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L-CAMP: Extremely local high-performance wavelet
representations in high spatial dimension

Youngmi Hur and Amos Ron

Abstract— We study a new wavelet-based methodology for representing
data on regular grids. The main attraction of this new L-CAMP
methodology is in the way it scales with the spatial dimension, making
it, thus, highly suitable for the representation of high dimensional data.
The specific highlights of the L-CAMP methodology are three. First, it
is computed and inverted by fast algorithms with linear complexity and
very small constants. Second, the representation is accompanied by solid
mathematical theory that reveals its performance in terms of the maximal
level of smoothness that is accurately encoded by the representation.
Third, the localness of the representation, measured as the sum of the
volumes of the supports of the underlying mother wavelets, is extreme.

I. INTRODUCTION

The wavelet representation is one of the major representations
for data defined on regular grids. There are two main reasons for
the popularity of this representation. Firstly, its discrete version is
computed and inverted by a fast algorithm, the so-called Fast Wavelet
Transform (FWT) [6]. Secondly, it is known to provide optimally
sparse representations for the “right type” of functions/datasets (see,
e.g., [3], [7]). We refer in this paper to this latter issue as “per-
formance”, and actually distinguish between two different types of
performance, Jackson-type and Bernstein-type.

We are interested in this paper in wavelet representations in high-
dimensions. The construction of effective wavelet representations
in high spatial dimension is a challenging problem. At a first
glance, the choice falls on the so-called tensor-product constructions.
These constructions are readily available, their performance is well-
understood, they are simple, convenient, and, to a degree, compu-
tationally effective. However, as the spatial dimension grows, such
constructions become immensely non-local in space. Let us illustrate
this by the following simple example. Suppose that our construction
is in R5, and that we require Jackson-type performance s = 2, which
essentially means that all the wavelets have two vanishing moments.
A standard choice would be to use the tensor-product of Daubechies’
4-tap filters [1]. The 5-D tensor-product construction yields 31 mother
wavelets. For the case here, the volume of the system, viz., the sum
of the support volumes of these 31 mother wavelets is approximately
7500. This means that every point in space is visited approximately
7500 times by the wavelets within a single scale. That does not sound
“local” at all.

In [4], we introduce an algorithm that, for a given fixed perfor-
mance level s (we deal concretely with s = 2, 3, 4) and a spatial
dimension n, yields a wavelet system, to which we refer as an L-
CAMP system, generated by the mother wavelets Ψ := Ψ(n, s) ⊂
L2(Rn) such that:
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(1) The performance of the representation matches the given grade
s. One can choose here to accept Jackson-type performance or to
insist on Bernstein-type performance.

(2) The representation can be computed by the FWT, hence with
linear complexity.

(3) The representation can be inverted by an algorithm which is
different from, and is at least as fast as, the standard inversion of
the FWT.

(4) A complete cycle of one decomposition step and its inversion is
not only of linear complexity, but the constant in the O(N) bounds,
where N is the size of an initial data to be analysed, does not grow
with the spatial dimension.

(5) The representation is extremely local.
In the current paper we discuss some of the highlights of the L-

CAMP methodology, and illustrate the general theory with the aid
of two specific constructions. Column 7 of Table I lists the volumes
of these two systems. The two volumes satisfy vol(Ψ) < 5 (first
system), and vol(Ψ) < 6 (second system); in both cases, the volume
is uniformly bounded independently of the dimension. This should
be considered a dramatic improvement over the vol(Ψ) ≈ 7500 of
the tensor-product construct that was detailed earlier; note also that
the volume of all tensor-product constructions (including the Haar
system) grows exponentially fast with the dimension.

Given f : Rn → R, we denote

fj,k := DjEkf = 2j
n
2 f(2j · −k), j ∈ Z, k ∈ Zn.

Here, (Df)(t) = 2n/2f(2t) and (Ekf)(t) = f(t− k). We let χ be
the characteristic function of the unit cube, and let 1 := (1, . . . , 1) ∈
Zn. Furthermore, we let E := {0, 1}n, the set of the vertices of the
unit cube and let E′ := E\0.

The outline of the paper is as follows. In Section II, we introduce
the L-CAMP systems. In Section III, we present an algorithm for
computing and inverting the L-CAMP representation, and examine
its complexity. In Section IV, a rigorous discussion of the Jackson-
type and Bernstein-type performance of wavelet systems is given
together with the main results concerning the performance of L-
CAMP systems. The proofs can be found in [4].

II. THE L-CAMP SYSTEM INTRODUCED

The L-CAMP class in this paper is based on the support function
φc := χ of the unit cube. The function φc is refinable with mask

τc(ω) =

nY
l=1

1 + e−iω(l)

2
. Here and later, we use

ω := (ω(1), . . . , ω(n)) ∈ Rn

to denote the generic point in the frequency domain. Let hc be the
filter associated with τ c (i.e. bhc = τ c). More general L-CAMP
constructions, that use refinable functions φc other than χ, are
available (see [4] for detailed discussion).

The total number of mother wavelets in our L-CAMP construction
is 2n. Recall that, in n-D, the minimal number of mother wavelets is
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2n−1, hence that we are slightly redundant. We index the L-CAMP
mother wavelets by the set E, i.e., ψν , ν ∈ E.

The entire L-CAMP construction is based on two lowpass filters,
and on nothing else. One of these filters is used to define the mother
wavelet ψ0, while the other one is used to define all the remaining
mother wavelets. We refer to the first one as the enhancement filter,
and to the latter one as the main filter.

We start by selecting the mask τe of the enhancement filter. It can
be any trigonometric polynomial (in n-variables). Initially we require
that the mask satisfies the relation

1− τe(2ω)τc(ω) = O(|ω|s), near the origin. (1)

We say that τe is of order s. While a high s is desired here, we
require, at a minimum, that s ≥ 2. The enhancement filter he is,
then, the filter associated with the mask τe, i.e., τe = bhe. We further
would like the number of taps of he to be as small as possible. The
third, and final, condition that the enhancement filter should satisfy
is detailed later.

Next, we define the first mother wavelet, ψ0, by the relation

bψ0 := 2−n/2
�bφc(·/2)− τebφc� . (2)

Note that

ψ0 = 2−n/2
 

2nφc(2·)−
X
k∈Zn

he(k)φc(·+ k)

!
.

In order to define the remaining 2n−1 mother wavelets, we choose
a univariate mask τ , denote its univariate filter by h, and refer to it
as the main filter. The main filter should also satisfy three conditions.
The first condition is that it is supported on the odd integers, i.e.,

h(2m) = 0, m ∈ Z.

The second condition is that the filter will have high order of
polynomial accuracy N : we say that h has accuracy N if

h ∗ P = P, ∀P ∈ Π1
N−1. (3)

Recall that the main filter is univariate, hence the accuracy test
is conducted on univariate polynomials. A third condition that is
required of the main filter is detailed later.

We lift the main filter to n-dimensions by aligning it along one
of the coordinate axes. There are n different ways to do it, i.e., for
l = 1, . . . , n,

τl(ω) := τ(ω(l)).

The mother wavelet ψν , ν ∈ E′, is defined by the relation

eiν·ω bψν(2ω) = 2−n/2
�
1− τdνe(ω)

� bφc(ω). (4)

Here d e : E′ → {1, . . . , n} is a map that determines the orientation
of τ that is assigned to the ν-mother wavelet. While the assignment
d e cannot be done at random, there is a great deal of flexibility
in choosing it. One way for defining d e goes as follows: for each
ν ∈ E′,

dνe := the position of the last 1-digit in the vector ν. (5)

For example, for n = 2, d(0, 1)e = d(1, 1)e = 2 and d(1, 0)e = 1.
We extend the domain of the map d e to E by defining d0e := 0.
Under this convention, the valuation map d e of (5) satisfies

dν − edνee < dνe, ν ∈ E′. (6)

Here, el is the lth vector in the standard basis for Rn.

Note that, if h is (λ-1)-tap, then suppψν is the union of λ cubes
that are aligned along the dνe-axis, each of which with volume 2−n.
Defining the volume of Ψ ⊂ L2(Rn) to be

vol(Ψ) :=
X
ψ∈Ψ

vol(suppψ),

we obtain that the volume of the L-CAMP mother wavelet set

Ψ := {ψν : ν ∈ E} (7)

is
vol(Ψ) = vol(suppψ0) +

λ(2n − 1)

2n
.

That is, the total volume of Ψ is bounded by vol(suppψ0) + λ.
We mentioned so far two conditions that we require of the enhance-

ment filter, and of the main filter. Only one additional condition is
required here, but it is not as simple as the ones above.

Performance conditions. Our performance analysis of the L-CAMP
system is based on the following parameters:

• The order s ≥ 2 of the enhancement mask (cf. (1)).
• The accuracy N ≥ 2 of the main filter (cf. (3)).
• The Hölder smoothness α of the n-dimensional refinable func-

tion eφ associated with the mask

τe

 
nY
l=1

1 + τl
2

!
. (8)

For Jackson-type performance, we need to assume that

α > 0. (J)

The performance is then related to min{s,N}. In all our concrete
constructions, this minimum is s.
Bernstein-type performance is related to min{s,N, α}, which, again,
will coincide in our constructions with min{s, α}. So, for this type
of performance we desire that

α ≥ s, (B)

or at least that α does not lag far behind s.

III. FAST ALGORITHMS FOR COMPUTING AND INVERTING THE

REPRESENTATION

The L-CAMP representation can be computed and inverted by fast
algorithms with linear complexity and small constants.

L-CAMP decomposition and reconstruction algorithms. Let he be
the enhancement filter and let h be the main filter. For l = 1, . . . , n,
let hl be the lifting of h to an n-dimensional filter in the l-coordinate
direction. Let d e be the valuation map from (5). Then:

input y0 : Zn → C
(1) Decomposition:
for j = −1,−2, . . . , j0

yj(k) = 2−n
P
µ∈E yj+1(2k + µ), k ∈ Zn (*)

if k ∈ 2Zn
dj+1(k) = yj+1(k)− (he ∗ yj)(k/2)

end
if k ∈ ν + 2Zn where ν ∈ E′

dj+1(k) = yj+1(k)− (hdνe ∗ yj+1)(k)
end

end

(2) Reconstruction:
for j = j0, . . . ,−1

if k ∈ 2Zn
yj+1(k) = dj+1(k) + (he ∗ yj)(k/2)
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end
for dνe = 1, · · · , n (**)

if k ∈ ν + 2Zn
yj+1(k) = dj+1(k) + (hdνe ∗ yj+1)(k)

end
end

end

We note that the resulted MRA (yj)j≤0 from the line marked
by (*) is the MRA associated with χ, that is, assuming y0(k) =
〈f, χ0,k〉, k ∈ Zn, for some function f , it follows that

yj(k) = 2jn/2〈f, χj,k〉, j < 0, k ∈ Zn.

After that line, the rest of the decomposition step computes the
detail coefficients dj+1. The interpretation of the detail coefficients
is standard up to normalization, i.e., retaining the same assumption
on the initial data y0, one proves that for j < 0, ν ∈ E, k ∈ Zn,

dj+1(ν + 2k) = 2(j+1)n/2〈f, (ψν)j,k〉.

The reconstruction step does not resemble its FWT counterpart.
The crucial step in the reconstruction is the for loop marked by (**).
We observe that, if hdνe(l) 6= 0, then l must be of the form

l = a edνe,

where edνe is the unit vector in the dνe-coordinate direction, and a
is an odd number. This means that all the values of yj+1 that are
needed for the computation of (hdνe ∗ yj+1)(k), k ∈ ν+2Zn, lie in
ν − edνe + 2Zn. Since dν − edνee < dνe for any ν ∈ E′ from (6),
we have already recovered those values of yj+1 previously, hence we
are able to compute yj+1(k) as above.

Complexity. We measure complexity by counting the number of
“operations” needed in order to fully derive yj and dj+1 from yj+1,
and add the number of operations needed for the inversion. Here, we
define “an operation” as the need to fetch an entry from some of our
arrays/vectors. Thus, for example, computing one entry in yj from
yj+1 as in (*) requires 2n operations.

Obviously, the complexity here is linear, i.e., ∼ CM , with M the
number of non-zero entries in y0, and C some constant. Our goal is
to estimate that constant: since M is expected to grow exponentially
fast with the dimension, we need, at least, to control very tightly that
constant! So, we actually compute the mean number of operations
per one single entry in y0.

We observe that the number of operations required to process the
portion of yj that lies in a cube of lengthsize 2 is about

2n + 2(1 + tap-size of he) + 2λ(2n − 1).

This means that the cost per entry of performing one complete cycle
of decomposition/inversion is bounded by

1 + 2(λ+ 2−n(1 + tap-size of he)).

IV. PERFORMANCE ANALYSIS

A. The performance of wavelet frames

Let Ψ be a finite subset of L2(Rn). The wavelet system generated
by the mother wavelets Ψ is the family

X(Ψ) := {ψj,k : ψ ∈ Ψ, j ∈ Z, k ∈ Zn}.

The analysis operator is defined as

T ∗X(Ψ) : f 7→ (〈f, x〉)x∈X(Ψ).

X(Ψ) is a Bessel system if T ∗X(Ψ) : L2(Rn) → `2(X(Ψ)) is
bounded. A Bessel system X(Ψ) is a frame if the analysis operator
is bounded above and below.

Next, we illustrate the way the “performance” of a wavelet frame
X(Ψ) may be graded, and use the L2-setup to this end. For α > 0, let
Wα

2 (Rn) be the usual Sobolev space. That is, Wα
2 (Rn) is the set of

functions f ∈ L2(Rn) s.t. |f |Wα
2 (Rn) := ‖(| · |α bf )∨‖L2(Rn) < ∞.

We would like first the wavelet frame X(Ψ) to satisfyX
ψ∈Ψ

‖T ∗X(ψ)f‖`2(α) ≤ Aα|f |Wα
2 (Rn), ∀f ∈Wα

2 (Rn). (9)

Here,
‖T ∗X(ψ)f‖2

`2(α) :=
X

j∈Z,k∈Zn

22jα|〈f, ψj,k〉|2.

The supremum of all α > 0 for which (9) holds is the Jackson-
type performance sJ of the wavelet frame X(Ψ). It is known that
the essential condition Ψ needs to satisfy for having “performance-
grade” sJ is that each ψ ∈ Ψ has sJ vanishing moments :bψ = O(| · |sJ ), near the origin.

Another way to measure the performance of X(Ψ) is to insist that,
in addition to (9), the inverse inequality holds as well:X

ψ∈Ψ

‖T ∗X(ψ)f‖`2(α) ≥ Bα|f |Wα
2 (Rn), ∀f ∈ L2(Rn). (10)

The supremum of all α > 0 for which (9) and (10) hold is the
Bernstein-type performance sB of the wavelet frame X(Ψ). The
value of sB is not connected directly to any easy-to-check property
of the system X(Ψ). As a matter of fact, the value of sB is related to
the smoothness of the dual frame X(Ψd), which we now describe.

First, one defines a map Ψ 3 ψ 7→ ψd ∈ L2(Rn), and extends it
naturally to X(Ψ) (i.e., (ψj,k)

d := (ψd)j,k). Assume that X(Ψd) is
also a frame. The frame X(Ψd) is then said to be dual to X(Ψ) if
one has the perfect reconstruction property:

f = TX(Ψd)T
∗
X(Ψ)f =

X
x∈X(Ψ)

〈f, x〉xd, f ∈ L2(Rn).

Here, TX(Ψd) is the synthesis operator :

TX(Ψd) : CX(Ψd) 3 a 7→
X

x∈X(Ψd)

a(x)x.

Thus, one strives to build wavelet frame systems that have a
high number of vanishing moments, and have smooth dual frames.
This brings us to the question of how, actually, wavelet systems are
constructed. The most general recipe in this regard is known as the
Oblique Extension Principle (OEP, [2]). However, in this paper, we
will need its special and simpler case, the Unitary Extension Principle
(UEP). Both lead to the simultaneous construction of a frame and
its dual frame. We describe now the UEP. One uses the tool of
MultiResolution Analysis (MRA)([6], [7], [9], [2]): one begins with
a refinable function φ ∈ L2(Rn), viz., a function whose Fourier
transform satisfies a relationbφ(2·) = τ bφ,
for some 2π-periodic τ known as the refinement mask. One subse-
quently defines V0 := V0(φ) ⊂ L2(Rn) to be the closed linear span
of (Ekφ)k∈Zn , and Vj := Vj(φ) := DjV0, j ∈ Z. The mother
wavelets Ψ = {ψ1, . . . , ψr} are then (carefully) selected from V1.
This implies that every mother wavelet ψi ∈ Ψ must satisfy a relation
of the form bψi(2·) = τibφ,
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TABLE I
THE TWO L-CAMP SYSTEMS THAT ARE CONSTRUCTED IN THIS PAPER. COLUMN 1 ENUMERATES THOSE SYSTEMS.

L-CAMP he λ tap-size of he vol(Ψ) Hölder smoothness sJ sB

SYSTEMS -1 0 1 = vol(suppψ0) of eφ ≥

I 3
4

1
4

3 2 2 + 3 · (2n − 1)/2n 1.4150 2 ≥ 1.4150

II 1
8

1
2

3
8

3 3 3 + 3 · (2n − 1)/2n 2.4150 2 2

for some 2π-periodic τi. The dual mother wavelets Ψd are con-
structed similarly, using another refinable function φd with mask τd,
and corresponding wavelet masks (τdi )ri=1.

Suppose now that the two systems X(Ψ) and X(Ψd) are known
to be, each, a Bessel system, and they satisfy the Mixed Unitary
Extension Principle (MUEP) :

τ(·+ γ)τd +

LX
i=1

τi(·+ γ)τdi =

�
1, γ = 0,
0, γ ∈ {0, π}n\0, (11)

and bφ(0) = bφd(0) = 1. Then X(Ψ) and X(Ψd) form a pair of a
wavelet frame and a dual wavelet frame [8]. We refer then to the pair
(X(Ψ), X(Ψd)) as a (UEP) bi-framelet.

B. The performance of L-CAMP systems

We associate here the L-CAMP system with a dual system. We
first define the following partial ordering on E:

ν′ ≥ ν ⇐⇒ ν′(l) = ν(l), l = 1, . . . , dνe,

where d e is defined as in (5). In particular, ν′ ≥ 0 for all ν′ ∈ E.
Given a vector a ∈ Cn, we define

aν :=

nY
l=1

a(l)ν(l).

Lemma 1: For ν ∈ E, let tν be the wavelet mask that corresponds
to the mother wavelet ψν defined in (2) and (4). Let ξ be any
trigonometric polynomial such that ξ(0) = 1 and define a new
refinement mask

τd := τe(2·)τr

 
1 + ξ

 
1− τe(2·)

2n

X
ν∈E

eντ
ν

!!
, (12)

where τr :=
Qn
l=1(1 + τl)/2, τ := (τ1, τ2, . . . , τn), and eν(ω) :=

eiν·ω for ω ∈ Tn. We also define dual wavelet masks

tdν = 2−n/2e−ν
X
ν′≥ν

τ ν
′−ν (1− ξτe(2·)τreν′), ν ∈ E. (13)

Then the masks (τc, (tν)ν∈E) and (τd, (tdν)ν∈E) satisfy the MUEP
condition (11), i.e.

τc(·+ γ)τd +
X
ν∈E

tν(·+ γ)tdν =

�
1, if γ = 0,
0, if γ ∈ {0, π}n\0.

We are now ready to present our performance analysis of L-CAMP
systems. We approach the performance analysis as follows. We first
fix an integer s ≥ 2. We then require the enhancement mask τe to be
of order s (i.e. to satisfy (1)), and require the main filter h to have
accuracy s as well (i.e., to satisfy (3) for N := s). Now suppose
that we construct the L-CAMP wavelet system using τe and h as
explained in Section II. Let Ψ be the L-CAMP mother wavelet set as
in (7). Then we see that each of the mother wavelets has s vanishing
moments: for ψ0 this is due to the order of τe, and for all the other
mother wavelets this is due to the accuracy of the main filter h.

The other important information needed for the performance anal-
ysis of X(Ψ) is the smoothness of the dual system. To this end, we

will show that it suffices to know the smoothness of the refinable
function eφ, the refinable function associated with the mask τeτr , (cf.
(8) and (12)). We note that the standard performance analysis will
hinge on the smoothness of the more complicated φd associated with
τd (see, e.g., [7], [5]); thus the reduction of the performance analysis
to the smoothness of eφ is an important step here.

Here we use the usual Hölder smoothness to measure smoothness.
For η > 0 non-integer, there is a standard interpretation of what
Hölder smoothness η means. For positive integers M = 1, 2, · · ·, we
say that f has Hölder smoothness M if f has Hölder smoothness η
for all 0 < η < M .

Theorem 1: Let s ≥ 2 be an integer. Assume that we have an L-
CAMP system that satisfies (1) for the given s, and (3) for N := s.
Suppose that eφ has Hölder smoothness η for some η > 0. Then
X(Ψ) provides sJ ≥ s and sB ≥ min{s, η}.
The proof of the above theorem invokes the following lemma, which
might be of independent interest.

Lemma 2: Let s ≥ 2 be an integer. Assume that we have an L-
CAMP system that satisfies (1) for the given s, and (3) for N := s.
Suppose that eφ has Hölder smoothness η for some η > 0. Then for
every 0 < α < η, there exists a wavelet frame X(Ψd) associated
with a refinable function φd that corresponds to the mask τd in (12),
so that the pair (X(Ψ), X(Ψd)) is a (UEP) bi-framelet and each
element in Ψd has Hölder smoothness α.
From Theorem 1 (for any η > 0 and η := s), we see that
the L-CAMP systems satisfying the assumptions in Performance
conditions (in Section II) have performance grade at least s, in the
Jackson sense if we assume (J), and in the Bernstein sense if we
assume (B).

In Table I, the two L-CAMP systems that give s = 2 are presented.
For both systems, the main filter h satisfying

h(±1) =
1

2
, h(m) = 0, for m 6= ±1,

is used. L-CAMP systems with higher performance can be found in
[4].
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