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Abstract. Lambda-calculus is extended in order to represent a rather
large class of recursive equation systems, implicitly characterizing func-
tion(al)s or mappings of some algebraic domain into arbitrary sets. Al-
gebraic equality will then be represented by ABé-convertibility (or even
reducibility). It is then proved, under very weak assumptions on the
structure of the equations, that there always exist solutions in normal
form (Interpretation theorem). Some features of the solutions, like the
use of parametric representations of the algebraic constructors, higher-
order solutions by currification, definability of functions on unions of
algebras, etc., have been easily checked by a first implementation of the
mentioned theorem, the CuCh machine.

1 Introduction

Combinatory logic [17] and A-calculus [16] are different logic theories. Since there
is still a one to one correspondence between a combinator and a closed A-term,
for the sake of simplicity we will refer to A-terms most of the time.

A normal form (nf) is a A-term irreducible respect to any 3 () reduction
rule. Term reduction being the theoretic counterpart of computation, Church and
its scholar Kleene proved the equivalence between A-definability and recursive
function theory finding out nf’s representing any natural number or any recursive
function [22].

On the other side Curry and Turing had a more liberal point of view on
computability, in that computation shall not imply termination; e.g., Turing
wrote of a machine computing the digits of 7 [30]. They discovered fixed point
combinators Y; and Y, both without nf, to define partial functions introduced,
e.g., by the p-operator. The nf’s used by Kleene to represent primitive or even
general recursive functions were particularly intricate and not perspicuous.

In the mid 60’s a small group of people, Wagner, Strong, and others [32, 28]
tried to generalize recursive function theory to any type of data by Uniformly
Reflexive Structures (URS), based on entities similar to A-terms.

In the eatly 70’s the treatment of recursive functions by fixed point combi-
nators appeared more fascinating than the other approach, since they represent
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the idea of universal iterator, a finite object that can iterate functions an infinite
number of times. Scott, Wadsworth and others were then able to construct the
denotational semantics of programming languages based on fixed point theory
and A-calculus.

Simultaneously Wadswortl, Welch and others developed the notions of “head
normal form” and “finite development,” namely the Af2-calculus. Still in the 70’
the ADJ group and several other researchers developed an algebraic basis to
programming, the “algebraic data types”.

Backus [3] proposed to change the programming style a la Von Neumann,
using variables and assignment statements, into an applicative style FP or FPP
(similar to LISP) that avoided the use of variables.

B6hm [6] proved that FP was embeddable into combinatory logic and then
our research group became interested to the embedding of algebraic data types
and relative mappings of algebras (into another set) by A-terms. A method to
represent any type of term algebras and functions “iteratively” defined on that
algebras, using second order typed nf’s was introduced by [11]. This was a first
incomplete but meaningful improvement on [22] and on URS. [7] and [8] ex-
tended the class of iterative functions, by means of two different methods, to
treat primitive recursive and mutual iterative schemes. A remarkable result, pre-
serving Church numeral system, exhibits a normal form for primitive recursive
functionals [26].

However, two questions remained still unanswered: 1) Was the typing re-
ally necessary? 2) Could the same results be achieved for general schemes of
recursion, defining any partial functions on any data structures? [9] answered
positively both questions. The use of Bohm-tree [14, 15, 4] proved that the com-
binators representing the constructors of any homogeneous terms algebras are
also a basis for the full combinatory logic and indeed for nf’s. There is in addi-
tion a one to one mapping * transforming the constructors into new constructors,
therefore algebras into *-algebras, on which a class of equation schemes defining
partial recursive functions admits solutions in nf.

[10] illustrated the interdependence between equation schemes and the choice
of A-terms representing zero and the successor function, to obtain nf for the so-
lution of some schemes (generalizing [24]). The schemes examined were iterative,
primitive recursive, general recursive and, for the last one, double recursion has
been reduced by currification to the single one. The extension of the method of
definition to term algebras of arbitrary data structure remains unanswered, as
well as the treatment of mutual recursion schemes.

[5} defines rewriting systems, called “canonical and algebraic”, and describes
a Bohm-Piperno technique to obtain a definition in nf of a self-interpreter and
of a reducer of a godelization of the A-calculus into itself.

The present paper shows how to expand the class of canonical systems so
that our treatment is still valid. In addition, we list some attractive features of
our nf solutions, otherwise lacking using fixed point combinators, and of interest
for people looking for a concrete application of the theorems here presented.

Without embarking into a deep philosophical treatment, we would like to
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convince the reader that the ideas behind our success in finding nf representing
recursive functions or functionals on algebraic data can be made at least as
popular as those of “structured” or “object oriented” programming. This is the
aim of the following introduction. Let us begin quoting J.Shoenfield in connection
with formal systems (page 2 of [27]):

...if we choose the language for expressing the axioms suitably, then the

structure of the sentence will reflect to some extent the meaning of the

axiom.
Our language is the A-calculus. We must model algebraic expressions contain-
ing data as well as previously or newly defined functions. Our aim is to elimi-
nate recursion from the definition of some function. The only possible way is to
move inductive definitions from mappings to be defined into previously defined
functions, i.e., the constructors of the domains of mappings. We may then talk
of “data driven programming”, an idea that extrapolates usual concepts from
object oriented programming. Applying Shoenfield’s recommendation we may
choose for the algebraic language a syntax underlining the mentioned dichotomy
between data and functions and simplifying A-definitions. For the sake of this
introduction, constructors will be written in prefix notation, whereas functions
needing a recursive definition will be in suffix notation (if unary) and infix no-
tation (if binary or n+2-ary). Let us associate to Booleans (B), natural Integers
(N) and Lists of elements of a set A (L), the following features of their con-
structors: {name : arity, ... }. Then we have:

B:{True:0,False:0},N: {0:0,1+ : 1},L, : {nil : 0,cons : 2}.

We will give three examples of definition of functions: an explicit one for the
ternary function if-then-else (ite), an iterative definition for the addition function
(+), and a primitive recursive definition for the termial function (?) [23] whose
intuitive definition is

n?=0+14+..+(n—-1)+n

Using our syntax we can write

Trueitezy ==z
Falseitez y =y

translating into the A-calculus True and False it appears natural to consider
the last two equations as definitions of True and False as combinators (and to
treat ite as a variable). This poses the problem of defining a link between a
constructor and a function, essentially the need to have a universal A-definition
for a constructor of given arity and simultaneously a systematic way to replace
a constructor with a combinator related to the form of the equation. The answer
will be found in the paper and, for the moment, we will ignore this problem. Let
us write down two properties of the addition:

O0+n=n
IT+m)+n=14(m+n)
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This system of equalities can be easily transformed into a recursive definition of
the function + by the equality between the functions 1+ and +:

14+z= 1z
By replacement we obtain the recursive definitions

O+n=n
km+n=n4(m+n)

that become explicit definitions of the combinators 0 and 1+ considering 4+, m,n
as variables. We must notice: a) that positive integers are constructed as follows:

1=1+0,2=1+1,3=1:2,...

b) In the second equation at the rhs I+ (m+n) cannot be reduced since a property
of combinator weak reduction is that reduction can take place only if the number
of arguments of the combinator is greater or equal to that one appearing in the
definition (here 3). Thus, the result of computing 3+n is I+ (1+ (1+ n)})), the result
remaining valid if , before or after the computation, we will replace n by any
non negative integer. :

A tentative primitive recursive definition of 7 like

07=0
(kn)?=(+n)+(n?)

could be translated into an explicit A-definition only if we possess some delta-
rules to define addition or if we can consider + as a predefined combinator. We
can obviously form a system of four simultaneous equations and try to solve it,
but we would have the same difficulty encountered above. An additional difficulty
would arise in mutual simultaneous recursion.

The next section will solve all these difficulties. To spare the efforts of the
reader we will return to prefix notation for all kinds of functions. Alert readers
will discover factual infix notation hidden during S-reduction of some terms.

2 Recursive Equations and X-calculus

As usual, we shall consider the set A of terms of the A-calculus to be described
by the following BNF, where ¢ and & range over denumerable sets of constants
and variables, respectively:

Lu=a|z|(Az.L)|(LiL2). (1)

Let X be a set of function symbols from a given signature. A(X) denotes the
set of extended lambda terms with symbols from the signature X. To be precise
A(Z) can be defined by adding the following clause to the clauses (1) for the
formation of lambda terms: if t,,...,t, € A(X) and f € X is an n-ary function
symbol, then f(t1,...,t,) € A(X). Note that Ter(X) € A(X) where Ter(X) is
the set of first order terms with signature X.
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Definition 1. Let £ be a set of equations in the extended A-calculus A(X).
We say that £ is canonical if the function symbols in X can be partitioned
in two disjoint subsets L' = Xy U X so that, letting £y = {c1,...,¢.} and
2 ={f1,--., fr}, each equation t = ' of £ has the form

filei(ziyo oy @m)syi. .o yn) = by (2)

where f; € Ly, ¢; € X, b;; € A(Y) is a term depending on ¢ and j, n,m > 0
and the variables zy,...,%m, ¥1,...,yn are all distinct (left-linear).

We call the clements of Xy data constructors and those of Xy programs. We
say that & is complete if for all f; € X and ¢; € X, £ contains exactly one
equation of the form (2).

Notice that we allow some lambda abstractions and applications to appear
on the right-hand-sides of equations of a canonical system but not on the left-
hand-sides.

Important examples of data are natural numbers, with constructors zero and
succ and parametric lists with constructors cons and nil.

In order not to interdict concrete applications of A-calculus, we assume con-
stants to be integers (the set of integers will be denoted by N5 = {0,1,2,...,10,
11,...}) and booleans (notation Bs = {True, False}) together with strict ele-
mentary functions on such constants, called §-operators; the notion of reduction
associated to them (d-reduction) will be intended without any special notation.
Prefix applicative notation will be used for d-operators. As an example, condi-
tional expressions will be defined by means of the d-operator ite : Bs = A such
that ite True = K = Azy.2 and ite False = O = Azy.y.

It comes out that we allow an ambiguous representation of natural numbers,
e.g. 3 and succ(succ(succ zero)), and succ 2, too. The coexistence of such different
representations will be clarified in section 3.1.

The following definition imposes some restrictions over right hand sides of
canonical systems of equations.

Definition 2. Let £ be a set of equations in the extended M-calculus A(X). We

say that & is safe if it is canonical and moreover the following conditions hold

forallt=¢ ¢ &:

(i) ' is a 36-normal form;

(i) Vf e Z.vN,..., T, € A(E).f(Th,...,T,) occurs in #' = T} has no initial
abstractions;

(i) Ye€ Zo.VTh,... . Tn, Tny1 € A(X). c(T1,...,Tu)Thy1 never occurs in t/;

(iv) Vfe D)VT,...,. T, € AX).f(T1,...,T,) occurs in ¢ = T} & N;.

Remark. Some of the constraints introduced over canonical systems to make
them safe could also be obtained introducing types over the specification lan-
guage A(X). Indeed (ii) and (iii) in definition 2 are implied, in a typed scenario,
by the imposition of a basic type on T} and c(Ty,...,Ty,), respectively. Notice
that, since we will interpret A(X) in the pure A-calculus (see sect.3), such inter-
pretation will be independent of the choice of a particular type system for the
specification language.
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As pointed out by one of the referees, the restriction (ii) can be eliminated
introducing a new X; symbol f’, a new X symbal ¢/, an equation

i 21, an) = f(@1,-. 0, 20)

and replacing all terms of the form f(T1,...,T,) in right-hand sides in which
Ty has initial abstractions by f'(¢/,Ti,...,T,). This shows that the mentioned
restriction does not cause any loss in the expressive power of the language.

Finally, the restriction (iv) is due to technical reasons, only. Also, it does not
cause any loss in the expressive power of the language. Indeed, if terms of the
form f(n,Tb,...,Ty,) appear in right-hand sides of equations and n € N4, we can
replace f(n,Ty,...,Ty,) with f(T,Ts,...,T,,), where

T=zeroiff n=0,T=succmiff n=m+1.

2.1 More on Canonical Systems of Equations

A function definition can be expressed by a canonical set of equations in an
extended A-calculus: let ¥ = Xy U X} where

Yo = {zero, suce, nil, cons}, ¥y = {Fac, Map};
the following declaration is indeed a canonical set of equations in A(Xy U Xy ):

Fac(zero) = 1; Fac(succ(z)) = *(+1z)(Fac(z));
Map(nil, ) = nil; Map(cons(z, L), f) = cons(fz, Map(L, f)).
The given set of equations is clearly safe but not complete,
Any pattern of recursion can be manipulated in such a way to be expressed

by a canonical set of equations in the extended A-calculus; as an example, the
Ackermann function can be defined by the following set of equations:

Ack(zero,y) = +1y;
Ack(suce(z), zero) = Ack(z, 1);
Ack(succ(z), succ(y)) = Ack(z, Ack(+1z,y)).
The above system is not canonical since the last two equations do not have the

shape (2), but it is reduced to a canonical system (more precisely, to a safe one)
by enlarging the signature with the new function symbol f as follows:

Ack(zero,y) = +1y; Ack(suce(z),y) = Ack(z, f(y,z));
flzero,2) =1 f(suce(z),x) = Ack(+1z, z).
To be more general, but still restricting our attention to integer functions
let ¥ = Xy U X, where Xy = {zero, succ}, ¥y = {F}; a double integer recur-

sion scheme can be presented by means of the following set of equations, where
hoyo'o's hs € /I(S)

F(zero, zero) = ho; F(zero, succ(y)) = hy; 3)
F(suce(a), zero) = ho; F(suce(z), succ(y)) = ha.
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The scheme (3) is not a canonical set of equations in A(X), but it can be
easily reduced to a mutunal recursion scheme by enlarging the signature X' with
two extra function symbols; the resulting set of equations is a canonical one:

F(zero,z) = F'(z); F(succ(z), z) = F'(z,z);
F'(zero) = hy; F'(succ(y)) = hi; (4)
F"'(zero,z) = ha; F"(succ(y),z) = hs.

Such reduction is easily proved to be correct, just considering the four possible
cases in (3) and verifying they they are well defined by (4).

Similarly every partial recursive function can be defined by a canonical sys-
tem (it is enough to verify closure under minimalization, as in [29]). Moreover
the correspondence between recursive schemes and canonical systems can be
extended to functionals defined over arbitrary algebraic data structures in a
straightforward way, as our example of the functional Map. Our choice of canoni-
cal sets of equations has been made to automatize the execution of simple pattern
matching, a paradigm used by compilers for functional languages and rewriting
systems (see e.g. [25, 2]).

3 Solving equations inside A-calculus

We have introduced a language which is based on definitions of recursive func-
tions; clearly, a function has an implicitly infinite character.

Historically, solutions of systems of recursive equations are based on the use
of fixed point combinators (or similar tools {21, 31]) and yield combinators which
make the mentioned infinite character explicit. Such solutions encode all possible
unfoldings of functions. Any single datum establishes how many unfoldings of
the obtained combinator will be executed, but this, being itself the engine of
recursio, is an infinite object from the standpoint of reduction in that it does not
have a normal form. To use a slogan, we can say that in this setting, functionals
(the fixed point combinator, in particular) are diverging objects which, when
applied to data, may “incidentally” converge.

Among the consequences of this, implementations must resort to compute
weak head normal forms instead of normal forms. Abramsky and Ong introduced
the lazy A-calculus [1] to match such implementations.

A different approach is what we propose in this paper, aiming to solve recur-
sive equations without making their infinite character explicit. In our approach,
programs are, whenever possible, normal forms; reduction is started only when
they receive some input; data become the engine of recursion in that every
datum encodes the number of unfoldings it will cause to be executed by any
program; hence the infinite characteristics of recursive functions are distributed
over an infinity of finite objects. On the other hand, the solution of a set of
recursive equations is a combinator encoding exactly the information specified
by the equations. To substantiate these ideas we will exhibit an always diverging
function represented by a normal form, so that, rephrasing the slogan above, we
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can say that in our setting functionals are normal forms which, when applied to
data, may “incidentally” diverge.

A representation of the signature X' in the A-calculus is a function ¢ : ¥ — A.
Any such representation ¢ induces a map (-)¢ : A(X) — A in the obvious way,
namely
¢la) faeX
a  otherwise,

(Az.M)® = A\z. M,
(MN)* = M?N?,
F(My,...,M)® = foMP ... M2
Definition 3. Let £ = {a; = b;|t € J} be a set of equations between extended
lambda terms a;,b; € A(X).

1. We say that a representation ¢ satisfies (or solves) £ if for each equation
a; = b; in £ we have a‘f =g b‘f. If there exists a representation ¢ which
satisfies £ we say that £ can be interpreted (or represented or solved) inside
A-calculus and that ¢ is a solution for £.

A solution ¢ for £ is called a normal solution if, for all h in X, ¢(h) is a
B-normal form.

for any atomic symbol a, a? =

o

Theorem 4 (Interpretation Theorem).

Let A(X) be an extended A-calculus; then every safe set of equations £ has
a normal solution ¢ : X’ — A inside A-calculus. Furthermore we can choose ¢ so
that the restriction ¢|Xy depends only on Xy and not on &, namely there is a
fixed representation of the constructors.
Proof. Let X = {c1,¢25-..,Cr}-

For 1 < j <r, we define 9 = ¢|Xy : Ty — A

I(cj) = Ae1 ... Tme.eUjzy ... Tm, (5)

where m is the arity of ¢; and U; = ALy ... 00T .

It remains to define { = ¢|X; : £; — A, namely the representation of
programs. Without loss of generality we can assume that £ is complete (otherwise
adjoin more equations to make it complete).

Let £ = {f1,..., fr}. Consider k x r lambda terms ; ;, 1 <i <k, 1< j<r
to be defined later. Recall the definition of Church n-tuple:

(My,...,My) = dz.aMy... M,.
For 1 <i<k,let t; = (ti1,...,tir) and define
C(f1) = <ti’t1at21- .. atk>'

Thus ¢(f;) is a Church k 4 1-tuple of Church r-tuples of terms. The lambda
terms t; ; arve chosen in the only natural way which makes ¢ a solution of the
canonical system of equations £. More precisely consider the equation

fi(cj(mla"- ,xm)aylv- e ’yn) = bi,j
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belonging to & (b;; € A(X)). After applying ¢ = 9 o { the equation becomes

<ti, tyy... ,tk)(é?fl?l e l'm)yl ve e lYn = b?,]
By definition of Church tuple, this simplifies to

c?ml ettty o kYL e Y = bf'j.

Recalling the definition of c? we have
c?a:l e Tt = tiU;f:vl T =T T
Hence the equation becomes
T th...t =0,
tz,]ll e mly LY Yn = i

We can now solve this equation for ¢; ; by replacing on both sides all the occur-
rences of ty,...,t; by fresh variables vy,...,v; and abstracting with respect to
all variables present in left-hand-side. More precisely define:

;= ALl . TpU) .. UYL ... yn_(b;?’j)lﬁ
where 1 : ) — A is defined by
P(fi) = (Vi vr, .o, ). (6)

Note that, for any V € A(X), V¢ = ‘/w[tlz/vh]IShSk-
With this deﬁlliti011

t;,j:c] R 18 STTIIPR 773 1) N T e 3 (bz]’)w[th/uh]IShSk
9
= bi5 = b},

and all the equations will be satisfied.

We now prove that the given technique yields normal solutions for safe sys-
tems of equations.

Let & be safe and let 9 : Ky — A and ¢ : £} — A be as in (5) and (6),
respectively.

For any equation a = b € &, we first prove by induction on the number of oc-
currences of constructorsin b that b? is a normal form. Indeed, if constructors do
not appear in b, then b¥ = b, a normal form (by definition 2.1); if ¢j(X1,..., Xm)
occurs in b, for some X),...,X,, € A(X), then

ci(X1sv, Xn)? = deeUTXY . XD,

which is, by inductive hypothesis, a normal form and, by 2.iii, does not create
any new redex.

It comes out from 2.ii that for any equation a = b € £, b” is such that
Vfe D\VT,..., T, € A(2) if f(Ty...T,) occurs in b’ then T} either has no
initial abstractions or it has the shape /\e.eU;X 1...X,, for some X1,...,X, €
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A(D). Now, if programs do not appear in b?, then (b%)¥ = b?, a normal form,; if
fi(T1,...,T,) occurs in b?, for some T, ..., T, € A(X), then

FlT,. . T)Y =T vy .. .0 T ... TY

n

which reduces in at most one step to a head normal form without any initial
abstraction. It follows by induction that (b?)¥ reduces to a normal form, so that,
applying to such normal form the construction in the first part of the proof of
the theorem, we obtain a normal solution for £.

Ezample 1. Given ¥ = Xy U X where
Yo = {zero, succ, nil, cons} and Xy = {Fac, Map},
let £ be the following set of equations:

Fac(zero) = 1;
Fac(succ{z)) = *(+1z)(Fac(z));
Map(nil, f) = nil;
Map(cons(z, L), f) = cons(fx, Map(L, f)).

We can complete £ adding the equations

Fac(nil) = Type_erry;
Fac(cons(z, L)) = Type_err;
Map(zero, f) = Type_erra;
Map(suce(z), f) = Type_errs,

where Type_err; and Type_erry are two variables.
If we assume

@(zero) = he.eU? | o(succ) = Aze.eUjz,

#(nil) = Ae.eUl , ¢(cons) = AzLe.eUjzL,
#(Fac) = (t1,t1,t2), where t; = (t11,...,t1,4)
d(Map) = (ta,t;,t2), where ta = (t2,1,...,2.4)

and we consider the derived set of equations, we obtain

tUltity =1
8 ULz ty ty = #(+1z) (2 tr b1 t);
tlUg tyty = tlUf1 z Lt ty = Type_erry;
tzU‘} iy f = thg zt; tof = Type_errs;
t,Us ty tof = ¢(nil);
t,Udx Lty tof = ¢(cons) (fx) (Liztytaf);
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hence, we have

tratity =1
tigxtyty = x(+1z)(2ty t) t2);
tiatito =t 42 Lty ty = Type-erry;
taatitaf =tapxtytaf = Typeerrs;
ta3t) taf = @(nil);
taaxLt)taf = ¢(cons) (fz)(Liztitaf);

which is solved taking

t1 = Avjve.l |t 2 = Azvrve. x (+1a)(z vy v1 v2),

t1,3 = v Typeerry , t14 = Az12v1v2.Typeerr,

ta g = Avpvaf.Typeerry , too = Azvyvg f.Type_erry,

t2,3 = /\vlv-zf.(b(nil),

ta.4 = Azyzoviva f.@(cons) (fz1)(z2 v vy v f).
It follows that the representation for Fac and Map is a Church 3-tuple of Church
4-tuples of normal forms, hence a normal form.
Remark. It has to be noted that we obtain normal solutions also for definitions
of intrinsically diverging programs. Given ¥ = X3 U ¥, where

Yo = {zero, suec} and ¥y = {F},

let £ be the following set of equations:

F(zero) = F(zero); (7
F(succ(x)) = F(succ(z)), )

First observe that such system is safe, in spite of the fact that it defines an
always diverging function. If we assume

#(zero) = de.eU? | ¢(succ) = Are.eUsz,
O(F) = (t1,t1), wheret; = (ti11,t12)
and we consider the derived set of equations, we obtain
8102ty =1, U ¢y
tlngtl = tlU% zty;
hence, we have
tiit =t Ut ty;
tizzts =t U2zty;
which is solved taking
1y = /\vl.lef vy, g = /\mvl.lengl.

It follows that the representation for F' is a Church 2-tuple of Church 2-tuples
of normal forms, hence a normal form.
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3.1 A double citizenship for data

The Interpretation Theorem 4 enables to obtain normal solutions for safe systems
of equations.

The key idea allowing such result is that data are considered as functionals,
interpreting them in A-calculus. Now, a natural question arises: are we willing to
fully represent data structures in A-calculus? The answer is surely negative, for
we want to preserve the structure of data during computation. Roughly speaking,
we would like to give data a double citizenship: they should act as functionals
during function application, otherwise preserving their original status.

The Interpretation Theorem itself hints to a satisfactory solution to this prob-
lem: being the representation of data constructors fixed, we will consider them
as predefined combinators, i.e. extra constants to be included in A; furthermore,
we will consider their functional behaviour to be defined by weak reduction rules,
in such a way that a constructor with arity m needs (by the weak version of (5))
at least m + 1 arguments to be reduced. Assuming then {cy,...,c.} € A with

Cj.X] XmE > EU;Xl ‘e Xm,

where * B’ denotes weak reduction, it turns out that all definitions and results
obtained in the previous subsections still hold taking now X = X, since Ty = 0,
being the constructors considered constants in A.

Finally, the coexistence of different representations for natural numbers is
ruled by the following notion of reduction (x-reduction) which allows rewriting
-integers when these appear in functional position in an application:

0eNs; Ted n=m+leNs; TeAd
0T —y zero* T ’ nT —, succ! mT

Ezample 2. (Ex.1 continued)
To give the example of a computation, let ¢(Map) be as in example 1. We
have e.g. (superscript ¢ is sometimes omitted below)

(Map(cons(1, cons(2, nil)), f))?
= consl{cons2nil)taty ts f
> t,Uj 1(cons2 nil)ty t f
—p t2.4 1(cons2 nil)t, ty f
—p cons(f1)(cons2 nilty ty ta f)
> e —p cons(f1)(cons(f2)(nilty t1 t2f))
> cons(f1)(cons(f2)(t2U3 t1 t2f))
— 5 cons(f1)(cons(f2)nil), a >-normal form.

On the other hand, we have:
(Map(7, f))?
= Ttatita f —y succbtrtyta f
>4 tngﬁtl tof —p t22bir1ta f
—r g Type_erry.
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Summarizing, B-normal forms are important tools to recognize algebraic
objects as results of computations. This solves a problem mentioned in [5], in
the context of self-interpretation of A-calculus.

4 Further Properties: some examples

This section is devoted to the illustration of possible applications in functional
programming of the theoretical issues just presented.

The following examples refer to recursive definitions (D) of function(al)s,
execution commands (E) and results (R) of computations based on the imple-
mentation of the methods described in this paper, called CuCh-machine. This is
an acronym for Curry and Church, first introduced in [12, 13] to describe a ma-
chine simultaneously accepting combinators and A-terms and reducing them to
normal form. Further properties not examplified below are the allowance of free
variables, and the use of lazy data structures, in the style of [18], implemented
by normal order reduction (to be compared with [20]).

4.1 Currification

(D) ACK zero f := f 1;

(D) ACK (succ m)f := f (ACK m £);
(D) ack zero x := + 1 x;

(D) ack (succ n) x := ACK x (ack n);

Currified ack

(E) ack3 :=ack 3;

(R) Ax0 . ACK x0 (Ax1 . ACK x1 (Ax2 . ACK x2 (Ax3 . + 1 x3))) (3 beta)
(E) ack34:= ack3 4;

(R) 125 (15520 beta)

(E) ack35:= ack3 5;

(R) 253 (63780 beta)

Non currified ack
(E) r:= ack 3 4;
(R) 125 (15640 beta)
(E) s:= ack 3 5;
(R) 253 (64027 beta)

4.2 Iterative Functions

(see [19)])

(D) map := Ax0 x1 x2 x3 . x1 (Ax4 x5 . x2 (x0 x4) x5) x3;
(E) mapmap := Ax . map f(map g x);

(R) Ax0 x1 x2 . x0 (Ax3 x4 . x1 (f (g x3)) x4) x2

(E) comp := Ax . map (B £ g) x;

(R) Ax0 x1 x2 . x0 (Ax3 x4 . x1 (f (g x3)) x4) x2

(D) foldr nil a b := b;

(D) foldr (cons x L) ab := a x(foldr L a b);

(D) list := [1,4,5,6,7];



148

(E) £list := foldr list;

(R) Xx0 x1 . x0 1 (x0 4 (x0 5 (x0 6 (x0 7 x1))))
(E) bb := mapmap flist coms nil;

(R)Lf(g1), £f(g4), £ (gh), £(gs6), £ (g7)]

4.3 Complete Systems

(D) mbf zero x :=Ay.mbf y x;

(D) mbf (succ n) x:=Ay.mbf y (+ x(+ 1 n));
(D) mbf nil x:= x;

(D) mbf(cons t 1)x:= mbf 1 (+ t x);

(E) ee:= mbf [1, 3] O;

(R) 4
(E) xy:= mbf 7 6 4 nil;
(R) 17
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