it is always necessary to determine

the node with the lowest f cost (in the heap or the current

J Intell Robot Syst (2018) 91:425–444 427



bucket). In the bucket based A* algorithm with the cost

rounded to integers, it is always possible to receive the non-

optimal final path due to the necessity of rounding the costs.

For this reason, this approach is not in the scope of this

paper.

Our purpose was to develop the algorithm (which will

use the f cost expressed with the floating-point numbers)

providing the O(n) computational complexity. The main

application of the algorithm should be the mobile robot path

planning.

In our algorithm, the open list uses the buckets. The main

difference between our L* algorithm and the bucket based

A* algorithm is the optimality of the nodes in the current

bucket. In the heap-based and bucket-based A* algorithm,

we are sure that the node with the lowest f cost is optimal.

In the L* algorithm, we are confident that all of the

nodes in the current bucket are optimal (when algorithm

opens the bucket for the first time, we are sure that the

shortest path to each node belonging to this bucket has

already been found). This feature causes that the order of the

nodes selected for the expansion within the current bucket

can be arbitrary. Therefore, it is not necessary to choose

the node with the lowest f cost for expansion from the

current bucket. This effect was obtained by decreasing the

power of the heuristic function and selecting the appropriate

interval of the buckets. The heuristic cost is decreased by

multiplying the cost by the w coefficient which has to be

lower than 1 and greater than or equal to 0. The interval of

the buckets depends on the w coefficient value. The interval

has to be lower than or equal to (1 −w)dgmin, where dgmin

is the lowest possible cost of the edge in the graph (more

details in Sections 4.2–4.5).

In the L* algorithm, the nodes in the current bucket are

not sorted and can be selected in arbitrary order. Thus, we

have O(1) computational complexity of accessing any node

in the bucket, and the complexity of the whole algorithm is

O(n), where n is the number of nodes.

The O(n) complexity is a strong advantage of the L*

algorithm. However, it is slightly decreased by the necessity

of visiting more nodes than the A* algorithm (because the

heuristic function for the L* algorithm is less informed than

for the A* algorithm).

The assumptions for the use of the L* algorithm are

listed in the Section 4.2. The only new assumptions which

are not present in the A* algorithm are the value of the

dgmin and dgmax (minimum and maximum cost of the

edge in the graph). They have to be known a priori. The

rest of Section 4 contains the guidelines for the open list

building (bucket based open list) and the comparison of

the L* algorithm with the A* algorithm. Section 5 contains

the proof of optimality and computational complexity of

the L* algorithm and our theoretical method for estimating

the expected shortening of the computation time by the use

of the L* instead of the A*. This method, as well as the

empirical tests shown in paragraph 6, confirmed that the

benefit from the use of the L* algorithm raises with the

increase of the graph size. For this reason, we suggest using

the L* algorithm for large graphs rather than for the small

ones.

4.2 The Assumptions

The L* algorithm is an evolved A* algorithm with the non-

standard structure of the open list. It is used to search a

weighted graph G = (V , E), where V is the set of vertices

(nodes), and E is the set of edges connecting these nodes.

The assumptions of the L* algorithm are as follows:

• weight dg of each graph edge e is positive but not

infinite,

∀(e ∈ E) 0 < dg < ∞, (5)

• the minimum value of graph edge weight dgmin is

known a priori:

dgmin = min{dg}, (6)

• the maximum value of graph edge weight dgmax is

known a priori:

dgmax = max{dg}, (7)

• heuristic cost function h(N) fulfilling the requirement

(3) and (4) is known,

• total f cost function for each node N can be written as

follows:

f (N) = g(N) + hL(N) = g(N) + wh(N), (8)

where 0 ≤ w < 1 is the L* algorithm coefficient,

which is constant during the graph searching process.

The f cost function is allowed to be expressed by the

floating-point values.

The knowledge of the dgmin and dgmax seems to be the

most limiting, especially when dg cost depends on many

arguments; not only the length of the path, and because dg

cost has to fulfill restriction (5), the cost function has to

be bounded below. Furthermore, because the equation of

dg cost is known, the dgmin cost is known a priori. In the

simplest path planning problem, the dg cost depends on the

distance between the nodes on the map. Therefore, dgmin is

the shortest distance between two adjacent nodes. In more

complex problems, the dgmin has to be determined by the

analysis of the cost function variability.

The knowledge of dgmax is not necessary for the L*

algorithm optimality. It is only useful for the determination

of the number of buckets for the open list priority queue—in

the same way as in the bucket based A* algorithm. If we do

J Intell Robot Syst (2018) 91:425–444428



not know the dgmax a priori, the infinite list of buckets has

to be used, but the L* algorithm maintains the optimality.

4.3 The Open List Structure

Because hL(N) < h(N), the L* algorithm is less informed

than the A* algorithm [14], it means that each node

expanded by the A* algorithm will also be expanded by the

L* algorithm.

If the heuristic cost function hL(N) = wh(N) is used,

the difference of the f cost between two adjacent nodes

N and N ′(N ′ is the successor of N) which are connected

with the edge in the current spanning tree can be expressed

according to the equation:

f (N ′) − f (N) = dg(N,N ′) − w(h(N) − h(N ′))

≥ (1 − w) dg(N, N ′). (9)

Marking df as a minimum difference between f (N ′) and

f (N) in the whole graph, it can be written that:

df = min{f (N ′) − f (N)} = (1 − w)dgmin > 0. (10)

Because for each pair of adjacent nodes the difference

of the total f cost is positive and bigger than or equal to

the value (1 − w)dgmin, the list of nodes that need to be

expanded, called the open list O, can be organized in a table

of non-sorted bidirectional sublists (buckets) S:

O = {S1, S2, . . . , Si, . . . , Sn}. (11)

Each bucket S is the set of nodes with the f cost value

from a specific f cost range. The bucket Si can be written

as follows:

Si = {N : f (Ns) + (i − 1)s ≤ f (N) < f (Ns) + is}, (12)

where s is the interval (step) of the buckets. The interval

of the buckets depends on the value of w coefficient (more

details in Section 5). The example of the open list was

shown in Table 1.

All of the nodes in Table 1 are shown in N
j
i configuration

where i is the number of the node, j is the number of its

predecessor in the current spanning tree. The open list is

organized in the form of a table of unsorted bidirectional

buckets. In order to determine which bucket S is appropriate

for node N , the following equation is used:

S(N) = f loor((f (N) − f (N s))/s) + 1. (13)

The idea of the L* algorithm is to keep each bucket

unsorted and fulfill the admissibility restriction. In the

subsequent part, the only considered version of the graph

searching algorithm will be this one which also fulfills the

monotone restriction. In the A* algorithm, fulfilling the

monotone restriction means that after selecting any node for

the expansion and deleting it from the open list, the optimal

path to this node has already been found and this node will

never be back on the open list [17]. In the L* algorithm,

fulfilling the monotone restriction causes the same property

as for the A* algorithm.

In the L* algorithm the buckets are non-sorted by the

value of the f cost. Therefore, while selecting the nodes

in any sequence from the considered bucket, the linear

computational complexity can be maintained. Because we

also want to keep the optimality of the path, it is necessary

to maintain the nodes in the bucket optimal at the moment

of accessing the bucket for the first time. The proposed

method to keep the nodes (in the current bucket) optimal

is to provide that when any node is taken for expansion

from the considered bucket, its neighbors are added to one

of the next buckets, never to the same bucket. If they were

added to the same bucket, the priority queue would be

damaged because of the possibility of existing the multiple

paths to the same node. In the classic bucket based A*, the

neighbor can be added to the same bucket as the parent.

While, in the L* algorithm, the searching of the bucket is

omitted. The problem is to find the appropriate value of

the buckets interval s in order to fulfill the monotone and

admissibility restriction. The interval s is strictly dependent

on the minimum df cost increase between two adjacent nodes.

In the following part, it will be proven that for s ≤ df ,

the L* algorithm fulfills both monotone and admissibility

restriction, and provides finding the optimal path with the

linear computational complexity.

4.4 The L* Algorithm—Step by Step

The L* algorithm is presented in a comparison to the A*

algorithm. The comparison is presented in Table 2. The A*

algorithm is shown in the case that both admissibility and

monotone restrictions are fulfilled.

In the first step of the L* algorithm, the open list is

initialized. Required parameters for the open list building

Table 1 The structure of the open list (example)

Bucket number Bucket 1 Bucket 2 Bucket 3 Bucket 4 . . .

f cost range < f(Ns), f(Ns)+s) < f(Ns)+s, f(Ns)+2s) < f(Ns)+2s, f(Ns)+3s) < f(Ns)+3s, f(Ns)+4s) . . .

Nodes N1 N1
2 N1

5 N2
8

N1
3 N2

6 N2
9

N1
4 N2

7

J Intell Robot Syst (2018) 91:425–444 429



Table 2 Comparison of the L* and the A* algorithm

(010) procedure Astar(G,Ns,Ng,dg,h) (010) procedure Lstar(G,Ns,Ng,dg,h,w,dgmin)

(020) initialize open list (OL) (020) compute f0 = wh(Ns) and df,

initialize open list—table of buckets (OL)

(030) put Ns to the OL with f = h(Ns), (030) put Ns to the first bucket of the open list

put Ns into tree T OL(1) with f = wh(Ns), put Ns into tree T

(040) pathExist = false (040) pathExist = false

(045) currentBucketReadIdx = 1

(050) while OL is not empty (050) while OL is not empty

(060) find N node with the lowest f cost (060) for every node from the current bucket

on the OL, delete N from the OL (065) get the first node from the

current bucket N = OL(currentBucketReadIdx),

delete N from the current bucket

(070) if N = Ng then (070) if N = Ng then

(080) pathExist = true (080) pathExist = true

(090) goto label A (090) goto label A

(100) end if (100) end if

(110) for every N′ adjacent to N (110) for every N′ adjacent to N

(120) if N′ is not marked ‘visited’ then (120) if N′ is not marked ‘visited’ then

(130) add N′ to T with a pointer toward N (130) add N′ to T with a pointer toward N

(140) f(N′)=g(N)+dg(N,N′)+h(N′) (140) f(N′)=g(N)+dg(N,N′)+wh(N′)

(145) SL = floor(f(N′)-f0)/df) + 1

(150) insert N′ to open with f = f(N′) (150) insert N′ to the first position of

and mark N′ ‘visited’ the bucket OL(SL) and mark N’

‘visited’

(160) else (160) else

(170) if g(N)+dg(N,N′) < g(N′) then (170) if g(N)+dg(N,N′) < g(N′) then

(180) modify T by redirecting (180) modify T by redirecting

pointer of N′ toward N pointer of N′ toward N

(190) f(N′)=g(N)+dg(N,N′)+h(N′) (190) f(N′)=g(N)+dg(N,N′)+wh(N′)

(195) SL=floor(f(N′)-f0)/df)+1

(200) delete N′ from the open list (200) delete N′ from the previous

open list bucket

(210) insert N′ to open with f=f(N′) (210) insert N′ to the first position

of the bucket OL(SL)

(220) end if (220) end if

(230) end if (230) end if

(235) end for

(240) end for (240) end for

(245) currentBucketReadIdx++

(250) end while (250) end while

(260) label A (260) label A

(270) if pathExist = true then (270) if pathExist = true then

(280) return reconstructed path by (280) return reconstructed path by

tracing the pointers from Ng to Ns tracing the pointers from Ng to Ns

(290) else (290) else

(300) return failure (300) return failure

(310) end if (310) end if

(320) end procedure (320) end procedure

are computed—the f cost of the start node f0 = h(Ns) and

the minimum difference of the f cost of two adjacent nodes

df in the whole graph. With the use of these two parameters,

the open list is divided into a set of empty buckets (line

020). Then the start node is placed in the first position of

the first bucket (line 030) and is added to a spanning tree.

The currentBucketReadIdx variable is set to 1 and the main

while-loop begins reading the nodes from the first bucket.

In each iteration, one node from the bucket is collected

and deleted from the currently set bucket (line 060). It does

not matter which node from the bucket will be collected, but

for simplification, it was assumed that only the first node is

J Intell Robot Syst (2018) 91:425–444430



always available. While adding a new node to the bucket, it

will also be added to the first position.

The first step after acquiring the node from the open list

is to check whether it is the goal node (lines 070–100). If

the goal node is selected, then, the algorithm exits the while-

loop (lines 090 and 260) and reconstructs the path (lines

270–280).

If a node selected for the expansion (line 060) is not

a goal node, its successors are visited similarly to the A*

algorithm. Newly visited nodes (line 120) are added to the

buckets corresponding to their f cost values (lines 130–

150). If the node was visited before and if its new g cost

is lower than its current g cost (registered in the current

spanning tree), it is deleted from the previous bucket and

added to another one, always at the first position (lines

160–210).

After computing all of the nodes adjacent to the currently

expanded node N , the algorithm selects for expansion

the next node from the bucket indexed by the value of

currentBucketReadIdx if the next node in the current bucket

exists. Otherwise, it goes to the next non-empty bucket (line

246). The next while-loop iteration begins with collecting

the first node from the bucket marked with the current value

of index currentBucketReadIdx.

Leaving the while-loop is possible in one of two ways:

• that the algorithm finds the path from Ns to Ng and exits

the loop by jumping to the label A,

• that the algorithm does not find the path from Ns to

Ng because this path does not exist; then, the algorithm

leaves the while-loop due to the lack of any more nodes

on the open list (one node is deleted from the open list

in each iteration and does not return to the open list,

therefore, if the graph is finite, the open list becomes

empty if the path from the start node to the goal node

does not exist).

Depending on that which way the algorithm exited the

while-loop, the value of variable pathExist is different.

Therefore, the L* algorithm returns a reconstructed path if

it exists or returns failure otherwise.

4.5 The Open List Operations

The main difference between the A* algorithm and the

L* algorithm is the structure of the open list and the

heuristic cost function. The heuristic cost function of the L*

algorithm should be less informed than in the A* algorithm

(the coefficient w < 1). It causes that after selecting an

appropriate value of the interval of the buckets s, it is not

necessary to determine the node with minimum f cost in the

bucket. The open list is organized as a table of bidirectional

sublists (called buckets). Each bucket stores only the pointer

to the first node in the bucket and provides the direct access

only to the first node in the bucket. The rest of the bucket

is organized in the form of pointers attached to each node

(typical for bidirectional lists). Each node stores the pointer

to the parent node in the bucket and the pointer to the child

node in the bucket. Each node also stores the bucket number

which it is stored in.

The operations which the L* algorithm executes on the

open list are the standard bidirectional list operations:

• adding a new node to the open list (the insL() procedure),

• deleting a node from the open list (the delL() procedure),

• getting the first node from the current bucket and

deleting it from the open list (the firstL() procedure).

The procedure of adding a new node N to the open list

can save this new node on any available position of the

bucket corresponding to the f cost of the node (from the

point of view of the L* algorithm admissibility). However,

only for simplification, it was assumed that the algorithm

has a direct access only to the first node in each bucket.

For this reason, the new node can be stored only in the first

position of the bucket which corresponds to its f cost. The

complexity of adding a new node to the open list is O(1).

The procedure of deleting a node N from a bucket S of

the open list is executed when the L* algorithm detects a

better path (with the lower g cost) than the path currently

stored in the current spanning tree. It is necessary to know

what is the parent node Np and the child node Nc of the

node N in the bucket S. These values are assigned to the

node when it is added to the open list for the first time. It is

also necessary to know which bucket the node N is stored

in. The complexity of this procedure is O(1).

The procedure of acquiring the first node in the bucket

and deleting it from the open list firstL() requires the same

operations as the procedure delL() described above. For

firstL() procedure the node which has to be deleted is

located in the first position of the list. The complexity of this

procedure is O(1).

5 Properties of the L* Algorithm

5.1 Proof of the L* Algorithm Admissibility
and the Monotone Restriction

Fulfilling the monotone restriction for the A* algorithm

means that when selecting for expansion the lowest f cost

node from the open list, the optimal path to this node has

already been found.

The L* algorithm is developed based on such kind of

heuristic function h which fulfills the monotone restriction

(4) for the A* algorithm. It can be modified to obtain a

heuristic function which provides fulfilling the monotone

restriction in the L* algorithm with the open list structured

J Intell Robot Syst (2018) 91:425–444 431



according to the method described in Section 4. In the L*

algorithm, we assume that the heuristic function fulfills

the monotone restriction. For this reason, there it is

not necessary to put the closed nodes to the open list

again. There is also no need to come back to the closed

buckets. In this case, first, the monotone restriction will

be proven.

Theorem The L* algorithm which uses the heuristic

function hL less informed than the heuristic function h

fulfilling the requirements (3) and (4):

hL(N) = wh(N) ≤ w(dg(N, N ′) + h(N ′)), (14)

where w is the constant coefficient such that 0 ≤ w < 1,

returns the optimal path from the start node Ns to any node

N that it selects for expansion if the bucket interval s of

the open list is lower than or equal to the lowest possible

increase df of the f cost between two adjacent nodes N and

N ′:

s < df = (1 − w)dgmin ≤ f (N ′) − f (N), (15)

where N ′ is the successor of N in the optimal spanning tree.

Proof We assume that the node N0 is selected for expansion

from the bucket Sk:

Sk = {N : f (Ns) + (k − 1)s ≤ f (N) < f (Ns) + ks}. (16)

The f cost of the node N0 is f (N0) = g(N0) + wh(N0).

In order to prove that the g cost of this node g(N0) is

optimal, we show that if in one of the following iterations a

node N1 (which has the edge e(N1, N0)−N0 is a successor,

N1 is predecessor) is selected for expansion, the new cost

gnew(N0) is greater than or equal to g(N0). One of the

following options is possible:

• the node N1 is in the same bucket as the node N0, we

can write:

−s < f (N1) − f (N0) < s, (17)

• the node N1 is in the further bucket than N0, we can

write:

0 ≤ f (N1) − f (N0). (18)

The node N1 cannot be located in the previous bucket

than N0 because (according to the code of the algorithm

presented in Table 2) when a current bucket becomes empty,

then, the algorithm goes to the next non-empty bucket and

never goes back.

If the node N1 with the f cost f (N1) = g(N1) +

+wh(N1) is connected with an edge to the node N0 (which

is visited), it is necessary to check whether a new path

to N0 via N1 is better than the path registered in the

current spanning tree. A new g cost of the node N0 is

computed:

gnew(N0) = g(N1) + dg(N1, N0), (19)

Based on that, we can write the difference between the

new g cost and the previous g cost of the node N0:

gnew(N0) − g(N0) = (f (N1) − f (N0)) + dg(N1, N0)

−w(h(N1) − h(N0)). (20)

We know that N1 belongs to the same or the further

bucket than N0. Thus, according to the Eqs. 17 and 18, we

can write:

f (N1) − f (N0) > −s. (21)

Equation 21 corresponds to the worst option—when the

nodes N1 and N0 belong to the same bucket, and the

difference of their f costs is the difference between the

lower and upper bound of the f cost of this bucket.

From the Eqs. 14 and 15 we know that:

dg(N1, N0) − w(h(N1) − h(N0)) ≥ dg(N1, N0)

+(−w)dg(N1, N0) ≥ (1 − w)dgmin = df . (22)

Including Eqs. 21 and 22 in Eq. 20, we have:

gnew(N0) − g(N0) ≥ −s + df . (23)

We know that s ≤ df (15). Given so, we can write:

gnew(N0) − g(N0) ≥ 0. (24)

Equation 24 is equivalent to a conclusion, that it is not

possible to obtain a new path to the node N0 (which has

already been selected for expansion in one of the previous

iterations), such that the new cost gnew(N0) of the path

to N0 via any node N1 (selected for expansion later than

N0) is better than the cost of the node N0 at the moment

when it was chosen for expansion and deleted from the open

list. It was proven that when the L* algorithm selects any

node from the current bucket for expansion, the lowest g

cost path to this node has already been found (every node

in the current bucket is optimal). This node will never go

back to the open list. Fulfilling the requirements (14) and

(15) the L* algorithm provides that although the nodes

from one bucket can be taken for the expansion in any

sequence, the monotone restriction of any two adjacent

nodes is fulfilled and the lowest g cost path to any node

selected for expansion has already been found.

Following this, it will be proven that the L* algorithm

fulfilling the monotone restriction always returns the

optimal path from the start node to the goal node if it exists.

Theorem (admissibility restriction) The L* algorithm ful-

filling the monotone restriction always returns the optimal

path from the start node to the goal node if it exists or returns

failure otherwise.

J Intell Robot Syst (2018) 91:425–444432



Proof We note that the L* algorithm can terminate only if:

• it finds the path from the start node to the goal node,

• the open list is empty and there are no more nodes for

expansion.

If the graph is finite, there is a finite number of nodes which

have the f cost lower than cost f (Ng). The L* algorithm

expands all available nodes till the open list is empty. If it

does not find the path, it terminates and returns failure. In

the case of a finite graph, in each iteration, the L* algorithm

adds to the open list the finite number of the successors

and deletes from the open list one node which is currently

expanded. It means that the L* algorithm must find the path

to the goal node before the open list becomes empty if the

finite path exists.

In the case of an infinite graph, it is not possible to return

failure because an infinite branch of the spanning tree exists.

If the path from the start to the goal exists, the algorithm

must find it.

We proved that the L* algorithm must find a path from

the start node to the goal node if it exists, instead of

returning failure. Now we prove that the path which was

found is optimal.

We know that the L* algorithm fulfilling the monotone

requirement finds the optimal path to any node that it selects

for expansion. Therefore, when it selected the Ng node for

expansion, the optimal path to this node was found. Thus,

when L* terminated by selecting Ng from the open list, the

optimal path to this node was found.

In the case of a finite graph the L* algorithm, in the

pessimistic case, finds the path to the goal in the last

iteration (if the path exists). In the case of an infinite graph,

on the open list, there is always at least one node from the

optimal path. In the beginning, it is the start node, when it

is expanded—all its successors—including the second point

of the optimal path, and so on. Because each node has

a finite number of successors and each edge has the cost

dg(N,N ′) ≥ dgmin, there is a finite number of nodes which

have the cost f lower than the cost f (Ng)+ s. It means that

when the L* algorithm selects the goal node for expansion,

the optimal path to the goal node is found.

To sum up, for the use of the L* algorithm, it is necessary

to determine the w parameter which fulfills the requirement:

0 ≤ w < 1. (25)

Then, the interval of the buckets can be computed

depending on the values of w and dgmin with the use of the

equation:

s ≤ df = (1 − w)dgmin. (26)

Fulfilling the requirements (25) and (26) always main-

tains the correctness of the algorithm (the optimality of the

final path) and the linear computational complexity with

respect to the number of nodes in the graph.

The selection of the w coefficient affects the number of

iterations of the L* algorithm (the strength of the heuristic

function) and the number of empty buckets on the open

list. The bigger the w coefficient is, the less iteration the

L* algorithm has to perform. However, the bigger the w

coefficient is, the lower the interval of the buckets s becomes

(the number of empty buckets may grow up). To find a

balance between this two features, the suggestion (based on

the experimental results) is to select the w value between

0,99 and 0,9999. It causes a slight increase in the number

of iterations (while comparing with the A* algorithm)

but the number of empty buckets is relatively small and

does not affect the performance of the L* algorithm.

For lower values of the w coefficient, the L* is less

efficient.

5.2 Computational Complexity

In the A* algorithm, while adding or deleting a node from

the open list, it is necessary to perform various opera-

tions which increase the computational complexity. In the

best case, it is O(nlog(n)) where n is the total number

of nodes in the graph. Due to increased requirements for

the time of computation and necessity of processing large

amounts of data while operating on large maps, lowering

the complexity of the graph searching algorithm can signif-

icantly improve the calculation time of the path planning

process.

In the L* algorithm, the operations of adding or deleting

a node from the open list require a constant number of basic

operations and their complexity is O(1). The remaining

operations which are in fact the same as in the A* algorithm

also do not depend on the open list size. Their computational

complexity is also O(1).

The only non-constant operations are:

• the for-loop (line 110 in Table 2) whose execution time

depends on the number of available adjacent nodes of

the node selected for the expansion (this is also a feature

of A* algorithm) but in the most of the path planning

problems the number of successors is constant or can be

bounded above),

• the procedure of incrementing the variable current-

BucketReadIdx which depends on the number of empty

buckets, numerical tests showed that there is usually a

small number of empty buckets. Therefore, this non-

constant number of operations can be omitted.

None of these non-constant operations depend on the

number of nodes on the open list. In the pessimistic case, the

number of basic operations while generating the successors

J Intell Robot Syst (2018) 91:425–444 433



in the for-loop is constant (each node has a constant number

of successors in the graph), and the number of increments

of the currentBucketReadIdx variable is constant in each

iteration. Because in the pessimistic case the while-loop

repeats n times (algorithm needs to explore all of the nodes

to reach the goal node in the last iteration), the number of

basic operations of the whole algorithm can be expressed as:

GCC(n) = kpreproc + nkmain + kpostproc, (27)

where: n—number of nodes in the graph, kpreproc—

constant number of basic operations before entering the

main while-loop, kpostproc—constant number of basic

operations after exiting the main while-loop, kmain—

constant number of basic operations in a single iteration of

the main while-loop.

Because GCC(n) can be upper bounded by the linear

function FCC(n) = Cn (where C is a constant value), it

can be written that the computational complexity of the L*

algorithm is expressed as:

O(n). (28)

5.3 State Complexity

The required memory resources of the L* algorithm depend

on the implementation of the open list. In Section 4.5

one of the best possible implementations of the open list

is presented. We note that in each iteration, the open list

contains only the nodes with the f cost between f and

f + 2dgmax + s where f is the lower boundary of the first

non-empty bucket and dgmax is the largest weight of the

edge in the graph:

max{f (N1) − f (N2)} = max{g(N1) − g(N2)}

+max{h(N1) − h(N2)} ≤ 2dgmax + s, (29)

where N1 is the maximum f cost node and N2 is the lowest

possible f cost node on the open list (lower bound of the

current bucket) in a given iteration.

For this reason, the number of required buckets can be

significantly reduced. The best implementation is the use of

the one-dimensional table containing the pointers only to the

first node of each bucket. The size of the table is determined

by the difference between the lowest and the largest f cost

on the open list in each iteration. It can be upper-bounded by

2dgmax + s. Given so, the size of the table KS representing

the open list can be expressed as:

KS = f loor(2dgmax/s) + 2. (30)

Then, if the appropriate absolute bucket number S(N)

calculated for the node N according to Eq. 13 is greater than

KS , assuming that the buckets are numbered from 1 to KS ,

the appropriate index of the bucket SK(N) can be obtained

from the following equation:

SK(N) = S(N) − KS · f loor((S(N) − 1)/KS)

= ((S(N) − 1)modKS) + 1. (31)

The rest of each bucket is organized in the structure of the

bidirectional list. Assuming that n is the number of nodes in

the graph, the number of memory cells required for the L*

algorithm implementation can be expressed as:

GSC(n) = KS + n. (32)

The function GSC(n) can be upper-bounded by

FSC(n) = Cn (where C is a constant value), therefore, the

state complexity of the L* algorithm can be expressed as:

O(n). (33)

5.4 Comparison of the Execution Time
of the L* Algorithm and the A* Algorithm

Although the L* algorithm has a linear computational

complexity, better than commonly used graph searching

algorithms, it is necessary to note that the L* algorithm

is always less informed than the A* algorithm. Therefore,

the main disadvantage of the L* algorithm is the necessity

of visiting slightly more nodes than the A* algorithm. In

this subsection, the analysis of the L* and A* algorithms

approximated execution time will be performed with the use

of an example of the path planning problem for the mobile

robot on a flat 2D map with randomly placed obstacles.

5.4.1 Estimation of the Number of Iterations

in the A* Algorithm and the L* Algorithm

The time of execution of both algorithms was estimated with

the use of the following assumptions:

• a graph edge weight is expressed as dg(N1, N2) ==

LN1,N2, where LN1,N2 is the Euclidean distance

between two adjacent nodes N1 and N2,

• the heuristic function h(N) = wLN,Ng , where LN,Ng

is the distance between N node and goal node, the

coefficient w = 1 for A* algorithm and 0 ≤ w < 1 for

L* algorithm, fulfills the admissibility and monotone

restriction,

• the location of the obstacles on the map is randomized

but with the constant average density—it causes that

for each node N whose distance to the start node Ns

is sufficiently large, it can be written that the cost of

the optimal path from start to N can be expressed as

g(N) ≈ bLNs,N , where b can be expressed as b =

g(Ng)/LNs,Ng (b is always greater than or equal to 1),

• the number of required iterations k is expressed by the

number of nodes with the f cost lower than the g cost

J Intell Robot Syst (2018) 91:425–444434



of the goal node g(Ng). Thus, it can be written that

k = |I |, where: I = {N : f (N) < g(Ng)}.

Assuming these requirements, the f cost of the optimal

path to the node N can be expressed as:

f (N) = g(N) + h(N) ≈ bLNs,N + wLN,Ng . (34)

Because g(Ng) = bLNs,Ng , the I set can be written as:

I ≈ {N : bLNs,N + wLN,Ng < bLNs,Ng}. (35)

Because b ≥ w, the I set can be upper-bounded by IB

set expressed as:

I ≤ IB = {N : f (N) = LNs,N + LN,Ng < b/wLNs,Ng}.

(36)

The IB set corresponds to the ellipse with the focal

points located in the nodes Ns and Ng and the longer

axis length b/wLNs,Ng . Therefore, the number of visited

nodes can be expressed as k < |IB |. The |I |/|IB | ratio

depends on the value of the coefficient w, the distance

between the start node and the goal node and a method

of graph nodes creation (4-directional propagation, 8-

directional propagation, 16-directional propagation).

Assuming that c is the average density of the nodes on

the unit of the workspace area, the total number of nodes

within the area of the bounding ellipse can be expressed as:

k < 0.25πcbL2
Ns,Ng((b/w)2 − 1))0.5/w. (37)

Assuming that for the A* algorithm w = 1, the upper

bound of the number of iterations kA performed by the A*

algorithm can be found from Eq. 36:

kA = 0.25πcbL2
Ns,Ng(b

2 − 1)0.5|I |/|IB |. (38)

Assuming that w < 1, Eq. 36 provides the upper bound

of the number of iterations performed by the L* algorithm:

kL = 0.25πcbL2
Ns,Ng((b/w)2 − 1))0.5/w|I |/|IB |. (39)

An example of the boundary ellipse (36) and the true

boundary curve (35) is presented in Fig. 1.

5.4.2 Estimation of the Number of Nodes on the Open List

for the A* Algorithm

It is necessary to determine the size of the open list for

the A* algorithm because the number of operations in the

main while-loop depends on the size of the open list. It is

not necessary to estimate the open list size for L* algorithm

Fig. 1 An example of the path found by the L* algorithm with the expanded nodes and open list nodes

J Intell Robot Syst (2018) 91:425–444 435



because the number of basic operations in the main while-

loop of this algorithm does not depend on the open list

size.

Assuming that for the A* algorithm the range of the f

cost on the open list is rf (fulfills the restriction (1) for

s = 0), the number of nodes on the open list for the A*

algorithm in the last iteration can be expressed as:

qA = 0.25πcLstart,goal(3(b2 +b−1)−2b(b2 −1)0.5)rf L/LB . (40)

Analogously, the number nodes in the last iteration of the

L* algorithm can be expressed as:

qL = 0.25πcLstart,goal(3((b/w)2 + b/w − 1)

−2b/w((b/w)2−1)0.5)rf L/LB , (41)

where L/LB coefficient represents the circuit ratio of the

boundary ellipse and the true boundary curve of expanded

nodes.

5.4.3 Execution Time Comparison

In order to estimate the profit of the use of the L* algorithm

compared to the A* algorithm, it is necessary to assume

the single operation time. It was assumed that tL is the

time required for a single while-loop in the L* algorithm.

The time of execution of a single while-loop in the A*

algorithm consists of a constant part tA (which is nearly

the same as for the L* algorithm), and the part depended

on the size of the open list. The single f cost comparison

(performed during heap operations) is indicated as th. The

total time needed by the A* algorithm for a single while-

loop execution can be expressed as tA + thlog2qA. It is the

time of the longest while-loop so assuming that the open list

size is constant during the execution of the A* algorithm, the

total time of execution of the algorithm can be estimated by

kA(tA + thlog2(qA)). In consequence, the relation between

the time of execution of the L* and A* can be written as

follows:

TA/TL = kA(tA + thlog2((qA))/(kLtL). (42)

Equation 42 can be used to determine the conditions

(LNs,Ng, w, c, b) when the L* algorithm is more efficient

than the A* algorithm.

The presented method of estimation of the execution time

and the numerical tests confirmed that the L* algorithm with

w coefficient close to 1 always needs less time than the A*

algorithm to determine the optimal path (except very short

paths).

6 Results of the Simulation Tests

Both types of algorithms (A* and L*) were tested on various

kinds of maps:

• 2D occupancy grid maps—test no. 1, map size from

1100 × 1100 to 5500 × 5500, maps with randomly

located obstacles, obstacle occurrence probability was

from 5 to 15%,

• a 2D map of 4000 × 2500 cells with randomly located

obstacles with increased dg cost while exploring the

nodes close to the obstacles—test no. 2,

• a 2.5D map of the surface of the Mars with the height

values attached to each cell—test no. 3,

• 2D occupancy grid maps—test no. 4, all of the maps

were taken from ([Online] http://www.movingai.com/

benchmarks/) [21]:

– with randomly located obstacles (obstacle

occurrence probability was 10%—‘random

512-10-0’ map, and 30%—‘random 512-30-9’

map)— base map size 512 × 512,

– ‘maze 512-8-9’ labyrinth-type map—base map

size 512 × 512,

– ‘Room16 000’ room-type map—base map

size 512 × 512,

– Starcraft ‘Inferno’ map—base map size 768 ×

768,

– Starcraft ‘Frozen sea’ map—base map size

1024 × 1024,

– Warcraft ‘The crucible’ map—base map size

512 × 512.

Each map was tested with different LNs,Ng distance

values. In all tests, we used standard, 8-directional

propagation. In the A* algorithm the open list was

built with the use of binary heap structure (version 1—

A*(H)). In test no. 4 we compared the L* algorithm

with the A* algorithm with the heap based open list as

well as with the A* algorithm with the bucket based

open list. The interval of the buckets was the same as

for the L* algorithm. Each bucket was organized with

a bidirectional list searched node-by-node (version 2—

A*(B)). The L* algorithm was implemented as a traditional

serial algorithm. The experiments were run on the computer

with configuration: Intel(R) Core (TM) i7-4720HQ CPU

@2,60 GHz, 16 GB of RAM, 64-bit operating system. Both

algorithms were implemented in C++. The programming

framework was the same.2

2The source code will be published at: https://github.com/adamniewola/

Lstar

J Intell Robot Syst (2018) 91:425–444436

http://www.movingai.com/benchmarks/
http://www.movingai.com/benchmarks/
https://github.com/adamniewola/Lstar
https://github.com/adamniewola/Lstar


Table 3 Test no. 1—experimental results

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LNs,Ng pobs TAexp. [ms] kAexp. qAexp. TLexp. [ms] kLexp. g(Ng)exp. TAexp. / TLexp. TAest./ TLest.

1000 0,05 11,45 51 643 2 605 5,80 51 799 1014,08 1,97 1,79

2000 0,05 41,98 175 144 5 304 19,68 176 207 2024,02 2,13 1,86

3000 0,05 102,88 402 499 7 996 47,99 406 612 3036,45 2,14 1,90

4000 0,05 173,63 661 229 10 221 84,10 664 984 4045,56 2,06 1,93

5000 0,05 283,88 1 036 119 13 217 137,52 1 041 588 5057,16 2,06 1,95

1000 0,10 20,48 86 222 2 394 11,35 86 443 1027,34 1,81 1,80

2000 0,10 76,76 303 841 4 764 41,22 304 555 2048,05 1,86 1,87

3000 0,10 189,12 713 886 7 203 99,96 715 693 3074,56 1,89 1,91

4000 0,10 320,47 1 145 662 9 708 172,50 1148 821 4091,13 1,86 1,94

5000 0,10 508,08 1 742 759 11 944 270,13 1 747 772 5111,01 1,88 1,96

160 0,15 0,66 2199 393 0,59 2204 165,56 1,59 1,82

1000 0,15 25,91 105 679 2 340 15,14 105 841 1038,52 1,71 1,80

2000 0,15 107,02 406 701 4 477 61,42 407 366 2072,07 1,74 1,87

3000 0,15 268,76 970 373 6 737 153,57 971 790 3114,32 1,75 1,91

4000 0,15 443,31 1 514 307 9 062 248,07 1 517 210 4137,52 1,79 1,94

5000 0,15 728,92 2 405 987 11 264 410,52 2 410 501 5173,14 1,78 1,97

(1) start-to-goal Euclidean distance, (2) obstacle occurrence probability (3) A* algorithm experimental execution time, (4) experimental number

of iterations of the A* algorithm, (5) experimental maximum open size list in the A* algorithm, (6) L* algorithm experimental execution time,

(7) experimental number of iterations of the L* algorithm, (8) experimental g cost of the goal node, (9) experimental execution time ratio, (10)

estimated execution time ratio

6.1 Test 1

In this test, a grid type map with randomly placed obstacles

was used. Map sizes were 1100 × 1100, 2200 × 2200,

3300 × 3300, 4400 × 4400 and 5500 × 5500. Obstacle

occurrence probability pobs was 5, 10 and 15%. The w

coefficient for this test was set to 0,9999. The heuristic cost

function was the Euclidean distance from a given node to

the goal node:

h(N) = LN,Ng . (43)

The cost of each edge was dependent only on the distance

between the nodes connected by this edge:

dg(N,N ′) = LN,N ′ . (44)

For comparison of the empirical experiments with the

estimated values obtained from the equations presented in

Section 5.4, the average computation time was estimated:

• the constant time of performing an expansion of the

node taken from the open list by the L* algorithm,

tL = 0, 000160 ms,

Fig. 2 The execution time of the

L* and the A* algorithm in test

no. 1

J Intell Robot Syst (2018) 91:425–444 437



Fig. 3 The path found by the L*

algorithm on the random

occupancy grid map in test no. 1

(example for LNs,Ng = 160,

pobs = 0, 15)

Table 4 Test no. 2—experimental results

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LNs,Ng pobs TAexp. [ms] kAexp. qAexp. TLexp.[ms] kLexp. g(Ng)exp. TAexp. / TLexp. TAest./ TLest.

1000 0,01 91,6 268 295 13 218 54,8 282 056 1169,3 1,67 1,85

2000 0,01 494,1 1 100 499 28 755 272,5 1 155 781 2260,5 1,81 1,89

3000 0,01 1182,7 2 225 743 44 379 616,3 2 358 170 3366,9 1,92 1,93

160 0,02 4,55 15 009 1 559 3,48 15 019 272,4 1,31 1,75

1000 0,02 212,2 590 682 12 963 121,4 600 835 1660,5 1,75 1,93

2000 0,02 1436,9 2 808 558 28 850 741,8 2 853 846 3312,2 1,94 2,00

3000 0,02 3478,1 5 844 759 42 925 1717,4 5 945 874 4854,8 2,03 2,04

Fig. 4 Execution time of the L*

and the A* algorithm in test no.

2

Fig. 5 The path found by the L* algorithm on the random occupancy grid map with kobs coefficient used for dg cost computation in test no. 2

(example for LNs,Ng = 160, pobs = 0, 02)

J Intell Robot Syst (2018) 91:425–444438



• the constant part of the time of performing an expansion

of a node taken from the open list by the A* algorithm

(without heap operations), tA = 0, 000157 ms,

• time of a single f cost comparison and swapping of the

nodes in the heap, th = 0, 000011 ms.

Fig. 6 The Mars map used in test no. 3 (a tested area elevation data, b

tested area with respect to Huygens crater)

For computation of values tA, tL and th a micro-

benchmark test was performed. We used average time

values for different types of maps (maze maps, room maps,

random maps, Starcraft and Warcraft maps ([Online] http://

www.movingai.com/benchmarks/), 2.5D maps including

terrain height). According to these values, it was possible

to estimate the relationship between the time of the A*

algorithm execution and the time of the L* algorithm

execution. In the process of computing the estimated

execution time ratios, the actual value (from the experiment)

of b coefficient was used. The coefficient |I |/|IB | was set to

0,46. It is the average value of the occupancy grid map with

randomly placed obstacles with pobs value from 5 to 15%.

The coefficient L/LB was set to 0,92.

The results are shown in Table 3 and Fig. 2. The

example of the path is presented in Fig. 3. In test no. 1

the A* algorithm needed 71–114% more time than the L*

algorithm for finding the optimal path. The L* algorithm

was faster, although it had to perform more iterations

than the A* algorithm. The number of iterations grows

nonlinearly with the distance between the start node and

the goal node. In the worst case, the L* algorithm had to

perform about 1% more iterations than the A* algorithm.

This value depends on the value of w coefficient. The bigger

the w coefficient is, the fewer iterations the L* algorithm

has to perform. However, the interval of the buckets s becomes

lower, and the number of empty buckets may grow up.

The size of the open list grows linearly in the function

of the distance between the start and the goal node. In test

the open list raised to 11264 nodes (the heap had 14 levels)

for LNs,Ng = 5000 and pobs = 0, 05. It means that the

getFirstHeap() procedure had to perform up to 13 f cost

comparisons to rebuild the structure of the heap. In the case

of adding a new node or changing the position of the visited

node, the A* algorithm had to perform fewer operations

than in the procedure of deleting the top node. Because all

of these heap operations are not present in the L* algorithm,

it is faster than the A* algorithm.

6.2 Test 2

In the 2nd test, we used the occupancy grid map with

randomly placed obstacles, similar to the test no. 1. The

difference was in the method of dg cost calculation. In test

2, the cost of each edge was increased in the area close to

the obstacles:

dg(N,N ′) = kobs(N
′)LN,N ′ . (45)

The coefficient kobs was dependent on the distance to the

obstacles. It was set to 1 if no obstacles were present in the

neighborhood of the node N ′ and it was greater than 1 if

the node N ′ was close to the obstacles. The closer to the

obstacles the node was, the greater the value of kobs was.

J Intell Robot Syst (2018) 91:425–444 439

http://www.movingai.com/benchmarks/
http://www.movingai.com/benchmarks/


Table 5 Test no. 3—experimental results

(1) (3) (4) (5) (6) (7) (8) (9)

LNs,Ng TAexp. [ms] kAexp. qAexp. TLexp.[ms] kLexp. g(Ng)exp. TAexp. / TLexp.

100 6,57 20670 1327 4,78 20751 693,77 1,37

300 57,48 197308 4905 43,34 198189 1872,5 1,33

500 110,51 365104 5506 69,1 366455 2688,04 1,60

700 186,21 624624 6353 113,32 626237 3316,39 1,64

900 277,63 770308 6397 180,44 771209 4274,59 1,54

Test 2 was performed on 4000 × 2500 map filled with the

obstacles with the probability pobs = 0, 01 or 0,02. The w

coefficient of the L* algorithm was set to 0,99. The heuristic

cost function was the same as in test no. 1 (43). The start-

to-goal Euclidean distance was 1000, 2000 and 3000. The

coefficient |I |/|IB | was set to 0,37. The coefficient L/LB

was set to 1,55. The average rf value was computed as the

weighted average value of dg for the cells with obstacles

and without obstacles. The results of this experiment are

presented in Table 4 and Fig. 4. The example of the path

found by both algorithms with respect to the map of the kobs

parameter is shown in Fig. 5.

The experimental results showed that the L* algorithm

is faster than the A* algorithm for such kind of map. The

A* algorithm needed approximately from 1.8 up to 2 times

more time than the L* algorithm for executing the procedure

of pathfinding. The open list of the A* algorithm reached

the number of 44000 nodes (16 heap levels). The number

of iterations of the L* algorithm in the worst case was

5% bigger than in the A* algorithm. This value could be

decreased by increasing the w coefficient, but it could lead

to the growth of the number of empty buckets (due to big

differences in the weights of graph edges).

6.3 Test 3

In test no. 3 the 2.5D map was used. The map was obtained

from the Mars surface digital elevation data. Based on the

data from Google Mars ([Online] https://www.google.com/

mars/) and NASA ([Online] http://marstrek.jpl.nasa.gov/)

the map of 1000 × 1000 cells was prepared. The selected

area was located near to the Huygens crater (Fig. 6). In

test no. 3, it was assumed that the cost of each graph edge

dg depends on the distance between the nodes (map cells)

and the height difference between the cells according to the

equation:

dg(N,N ′) = LN,N ′ + wHg|(HN ′ − HN )|, (46)

where wHg is the coefficient which represents the robot

sensitivity to the height differences. The absolute value

of the height difference was added to the edge cost in

order to provide that the algorithm would avoid the height

differences. The heuristic cost function was represented

only by the Euclidean distance to the goal node (42).

The graph searching was repeated for different path

lengths. The coefficient wHg was set to 10. The results

of the execution time are presented in Table 5 and Fig. 7.

Fig. 7 The execution time of the

L* and the A* algorithm in test

no. 3

J Intell Robot Syst (2018) 91:425–444440

https://www.google.com/mars/
https://www.google.com/mars/
http://marstrek.jpl.nasa.gov/


Fig. 8 The path found by the L*

algorithm on the Mars map in

test no. 3 (example for

LNs,Ng = 100, a dg cost map, b

terrain height map)

Figure 8 shows the path obtained by both algorithms for the

LNs,Ng = 100 with respect to the map of average dg cost

calculated for each cell.

The L* algorithm was faster than the A* algorithm in

test 3. Due to the bigger differences in dg costs, the open

list size increased significantly (to ∼6400 when the start-to-

goal distance was 900). However, the time execution ratio

was lower than in the 1st test because the searched area was

lower than in test no. 1 and the iterations ratio kA/kL was

lower than in test no. 1.

6.4 Test 4

In this test, standard grid-type maps were used. Each map

was tested in four versions—scaled 1× , 2×, 4× and 8×.

The maps and the paths (start and goal coordinates) were

taken from the research of Sturtevant ([Online] http://www.

movingai.com/benchmarks/). For each map, 30 paths were

taken into account. The results show average values for

these 30 paths. The w coefficient for the L* algorithm was

0,99.

The results are presented in Table 6. The example of the

paths found by both algorithms is presented in Fig. 9.

The results confirmed that the L* is faster than the A*

algorithm for different path planning scenarios. We also

compared the results with the A* algorithm with bucket

based open list with the bucket interval the same as the

bucket interval in the L* algorithm. In some cases, this

implementation of the bucket based A* was faster than the

heap based A* version (the maps are quite small, the number

J Intell Robot Syst (2018) 91:425–444 441

http://www.movingai.com/benchmarks/
http://www.movingai.com/benchmarks/


Table 6 Test no. 4—experimental results

(1) (2) (3) (4) (5) (6) (7) (9) (10)

Map name Scaled map size TA(H)exp. [ms] kAexp. TA(B)exp. [ms] TLexp.[ms] kLexp. TA(H)exp. / TLexp. TA(B)exp./ TLexp.

Random 512 × 512 57,4 63 837 49,3 45,7 69 650 1,256 1,079

512-10-0 1024 × 1024 181,6 184 142 156,3 142,2 210 505 1,277 1,099

2048 × 2048 765,6 659 197 732,8 564,5 766 898 1,356 1,298

4096 × 4096 3 850,8 2 453 643 4 558,5 2 876,9 2 891 018 1,339 1,585

Random 512 × 512 83,5 98 350 68,5 63,2 100 627 1,321 1,084

512-30-9 1024 × 1024 292,5 309 123 235,4 211,2 321 216 1,385 1,115

2048 × 2048 1 249,0 1 140 376 1 026,2 852,2 1 192 984 1,466 1,204

4096 × 4096 6 431,8 4 324 500 5 894,9 4 202,2 4 553 927 1,531 1,403

Maze 512-8-9 512 × 512 137,5 193 477 119,7 113,0 193 653 1,217 1,059

1024 × 1024 552,1 723 850 468,4 441,8 724 974 1,250 1,060

2048 × 2048 2 218,8 2 691 799 1 834,6 1 704,6 2 697 481 1,302 1,076

4096 × 4096 110 081 10 842 246 7 947,9 7 204,5 10 860 352 1,399 1,103

Room16 000 512 × 512 98,7 111 350 80,62 74,4 114 568 1,327 1,084

1024 × 1024 413,8 417 609 333,8 296,8 432 150 1,394 1,125

2048 × 2048 1 903,5 1 626 457 1 570,7 1 271,3 1 685 967 1,497 1,236

4096 × 4096 9 386,3 6 486 403 8 757,0 6 022,8 6 721 657 1,558 1,454

Starcraft 768 × 768 223,5 280 949 191,7 179,5 281 538 1,245 1,068

‘Inferno’ 1536 × 1536 933,7 1 122 541 759,8 713,5 1 125 007 1,309 1,065

3072 × 3072 4 055,7 4 487 646 3 452,6 3037 4 497 654 1,335 1,137

6144 × 6144 18 096 17 945 480 14 095,7 12 333 17 985 749 1,467 1,143

Starcraft 1024 × 1024 307,5 321 613 250,4 232,1 332 076 1,325 1,079

‘Frozen sea’ 2048 × 2048 1 396,0 1 350 497 1 134,4 969,8 1 390 130 1,439 1,170

4096 × 4096 6 496,1 5 320 030 5 639,8 4 241,1 5 480 273 1,532 1,330

8192 × 8192 33 806 21 254 077 30 935,9 21 459,9 21 893 183 1,575 1,442

Warcraft 512 × 512 18,9 23 280 16,3 15,7 24 298 1,204 1,038

‘The crucible’ 1024 × 1024 79,9 92 343 67,3 63 96 540 1,268 1,068

2048 × 2048 352,5 368 251 294,3 262,3 385 211 1,344 1,122

4096 × 4096 1 614,7 1 470 717 1 389,6 1 117,1 1 538 910 1,445 1,244

(1) map name, (2) map size after scaling, (3) heap based A* algorithm experimental execution time, (4) experimental number of iterations of the

heap based A* algorithm, (5) bucket based based A* algorithm experimental execution time, (6) L* algorithm experimental execution time, (7)

experimental number of iterations of the L* algorithm, (8) experimental g cost of the goal node, (9) experimental execution time ratio for heap

based A* and L* algorithm, (10) experimental execution time ratio for bucket based A* and L* algorithm

of nodes in the buckets is not significant). Nevertheless,

in all examples the L* was the fastest algorithm. It was

confirmed that the larger the map is, the more the advantage

of the bucket based A* algorithm is decreased (many nodes

in each bucket has to be checked). The L* algorithm

is not sensitive to the number of nodes in each bucket.

Moreover, for the larger map sizes, its advantages are more

significant.

7 Conclusion

The performed tests confirmed the advantages of the L*

algorithm. The experimental research results showed that

the difference between A* and L* execution time depends

on the distance between the start and goal node and the

shape and positions of the obstacles. The proposed method

of dividing the whole open list into buckets (without

necessarily determining the lowest f cost node within

the bucket) can be implemented in more types of graph

searching algorithms instead of selecting the minimum f

cost node from the open list.

Our method of estimation of the execution time

provides results close to experimental values. The difference

becomes lower for the longer paths. For shorter paths, our

assumption that the size of the open list is constant for the

A* algorithm seems to be too strong. For this reason, the

estimated values may not be accurate.

J Intell Robot Syst (2018) 91:425–444442



Fig. 9 The path found by the L* algorithm on the benchmark test maps

in test no. 4: a Starcraft ‘Inferno’ 768 × 768 b Maze512 8 9 512 ×

512 c Room16 000 512 × 512 d Random512 30 9 512 × 512

Most of the tests were performed on a flat terrain

with the use of the cost functions depending only on the

distance between the nodes. It is planned to expand the

cost function and to include the elements depending on the

terrain height, roughness and confidence factor, according

to the workspace description proposed in [15]. Moreover,

it is planned to verify the method for the nonholonomic

robot path planning problem using the method of creating

the graph nodes presented in [16] and for the dynamic path

planning problem.

Although we tested the L* algorithm only for simple

graphs for the path planning problem, the method is

general—it works for any type of graph (finite or infinite)

and ensures that the optimal path is found. In order to

achieve the optimality of the L* algorithm, the strength

of the heuristic function has to be appropriately decreased

(with the use of the w coefficient). Our tests confirm that

simply assuming w close to 1 (from 0,99 to 0,9999), the

serial L* can be faster than the A* up to 2 times. The

values of w bigger than 0,9999 can cause that the number

of iterations of the L* algorithm decreases, but the number

of empty buckets raises and the performance of the L*

algorithm is reduced.

All of the tests were performed with the serial version

of the L* algorithm. The future works will also consider

the parallel L* algorithm (the open list processing and the

nodes generation can be parallelized) with the use of GPU

computation. This feature could improve the efficiency of

the L* algorithm significantly.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Arrora, S., Barak, B.: Computational Complexity: A Modern

Approach, 594 p. Cambridge University Press, New York (2009)

2. Brodal, G.S., Lagogiannis, G., Trajan, R.: Strict fibonacci heaps.

In: Proceedings of the 44th Symposium on Theory of Computing,

p. 1177 (2012)
3. Daniel, K., Nash, A., Koenig, S., Fernel, A.: Theta*, any-angle

path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)
4. Dial, R.B.: Algorithm 360: shortest-path forest with topological

ordering. Commun. ACM 12(11), 632–633 (1969)
5. Edelkamp, S., Schroedl, S.: Heuristic Search—Theory and

Applications. Morgan Kaufmann, San Mateo (2012)
6. Fredman, M.L., Trajan, R.E.: Fibonacci heaps and their uses in

improved network optimization algorithms. J. Assoc. Comput.

Mach. 34(3), 596–615 (1987)
7. Hatem, M., Burns, E., Ruml, W.: Faster Problem Solving in Java

with Heuristic Search. IBM Developer Works (2013)

J Intell Robot Syst (2018) 91:425–444 443

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


8. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the

heuristic determination f minimum cost paths. IEEE Trans. Syst.

Sci. Cybern. 4(2), 100–107 (1968)
9. Hernandez, C., Baier, J.A., Asin, R.: Making A* run faster than

D*-lite for path-planning in partially known terrain. In: Twenty-

Fourth International Conference on Automated Planning and

Scheduling (2014)

10. Khatib, O.: Real-time obstacle avoidance for manipulators and

mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

11. Kliemann, L., Sanders, P.: Algorithm Engineering: Selected

Results and Surveys. Springer International Publishing, Basel

(2016)

12. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artif.

Intell. 155(1–2), 93–146 (2004)

13. Koenig, S., Likhachev, M.: D* Lite. In: Proceedings of the AAAI

Conference on Artificial Intelligence, pp. 476–483 (2002)

14. Latombe, J.-C.: Robot Motion Planning, p. 651. Kluwer Academic

Publisher, Dordrecht (1991)

15. Niewola, A.: Rough surface description system in 2,5d map for

mobile robot navigation. J. Autom. Mob. Robot. Intell. Syst. 7(3),

57–63 (2013)

16. Niewola, A., Pods ¸edkowski, L.: Nonholonomic mobile robot path

planning with linear computational complexity graph searching

algorithm. In: 2015 10th International Workshop on Robot Motion

and Control (RoMoCo), pp. 217–222 (2015)

17. Nilsson, N.: Principles of Artificial Intelligence, p. 476. Tioga

Publishing Company, Pato Alto (1980)

18. Pods ¸edkowski, L.: Path planner for nonholonomic mobile robot

with fast replanning procedure. In: IEEE International Conference

on Robotics and Automation, pp. 3588–3593 (1998)

19. Stentz, A.: Optimal and efficient path planning for partially-

known environment. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA ’94), pp. 3310–

3317 (1994)
20. Stentz, A.: The focussed D* algorithm for real-time replan-

ning. The focussed D* algorithm for real-time replanning. In:

Proceedings of the International Joint Conference on Artificial

Intelligence, pp. 1652–1659 (1995)

21. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE

Trans. Comput. Intell. AI Games 4(2), 144–148 (2012)
22. Nguyet, T.T.N., Hoai, T.V., Thi, N.A.: Some advanced techniques

in reducing time for path planning based on visibility graph. In:

2011 Third International Conference on Knowledge and Systems

Engineering (KSE), pp. 190–194 (2011)
23. Ho, Y.-J., Li, J.-S.: Collision-free curvature-bounded smooth

path planning using composite bezier curve based on voronoi

diagram. In: 2009 IEEE International Symposium on Compu-

tational Intelligence in Robotics and Automation, pp. 463–469

(2009)
24. Zhiye, L., Xiong, C.: Path planning approach based on probabilis-

tic roadmap for sensor based car-like robot in unknown environ-

ments. In: 2004 IEEE International Conference on Systems, Man

and Cybernetics, pp. 2907–2912 (2004)

Adam Niewola received M.Sc. degree in Automatics and Robotics

from the Faculty of Mechanical Engineering, Łódź University of

Technology, Poland in 2011. His researches include mobile robots path

planning and localization problem, sensor data fusion for orientation

estimation, signal filtering and telemanipulation. He was involved in

research project of a device for measuring femur displacement in

damaged hip joint operations.

Leszek Podsȩdkowski received M.Sc. degree in 1989, PhD degree

in 1993 from the Faculty of Mechanical Engineering, Technical

University of Łódź, Poland. Since 2013 he is a full professor. He

is a manager of the Automation and Robotics Division of Institute

of Machine Tools and Production Engineering and supervisor of

the specialization of Automatics and Robotics at the Faculty of

Mechanical Engineering, Łódź University of Technology. His research

areas include mobile robots path planning, localization and control,

telemanipulators, in particular for cardiac surgery, robots construction

and diagnostics and sensor systems for robotics. He was involved in

many research projects, e.g. creation of RobIn Heart, manipulator for

cardiac surgery.

J Intell Robot Syst (2018) 91:425–444444


	L* Algorithm—A Linear Computational Complexity Graph Searching Algorithm for Path Planning
	Abstract
	Abstract
	Introduction
	Problem Statement
	Related Work
	L* Algorithm
	General Idea of the L* Graph Searching Algorithm
	The Assumptions
	The Open List Structure
	The L* Algorithm—Step by Step
	The Open List Operations

	Properties of the L* Algorithm
	Proof of the L* Algorithm Admissibility and the Monotone Restriction
	Theorem
	Theorem (admissibility restriction)


	Computational Complexity
	State Complexity
	Comparison of the Execution Time of the L* Algorithm and the A* Algorithm
	Estimation of the Number of Iterations in the A* Algorithm and the L* Algorithm
	Estimation of the Number of Nodes on the Open List for the A* Algorithm
	Execution Time Comparison


	Results of the Simulation Tests
	Test 1
	Test 2
	Test 3
	Test 4

	Conclusion
	Open Access
	References


