
X-definition of Function(al)s by Normal Forms* 

Corrado BShm 1, Adolfo Piperno 1, Stefano Guerrini 2 

Dipartimento di Scienze dell'Informazione, Universitg di Roma "La Sapienza", 
Via Salaria 113, 00198 Roma, Italy, 

e-maih {boehm,piperno}r I. ing. uniromal, it 
2 Dipartimento di Informatica, Universits di Pisa, 

Corso Italia 40, 1-56100 Pisa, Italy, 
e-mail: guerrini�9 unipi, it 

Abst rac t .  Lambda-calculus is extended in order to represent a rather 
large class of recursive equation systems, implicitly characterizing func- 
tion(al)s or mappings of some algebraic domain into arbitrary sets. Al- 
gebraic equality will then be represented by A~g-convertibility (or even 
reducibility). It is then proved, under very weak assumptions on the 
structure of the equations, that there always exist solutions in normal 
form (Interpretation theorem). Some features of the solutions, like the 
use of parametric representations of the algebraic constructors, higher- 
order solutions by currification, definability of functions on unions of 
algebras, etc., have been easily checked by a first implementation of the 
mentioned theorem, the CuCh machine. 

1 I n t r o d u c t i o n  

Combinatory logic [17] and A-calculus [16] are different logic theories. Since there 
is still a one to one correspondence between a combinator and a closed A-term, 
for the sake of simplicity we will refer to A-terms most of the time. 

A normal form (nf) is a A-term irreducible respect to any t3 (~) reduction 
rule. Term reduction being the theoretic counterpart  of computation,  Church and 
its scholar Kleene proved the equivalence between A-definability and recursive 
function theory finding out nf's representing any natural  number or any recursive 
function [22]. 

On the other side Curry and Turing had a more liberal point of view on 
computability, in that  computat ion shall not imply termination; e.g., Turing 
wrote of a machine computing the digits of 7r [30]. They discovered fixed point 
combinators Y~ and Yc, both  without nf, to define partial functions introduced, 
e.g., by the p-operator.  The nf's used by Kleene to represent primitive or even 
general recursive functions were particularly intricate and not perspicuous. 

In the mid 60's a small group of people, Wagner, Strong, and others [32, 28] 
tried to generalize recursive function theory to any type of data  by Uniformly 
Reflexive Structures (URS), based on entities similar to A-terms. 

In the early 70's the t reatment  of recursive functions by fixed point combi- 
nators appeared more fascinating than the other approach, since they represent 

* This work has been pal'tially supported by grahts from ESPRIT BRA 7232 working 
group "Gentzen" and from MURST 40% (Italy). 



136 

the idea of universal i terator,  a finite object that  can iterate functions an infinite 
nmnber  of times. Scott, Wadsworth and others were then able to construct  the 
denotational semantics of programming languages based on fixed point theory 
and A-calculus. 

Simultaneously Wadsworth, Welch and others developed the notions of "head 
normal form" and "finite development," namely the M2-calculus. Still in the 70' 
the ADJ group and several other researchers developed an algebraic basis to 
programnaing, the "algebraic data  types". 

Backus [3] proposed to change the programming style a la Von Neumann,  
using variables and assigmnent statements,  into an applicative style FP  or F P P  
(similar to LISP) that  avoided the use of variables. 

BShm [6] proved that  FP was embeddable into combinatory logic and then 
our research group became interested to the embedding of algebraic da ta  types 
and relative mappings of algebras (into another  set) by A-terms. A method  to 
represent, any type of term algebras and functions "iteratively" defined on that  
algebras, using second order typed nf's was introduced by [11]. This was a first 
incomplete but  meaningful improvement on [22] and on URS. [7] and [8] ex- 
tended the class of iterative functions, by means of two different methods, to 
t reat  primitive recursive and mutual  iterative schemes. A remarkable result, pre- 
serving Church nmneral system, exhibits a normal form for primitive recursive 
functionals [26]. 

However, two questions remained still unanswered: 1) Was the typing re- 
ally necessary? 2) Could the same results be achieved for general schemes of 
recursion, defining any partial functions on any data  structures? [9] answered 
positively both  questions. The use of BShm-tree [14, 15, 4] proved that  the eom- 
binators representing the constructors of any homogeneous terms algebras are 
also a basis for the full conabinatory logic and indeed for nf's. There is in addi- 
tion a one to one mapping * transforming the constructors into new constructors,  
therefore algebras into *-algebras, on which a class of equation schemes defining 
partial recursive functions admits solutions in nf. 

[10] illustrated the interdependence between equation schemes and the choice 
of A-terms representing zero and the successor function, to obtain nf for the so- 
lution of some schemes (generalizing [24]). The  schemes examined were iterative , 
primitive recursive, general recursive and, for the last one, double recursion has 
been reduced by currification to the single one. The extension of the method of 
definition to term algebras of arbi t rary data  s t ructure remains unanswered, as 
well as the t reatment  of nmtual recursion schemes. 

[5] defines rewriting systems, called "canonical and algebraic", and describes 
a BShm-Piperno technique to obtain a definition in nf of a self-interpreter and 
of a reducer of a gSdelization of the A-calculus into itself. 

The present paper  shows how to expand the class of canonical systems so 
that  our t reatment  is still valid. In addition, we list some at tract ive features of 
our nf solutions, otherwise lacking using fixed point combinators, and of interest 
for people looking for a concrete application of the theorems here presented. 

Without  embarking into a deep philosophical t reatment ,  we would like to 



137 

convince the reader tha t  tile ideas behind our success in finding nf representing 
recursive functions or flmctionals on algebraic da ta  can be made  at least as 
popular  as those of "structured" or "object oriented" programming.  This is the 
aim of the following introduction. Let us begin quoting J.Shoenfield in connection 
with formal  systems (page 2 of [27]): 

. . .  if we choose the language for expressing the axioms suitably, then the 
s t ructure  of the sentence will reflect to some extent the meaning of the 
axiom. 

Our  language is the A-calculus. We must  model algebraic expressions contain- 
ing da ta  as well as previously or newly defined functions. Our aim is to elimi- 
na te  recursion from the definition of some flmction. The  only possible way is to 
move inductive definitions fl'om mappings to be  defined into previously defined 
functions, i.e., the constructors of the domains of mappings .  We may  then talk 
of "data  driven programming" ,  an idea tha t  extrapolates  usual concepts from 
object  oriented programming.  Applying Shoenfield's recommendat ion  we may 
choose for the algebraic language a syntax underlining the mentioned dichotomy 
between da ta  and flmctions and simplifying A-definitions. For the sake of this 
introduction, constructors will be writ ten in prefix notation, whereas functions 
needing a recursive definition will be in suffix notat ion (if unary) and infix no- 
ta t ion (if binary or n+2-ary) .  Let us associate to Booleans (B), natural  Integers 
(N) and Lists of elements of a set A (LA), the following features of their con- 
structors: {name : arity . . . .  }. Then we have: 

B :  {True: 0, False : 0} ,N:  {0: 0,1+ : 1},La : {ni l :  O, c o n s :  2}. 

We will give three exmnples of definition of functions: an explicit one for the 
te rnary  function if-then-else (ire), an iterative definition for the addition function 
(+), and a pr imi t ive  recursive definition for the termial  function (?) [231 whose 
intuitive definition is 

n ? = 0 +  1 + . . .  + ( n -  1 ) +  n. 

Using our syntax we can write 

T r u e  i te  x y = x 

False i r e  x y = y 

t ranslat ing into the A-calculus True and False it appears  natural  to consider 
the last two equations as definitions of True and False as combinators  (and to 
t rea t  i te  as a variable). This poses the problem of defining a link between a 
constructor  and  a function, essentially the need to have a universal A-definition 
for a constructor  of given arity and simultaneously a systematic  way to replace 
a constructor  with a combinator  related to the form of the equation. The  answer 
will be found in the paper  and, tbr the moment ,  we will ignore this problem. Let  
us write down two propert ies of the addition: 

0 + ~, = n 

(1 + m) + n = 1 + (m + n,) 



138 

This system of equalities can be easily transformed into a recursive definition of 
the flmction + by the equality between the functions 1+ and +: 

l + x =  l+x. 

By replacement we obtain the recursive definitions 

OH-n=n  
l + m + n = l + ( m + n )  

that  become explicit definitions of the combinators 0 and 1+ considering -I-, m, n 
as variables. We must notice: a) that  positive integers are constructed as follows: 

1 = 1+0,2 = 1+ 1 ,3 - -  1+2,. . .  

b) In the second equation at the rhs 1+ ( re+n)  cannot be reduced since a property 
of combinator weak reduction is that  reduction can take place only if the number 
of argmnents of the eombinator is greater or equal to that  one appearing in the 
definition (here 3). Thus, the result of computing 3-t-n is 1+ (1+ (1+ n))),  the result 
remaining valid i f ,  before or after the computation,  we will replace n by any 
non negative integer. 

A tentative primitive recursive definition of ? like 

0 ? = 0  

(l+n) ? = (1+ n) -{- (n ?) 

could be translated into an explicit A-definition only if we possess some delta- 
rules to define addition or if we can consider + as a predefined combinator. We 
can obviously form a system of four simultaneous equations and try to solve it, 
but  we would have the same difficulty encountered above. An additional difficulty 
would arise in mutual  simultaneous recursion. 

The next section will solve all these difficulties. To spare the efforts of the 
reader we will re turn to prefix notation for all kinds of functions. Alert readers 
will discover factual infix notation hidden during j3-reduction of some terms. 

2 Recursive Equations and A-calculus 
As usual, we shall consider the set A of terms of the A-calculus to be described 
by the following BNF, where a and x range over denumerable sets of constants 
and variables, respectively: 

i ::= a Ix t(Ax.L) I(L1L~). (1) 

Let 27 be a set of function symbols from a given signature. A(Z') denotes the 
set of extended lambda terma with symbols from the signature 27. To be precise 
A(27) can be defned  by adding the following clause to the clauses (1) for the 
formation of lambda terms: if t l , . . .  , tn E A(27) and f E 27 is an n-ary function 
symbol, then f ( t l , . . .  ,try) E A(r) .  Note that  Ter(~') C_ A(27) where Ter(27)is 
the set of first order terlns with signature 27. 



139 

D e f i n i t i o n  1. Let E be a set of equations in the extended A-calculus A(~) .  
We say that  C is canonical if the function symbols in ~' can be part i t ioned 
in two disjoint subsets Z -'-- Z0 U ~:  so that,  letting ~'0 = { c l , . . . , c~}  and 
~1 = {fl . . . . .  fk}, each equation t = t' of ~" has the form 

f i ( C j ( X l  . . . .  , xm) ,  yl . . . .  , yn) = bi,j (2) 

where f i  E S1,  cj E ~o,  bi,j E A(Z) is a term depending on i and j ,  n, m > 0 
and the variables xl . . . .  , xm, y : , . . . ,  Yn are all distinct (left-linear). 

We call the elements of r0  data constructors and those of S1 programs. We 
say that  g is complete if for all f i  G S] and cj E ~o,  E contains exactly one 
equation of the form (2). 

Notice that  we allow some lambda ahstractions and applications to appear  
on the right-hand-sides of equations of a canonical system but not on the left- 
hand-sides. 

Impor tan t  examples of data  are natural  numbers, with constructors zero and 
succ and parametric  lists with constructors cons and nil. 

In order not to interdict concrete applications of A-calculus, we assume con- 
stants to be integers (the set of integers will be denoted by N~ = {0, 1, 2 , . . . ,  10, 
11, . . .})  and booleans (notation B~ = {True, False}) together with strict ele- 
mentary  functions on such constants, called 6-operators; the notion of reduction 
associated to then: (6-reduction) wiU be intended without any special notation. 
Prefix applicative notation will be used for 6-operators. As an example, condi- 
tional expressions will be defined by means of the 5-operator ite : B~ --4 A such 
that  ite True = K - Axy . x  and ite False = O - Axy.y .  

It comes out that  we allow an ambiguous representation of natural  numbers, 
e.g. 3 and succ(succ(succ zero)), and succ 2, too. The coexistence of such different 
representations will be clarified in section 3.1. 

The following definition imposes some restrictions over right hand sides of 
canonical systems of equations. 

D e f i n i t i o n  2. Let ~" be a set of equations in the extended A-calculus A(~) .  We 
say that  g is safe if it is canonical and moreover the following conditions hold 
for all t - -  t ~ E E: 

(i) t' is a fl~f-normal form; 

(ii) Vf e ~ I .VT: , . . .  ,T ,  E A ( ~ ) . I ( T 1  . . . .  ,T,,)  occurs in t' =~ T: has no initial 
abstractions; 

(iii) Vc E ~0.VTI . . . .  , Tn, Tn+ 1 ~ A(~) .  c(T:, . . . .  T , )Tn+I  never occurs in t'; 
( i V )  Vf E S1 .VTI . . . .  , T,, G A ( S ) . f ( T 1  . . . . .  T , )  occurs in t '  ::~ T1 r N,.  

Remark.  Some of the constraints introduced over canonical systems to make 
them safe could also be obtained introducing types over the specification lan- 
guage A(S) .  Indeed (ii) and (iii) in definition 2 are implied, in a typed scenario, 
by the impositiou of a basic type on 7"1 and c ( T : , . . . ,  T , ) ,  respectively. Notice 
that ,  since we will interpret A(S)  in tim pure A-calculus (see sect.3), such inter- 
pretat ion will be independent of the choice of a particular type system for the 
specification language. 



140 

As pointed out by one of the referees, the restriction (ii) can be eliminated 
introducing a new ~1 symbol f~, a new ~0 symbol c ~, an equation 

.ft(cI, Xl , . . .  ,Xn) = f ( X l , - . .  ,Xn) 

and replacing all terms of the form f (T1, . . .  ,T,)  in right-hand sides in which 
T1 has initial abstractions by f~(c ~, T1, . . . ,  T,). This shows that  the mentioned 
restriction does not cause any loss in the expressive power of the language. 

Finally, the restriction (iv) is due to teclmical reasons, only. Also, it does not 
cause any loss in the expressive power of the language. Indeed, if terms of the 
form f (n ,  T2,. .  �9 Tn) appear  in right-hand sides of equations and n E N~, we can 
replace f (n ,  T 2 , . . . ,  T,,) with f (T,  T2, . . . ,  T,,), where 

T -  zero iff n = 0, T - -  succ rn iff n = m + 1. 

2 .1  M o r e  o n  C a n o n i c a l  S y s t e m s  o f  E q u a t i o n s  

A function definition can be expressed by a canonical set of equations in an 
extended A-calculus: let ~ = Z0 U E1 where 

Xo = {zero, succ, nit, co s}, X,  = { F a t ,  M a p } ;  

the following declaration is indeed a canonical set of equations in A(Z0 U $1): 

F.c(zero) = : ;  Fac( ucc(x)) = 

dl/Iap(nil, f )  = n , i / ;  Map(cons(x, L), f )  = cons(fx, Map(L, f)).  

The given set of equations is clearly safe but  not complete. 
Any pat tern  of recursion can be manipulated in such a way to be expressed 

by a canonical set of equations in the extended A-calculus; as an example, the 
Acl:ennann function can be defined by the following set of equations: 

Ack(zeTv, y) = +ly ;  

Ack(succ(x), zero) = Ack(x, 1); 

dck( succ( x ), succ(y) ) = dck( x, dck( + lx, y) ). 

The above system is not canonical since the last two equations do not have the 
shape (2), but  it is reduced to a canonical system (more precisely, to a safe one) 
by enlarging the signature with the new function symbol f as follows: 

Ack(zero, y) = + ly ;  Ack(succ(x), y) = dck(x, f (y ,  x)); 

f(zero, x) = 1 f(succ(z), x) = dck(+lx ,  z). 

To be more general, but  still restricting our at tention to integer functions 
lct _,~ = ~0 U S1, where ~0 = {zero, suec}, 571 = {F}; a double integer recur- 
sion scheme can be presented by means of the following set of equations, where 
ho . . . . .  h3 �9 A(E): 

F(zero, zero) = ho; F(zero, succ(y)) = hi; (3) 

zero) = = h3. 



141 

The scheme (3) is not a canonical set of equations in A(~) ,  but  it can be 
easily reduced to a mutual  recursion scheme by enlarging the signature r with 
two extra  function sylnbols; the resulting set of equations is a canonical one: 

F(zero, z) = F ' ( z ) ;  

F'(zero) = h0; 

F'(zew, x) = h2; 

= F"(z,x); 
= h i ;  (4) 

Such reduction is easily proved to be correct, just  considering the four possible 
cases in (3) and verifying they they are well defined by (4). 

Similarly every partial recursive fnnction can be defined by a canonical sys- 
t em (it is enough to verify closure under minimalization, as in [29]). Moreover 
the correspondence between recursive schemes and canonical systems can be 
extended to functionals defined over arbi t rary algebraic data  structures in a 
straightforward way, as our exmnple of the fimctional Map. Our choice of canoni- 
cal sets of equations has been made to automatize the execution of simple pattern 
matching, a paradigm used by compilers for functional languages and rewriting 
systems (see e.g. [25, 2]). 

3 S o l v i n g  e q u a t i o n s  i n s i d e  A - c a l c u l u s  

We have introduced a language which is based on definitions of recursive func- 
tions; clearly, a fimction has an implicitly infinite character. 

Historically, solutions of systems of recursive equations are based on the use 
of fixed point combinators (or similar tools [21, 31]) and yield combinators which 
make the mentioned infinite character explicit. Such solutions encode all possible 
unfoldings of fnnctions. Any single datmn establishes how many unfoldings of 
the obtained combinator will be executed, but  this, being itself the engine of 
recursion, is an infinite object from the standpoint of reduction in tha t  it does not 
have a normal form. To use a slogan, we can say that  in this setting, functionals 
(the fixed point combinator ,  in particular) are diverging objects which, when 
applied to data,  may "incidentally" converge. 

Among the consequences of this, implementations must resort to compute  
weak head normal forms instead of normal forms. Abramsky and Ong introduced 
the lazy A-calculus [1] to match such implementations. 

A different approach is what we propose in this paper, aiming to solve recur- 
sire equations without making their infinite character explicit. In our approach, 
programs are, whenever possible, normal forms; reduction is stm'ted only when 
they receive some input; da ta  become the engine of recursion in tha t  every 
da tum encodes the number of mffoldings it will cause to be executed by any 
progrmn; hence the infinite characteristics of recursive functions are distributed 
over an infinity Of finite objects. On the other hand, the solution of a set of 
recursive equations is a combinator encoding exactly the information specified 
by the equations. To substantiate these ideas we will exhibit an ahvays diverging 
function represented by a normal fornl ,  so that ,  rephrasing the slogan above, we 



142 

can say tha t  in our set t ing functionals are normal  forms which, when applied to 
data ,  may  "incidentally" diverge. 

A representation of the signature S in the A-calculus is a function r : S ~ A. 
Any such representat ion r induces a m a p  (-)r : A(E)  ~ A in the obvious way, 
nmnely 

for any atomic s y m b o l a ,  a ~ =  [ r  i f a E  

t a otherwise, 

(Ax .M)*  = A x . M  ~, 

( M N )  ~ = M ~ N  r 

f ( ~ ' [ ] , . . . ,  Mn)  ~ = I~M~I . . .  M~n �9 

D e f i n i t i o n  3. Let  g = {al =bi[ i  E J }  be a set of equations between extended 
l ambda  terms ai, bl E A ( S ) .  

1. \Ve say tha t  a representat ion 0 satisfies (or solves) E if for each equation 
r b~. If  there exists a representat ion q~ which ai = b,: in g we have a i =fl 

satisfies g we say tha t  g can be interpreted (or represented or solved) inside 
,k-calculus and tha t  r is a solution for g. 

2. A solution cp for g is called a normal solution if, for all h in S ,  r  is a 
~-normal  form. 

T h e o r e m  4 ( I n t e r p r e t a t i o n  T h e o r e m ) .  
Let  A(S)  be an extended A-calculus; then every safe set of equations g has 

a normal  solution r : S --+ A inside A-calculus. Fur thermore  we can choose r so 
tha t  the restriction 4)1S0 depends only on So and not  on g, namely there is a 
fixed representat ion of the constructors.  

Proof. Let So = { c 1 , c 2 ,  . . . .  c r } .  

For 1 < j <__ v, we define tO = r : So ~ A: 

tO(cj)  = . . .  xm . Uyx, . . .  (5 )  

where m is the ari ty of cj and U r. ---- AXl . . .  xr.xj. 
I t  remains to define r = r : $1 -~ A, namely the representat ion of 

progrmns.  Wi thout  loss of generality we can assume tha t  g is complete  (otherwise 
adjoin more equations to make it complete).  

Let  S1 = { f l , - . . ,  fk}. Consider k x r l ambda  terms t i j ,  1 < i < k, 1 < j <_ r 
to be defined later. Recall the definition of Church n-tuple: 

(I141 . . . . .  M , )  -- A x . x M 1 . . .  M~. 

For 1 < i < k, let ti - (tiA . . . . .  ti,,.) and define 

( ( f i )  - ( t i , t l , t 2  . . . .  , tk) .  

Thus ~(f,:) is a Church k + 1-tuple of Church r- tuples of terms. The  l ambda  
terms t i , j  a r e  chosen in the only natura l  way which makes ~ a solution of the  
canonical system of equations g. More precisely consider the equation 

f i ( c j ( x l , . . . , X m ) , Y l , . . . , Y n )  = bi,j 



143 

belonging to  g (bi,j E Z(..~)). After applying ~b = 0 o ~ the equation becomes 

(tl,  t l , - .  , t k ) ( C ~ X l . . 2 ; m ) Y l . . - U n  = b'~ �9 . z , j  

By definition of Church tuple, this simplifies to 

c~ x l  . . .  x m t i t l  . . .  t k y l  . . .  Yn --- b~ j .  

Recalling the definition of c~ we have 

C ~ X l . . .  X m t i  = t i U ~ X l . . .  X m  = t i , j X l . . .  X m .  

Hence the equation becomes 

t l , j x l  . . X m t l  . .  t k y l  . . . yn  = b r �9 �9 " l j "  

We can now solve this equation for tl,j by replacing on bo th  sides all the occur- 
rences of t l , . . . ,  tk by fresh variables v l , . . . ,  vk and abst ract ing with respect  to 
all variables present in left-hand-side. More precisely define: 

t i , j  = )~Xl  . . .  X m V l  . . .  V k Y l  . . . y n . ( b ~ , j )  ap 

where ~ : $1 ~ A is defined by 

= . . . . .  vk). (6) 

Note that, for any V E A(S), Vr = V~[th/Vh]1<h<k. 
With this definition 

t i , j X l  . . . X m t l  . .  . t k Y l  . . .  y n  --~ ( b ~ , j ) ~ b [ t h / V h ] l < h < k  

= b~176162 i , j  -.~ b ~ j  

and all the equations will be  satisfied. 
We now prove tha t  the given technique yields normal  solutions for safe sys- 

tems of equations. 
Let  S be safe and let 0 : So --+ A and ~ : S1 --+ A be as in (5) and (6), 

respectively�9 

For any equation a = b E g, we first prove by induction on the number  of oc- 
currences of constructors in b that  b ~ is a normal  form. Indeed, if constructors do 
not appea r  in b, then b e = b, a normal form (by definition 2.i); if cj(Xl,.. . ,  Xm) 
occurs in b, for some X I , . . .  , X m  E A ( S ) ,  then 

c j ( X  1 . . . . .  S m ) O  r r O  = ) ~ e . e U j X  1 . . .  X~ 

which is, by inductive hypothesis, a normal form and, by 2.iii, does not create 
any new redex. 

I t  comes out fi'om 2.ii that  for any equation a = b E g, b ~ is such tha t  
Vf  E S1 .VTI , . . .  , T ,  E A ( S )  if f ( T 1  . . . T , )  occurs in b ~ then Tx either has no 
initial abstract ions or it has the shape A e . e U ~ X 1  . . .  X n ,  for some X 1 , . . . ,  X~ E 



144 

A(S) .  Now, if programs do not appear  in b ~, then (be) r = b ~, a normal  form; if 
f i ( T l , . . .  ,T,~) occurs in b a, for some T , , . . .  ,T,~ E A(S) ,  then 

f i (  T I  , . . . , T ~  )~P = T l ~  y i v l  . . . ~3k T :  . . . T n r  

which reduces in at most  one step to a head normal  form without  any initial 
abstract ion.  I t  follows by induction that  (b~ r reduces to a normal  form, so that ,  
applying to such normal  fbrm the construction in the first pa r t  of the proof  of 
the theorem, we obtain a normal  solution for $. 

Example 1. Given S = So O S1 where 

So = {zero, succ, nil, cons} and S ,  = {Fac, Map},  

let S be the following set of equations: 

Fac(zero) = 1; 

Fac(~ucc(x)) = , (+ tx ) (F~c(~) ) ;  
Map(nil, ]) = nil; 

~lap( cons( x, L ), f) = cons(f x, ~r L, f ) ). 

We can complete  $ adding the equations 

Fac( nil) = Type_err1; 
Fac( cons( x, L ) ) = Type_err1; 

~ a p (  zero, f )  = Type_err2; 

~,Iap( succ(x), f )  = Type_err2, 

where Type_err1 and Type_err2 are two variables. 
If  we assume 

r  = ~ e . e U  4 , , ( s ~ c c )  = ~ x ~ . e U ~ x ,  

r = Ae.eU~ , fb(cons) = AxLe.eU~xL, 

r = ( t l , t l , t2) ,  where tl ---- ( t , , 1 , . . .  , t l ,4)  
r  t l , t2),  w h e r e t ~ - - ( t ~ : , . . . , t 2 , 4 )  

and we consider the derived set of equations, we obtain 

t lU~ tl t2 -- 1; 

t~V~ x t, t~ = , ( + l x ) ( x  t ,  t ,  t2); 

t l U  4 tl t2 = t l U  4 x L t l  t2 = Type_err,; 

t2U~ tl t2f  = t~U~ x tl t2f  = Type_err2; 
t2U 4 tl t2Y = r 

t2U44 x L tl t21 = O( cons) ( Ix )  (L t2 tl t21); 



145 

hence,  we have  

tl,1 tl $2 = 1; 

t i ,2 x tl t2 = ,(+lx)(x t~ t~ t2); 

tl,3 tl  t2 ---- tl,4 x L t l  t2 = Type_errl; 

t~,l tl t2f  = t2,2 x t l  t2f  = Type_err2; 

t2,3 ti t2f  = r 

t2,4 xL  tl t2f  = r cons) ( f  x)( L t2 tl t2 f ) ;  

which is solved tak ing  

tl,a = AVlV2.Type-errl , tl,4 - AXlX2VlV2.Type-errl, 

t2,1 - AVlV2f.Type_err2 , t2,2 = Axvlv2f.Type_err2, 

t2,a =--- AVl V2 f .r nil), 

t2,4 -- AXlX2VlVXf.r ( fxl)(X2 v2 Vl v2f). 

I t  follows t h a t  the  r ep resen ta t ion  for Fac and  l]Iap is a Church  3- tuple  of Church  
4- tuples  of n o r m a l  forms,  hence  a no rma l  form. 

Remark. I t  has  to be  no ted  t h a t  we ob ta in  no rma l  solut ions also for defini t ions 
of intr insical ly diverging p rog rams .  Given r = Z0 U E1 where  

2o = {zero, suec} and -J~l = {F} ,  

let E be  the  following set of equat ions:  

F(zero) = F(zero); (7) 

F(s,,ee(x)) = F ( s ~ e c ( ~ ) ) ,  

Firs t  observe  t h a t  such sy s t em is safe, in spi te  of the  fact  t h a t  it defines an  
always diverging f lmction.  If  we a s sume  

O(zero) = )~e.eU21, r = )~xe.eU~z, 

r  = ( t i , t l ) ,  where  tl = ( t l , l , t l ,2} 

and  we consider  the  derived set  of equat ions ,  we ob ta in  

t~u~ t, = t~u~ t~; 
t l U  2 x tl = tl U2 x t l ;  

hence,  we have  
t1,1 tl ---- t lU~  tl;  

$1,2 X$1 = t l U 2 X t l ;  

which is solved tak ing  

tl,1 --)~Vl.VlU~Vl , tl,2 ---)~XVl.VlU~XVl. 

I t  follows t h a t  the  r ep resen ta t ion  for F is a Church  2- tuple  of Church  2- tuples  
of  n o r m a l  forms,  hence a no rma l  form. 



146 

3.1 A d o u b l e  c i t i z e n s h i p  f o r  d a t a  

The h~terpretation Theorem 4 enables to obtain normal solutions for safe systems 
of equations. 

The key idea allowing such result is tha t  da ta  are considered as functionals, 
interpreting them in A-calculus. Now, a natural  question arises: are we willing to 
fully represent data  structures in A-calculus? The answer is surely negative, for 
we want to preserve the s tructure of data  during computation.  Roughly speaking, 
we would like to give data  a double citizenship: they should act as functionals 
during function application, otherwise preserving their original status. 

The Interpretat ion Theorem itself hints to a satisfactory solution to this prob- 
lem: being the representation of data  constructors fixed, we will consider them 
as predefined combinators, i.e. extra constants to be included in A; furthermore,  
we will consider their functional behaviour to be defined by weak reduction rules, 
in such a way that  a constructor  with arity m needs (by the weak version of (5)) 
at least m + 1 arguments to be reduced. Assuming then {c l , . . .  , c .}  E A with 

ejX1 . . .  X m E  ~> EU~X1 . . .  Xm, 

where ' I>' denotes weak reduction, it turns out that  all definitions and results 
obtained in the previous subsections still hold taking now Z = ~1, since ~0 = 0, 
being the constructors considered constants in A. 

Finally, the coexistence of different representations for natural  numbers is 
ruled by the following notion of reduction (x-reduction) which allows rewriting 
d-integers when these appear in functional position in an application: 

O E N ~  T E A  n = r n + l E l \ l ~  T E A  
O T ~ x zero~ T ' n T ~ x succ~ m T 

Example2. (Ex.1 continued) 
To give the example of a computation,  let r  be as in example 1. We 

have e.g. (superscript r is sometimes omit ted below) 

(Map(cons(l ,  cons(2, nil)), f))4, 

= cons l(cons2 nil)t2 tl t2 f 

~> t2 U 4 l ( cons 2 nil)tt t2 f 

>~ t2,4 1(cons2 nil)t1 t2 f 

-----~ ~ cons(f l  )(cons 2 nilt2 tl t2f)  

~> . . .  >~ cons(f l)(eons(f2)(nil t2 tl t2f))  

t> cons(fl)(cons(f2)(t2 U4 tl t2f ) )  

"----+Z cons(fl)(cons(f2)nil) ,  a I>-normal form. 

On the other hand, we have: 

(Map(7, f))* 
= 7 t 2 t l t 2 f  - -~x  s u c c 6 t 2 t l t 2 f  

~> t 2 U ~ 6 t l t 2 f  ----+~ t 2 , 2 6 t l t 2 f  

~ ~ Type_err2. 



147 

Summarizing, I>-normal forms are important tools to recognize algebraic 
objects as results of computations. This solves a problem mentioned in [5], in 
the context of self-interpretation of ,X-calculus. 

4 F u r t h e r  P r o p e r t i e s :  s o m e  e x a m p l e s  

This section is devoted to the illustration of possible applications in functional 
programming of the theoretical issues just presented. 

The following examples refer to recursive definitions (D) of function(el)s, 
execution commands (E) and results (R) of computations based on the imple- 
mentation of the methods described in this paper, called CuCh-machine. This is 
an acronym for Curry and Church, first introduced in [12, 13] to describe a ma- 
chine simultaneously accepting combinators and A-terms and reducing them to 
normal form. Further properties not exemplified below are the allowance of free 
variables, and the use of lazy data structures, in the style of [18], implemented 
by nornlal order reduction (to be compared with [201). 

4.1  C u r r i f i c a t i o n  

(D) ACK zero f := f i; 

(D) ACE (succ m)f := f (ACE m f); 

(m) ack zero x := + 1 x; 

(m) ack (succ n) x := ACE x (ack n); 

Currified a c k  

(E) a c k 3  : = a c k  3;  

(R) AxO . ACK xO (Axl . ACK xl (Ax2 . ACK x2 (Ax3 . + i x3))) 

(E) ack34:= ack3 4; 

(R) 125 ( 1 5 5 2 0  b e t a )  

(E) a c k 3 5  : = a c k 3  5 ; 

(R) 253  ( 6 3 7 8 0  beta) 

Non currified a c k  

(E) r : =  a c k  3 4 ;  

(R) 125 ( 1 5 6 4 0  b e t a )  

(E) s : =  a c k  3 5;  

(R)  253  ( 6 4 0 2 7  b e t a )  

(3  b e t a )  

4.2 I t e r a t i v e  F u n c t i o n s  

(see [19]) 
(19) map := Ax0 x l  x2 x3 . x l  (Ax4 x5 . x2  (x0  x4 )  xb )  x 3 ;  

(E) mapmap := Ax . map f ( m a p  g x ) ;  

(R )  Ax0 x l  x2  . x0  (Ax3 x4  . x l  ( f  ( g  x 3 ) )  x4 )  x2 
(E) comp := Ax . map (B f g )  x ;  

(R) Ax0 x l  x2 . x0  (Ax3 x4  . x l  ( f  ( g  x 3 ) )  x4)  x2 
(D) foldr nil a b := b; 

(I:)) foldr (cons x L) a b := a x(foldr L a b); 

(D) list := [ 1 , 4 , 5 , 6 , 7 ] ;  



148 

(E) flist := foldr list; 

(It) Ax0 xl . x0 1 (x0 4 (x0 s (x0  e (x0 7 x l ) ) ) )  
(E) bb := mapmap f l i s t  cons n i l ;  
(R) [ f (g 1), f (g 4),  f (g S), f (g 6), f (g 7) ] 

4.3 Comple te  Systems 

(D) mbf zero x :=Ay.mbf y x; 

(m) mbf (succ n) x:=Ay.mbf y (+ x(+ i n)); 

(m) mbf nil x: = x; 

(m) mbf(cons t l)x: = mbf 1 (+ t x); 

(m) ee:= mbf [i, 3] O; 
(~) 4 

(E) xy:= mbf 7 6 4 n i l ;  
(R) 17 

A c k n o w l e d g m e n t s  

We would like to thank Mariangiola Dezani-Ciancaglini and Ugo de'Liguoro 
for helpful discussions and suggestions about  the topics of this paper. We are 
grateful to the referees of the preliminary version of the paper  for their criticism 
and suggestions for improving the presentation. 

R e f e r e n c e s  
1. S. Abramsky, C.-H.L. Ong, Full Abstraction in the Lazy Lambda Calculus, Tech- 

nical Report 259, Cambridge University Computer Laboratory, 1992, 105 pp. To 
appear in Info. and Comp. 

2. L.Augustssou and T.Johusson, The Chalmers Lazy-ML Compiler, The Computer 
Journal, vol. 32, no. 2, April 1989. 

3. J.Backus, Can programming be liberated from vonNeumann style? A functional 
style and its algebra of programs, ACM Comm.,1978, vol.21, no. 8, pp. 613-641. 

4. H.P.Barendregt, Th, e type free lambda-calculus, in: Handbook of Mathematical 
Logic, Barwise (ed.), North Holland, 1981, pp.1092-1132. 

5. A.Berarducci and C.B6hm, A self-interpreter of lambda calculus having a normal 
form, 6th Workshop CSL '92, San Miniato, Italy, September-October 1992, eds E. 
BSrger et al., Springer Verlag, Berlin (LNCS 702), pp. 85-99. 

6. C.BShm, Combinatory foundation of functional programming, in 1982 ACM Sym- 
posium on Lisp and functional programming, 1982, Pittsburgh, Pen., pp.29-36. 

7. C. BShm, Reducing Recursion to Iteration by Algebraic Extension in: ESOP 86, 
(LNCS 213), p . l l l - l lS ,  1986. 

8. C. B6hm, Reducing Recursion to Iteration by means of Pairs and N-tuples, in: 
Foundations of Logic and Functional Programming, LNCS 306, p.58-66, 1988. 

9. C.B6hm, Functional Programming and Combinatory Algebras, MFCS, Carlsbad, 
August-September 1988, eds M. P. Chytil et al., Springer Verlag, Berlin (LNCS 
324), pp. 14-26. 

10. C.B6hm, Subduing Self-Application, ICALP '89, Stresa, July 11-15 1989, eds G. 
Ausiello et al., Springer Verlag, Berlin (LNCS 372), pp. 108-122. 



149 

11. C.BShm and A.Berarducci, Automatic Synthesis of Typed A-Programs on Term 
Algebras, Theoretical Computer Science 39, pp. 135-154, 1985. 

12. C.BShm and M.Dezani-Ciancaglini, A CUCH-machine: the automatic treatment 
of bound variables, International Journal of Computer and Information Sciences, 
vol. 1, no. 2, pp. 171-191, June 1972. 

13. C.B5hm and M.Dezani-Ciancaglini, Notes on "A CUCH-machine: the automatic 
treatment of bound variables", International Journal of Computer and Information 
Sciences, vol. 2, no. 2, pp. 157-160, June 1973. 

14. C.BShm and M.Dezani-Ciancaglini, Combinatorial problems, combinator equations 
and normal forms, in: Loeckx (ed.) Automata, Languages and Programming 2th. 
Colloquium, LNCS 14, 1974, pp.185-199. 

15. C.BShm and M.Dezani-Ciancaglini, A-terms as total or partial functions on normal 
forms, in: A-Calculus an computer science theory BShm (ed.), LNCS 37, Springer, 
1975, pp.96-121. 

16. A.Church, Th.e calculi of lambda-conversion, Princeton Univ.Press, 1941. 
17. H.B.Curry, Combinatory Logic, Vol I, North Holland, Amsterdam, 1958. 
18. D.P.Friedman and D.S.Wise, Cons should not evaluate its arguments, Proc.3rd 

International Colloquium on Automata, Languages and Programming, Edinburgh, 
1976, pp.257-284. 

19. A.Gill, J.Launchbury and S.L.Peyton-Jones, A Short Cut to Deforestation, Func- 
tional Programming and Computer Architecture~ 1993. 

20. J.Hughes, Why Functional Programming Matters, The Computer Journal, special 
issue on Lazy Functional Programming, vol. 32, no. 2, April 1989. 

21. J.Hughes, Supercombinators: a new implementation method/or applicative lan- 
guages, Symp. on LISP and Functional Programming, ACM, 1982. 

22. S.C.Kleene, A-definability andrecursiveness, Duke Math.J. 2, pp.340-353. 
23. D.E.Knuth, The Art of Computer Programming, Vol. 1/Fundamental Algorithms, 

Addison-\Vesley, 1973. 
24. M. Parigot. Programming with proofs: a second order type theory, ESOP'88, LNCS 

300, pp. 145-159. 
25. S.L.Peyton Jones, The Implementation of Functional Programming Languages, 

Prentice-Hall, 1986. 
26. H.Schwichtenberg, Einige Anwendungen yon unendlichen Termen und Wertfunk- 

tionalen, Habilitationsschrift, Mfinster, 67 pp., 1973. 
27. J.R.Shoenfield, Matematical Logic, Addison Wesley, 1967. 
28. H.R. Strong, Algebraically Generalized Recursive Function Theory, IBM J.Res. 

Develop.12 (1968), pp.465-475. 
29. E.Tronci, Equational programming in lambda-calculus, Proc.of LICS'91, IEEE 

Comp.Soc., 1991. 
30. A.Turing, On computable numbers with an application to the Entscheidungsprob- 

lem, Proc.London Math.Soc. 42, pp.230-265. 
31. D.A.Turner, A new implementation technique for applicative languages, Software 

practice and experience, no. 9, 1979. 
32. E.G.Wagner, Uniformly Reflexive Structures: An Axiomatic Approach to Com- 

putability, Information Sci.1 (1969), pp.343-362. 


