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Abstract: Free energy calculations are fundamental to obtaining accurate theoretical estimates of many important

biological phenomena including hydration energies, protein-ligand binding affinities and energetics of conformational

changes. Unlike traditional free energy perturbation and thermodynamic integration methods, k-dynamics treats the

conventional ‘‘k’’ as a dynamic variable in free energy simulations and simultaneously evaluates thermodynamic

properties for multiple states in a single simulation. In the present article, we provide an overview of the theory of

k-dynamics, including the use of biasing and restraining potentials to facilitate conformational sampling. We review

how k-dynamics has been used to rapidly and reliably compute relative hydration free energies and binding affinities

for series of ligands, to accurately identify crystallographically observed binding modes starting from incorrect orien-

tations, and to model the effects of mutations upon protein stability. Finally, we suggest how k-dynamics may be

extended to facilitate modeling efforts in structure-based drug design.
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Introduction

Free energy simulation methods are fundamental to understanding

the thermodynamic properties of many biologically important sys-

tems and phenomena.1,2 These methods have been employed to

estimate hydration free energies of ions3,4 and small molecules,5,6

protein-ligand binding affinities,7 and protein stability.8 Since po-

tency often correlates well with the binding affinity of a drug to

its targeted receptor, theoretical methods which can reliably esti-

mate binding free energies can facilitate the design or optimiza-

tion of new therapeutics.7,9,10 Rigorous free energy methods,

while being more expensive and not amenable to high-throughput

screens of large libraries of drug candidates, may be very effec-

tive in providing better estimates of binding affinities and provide

more reliable information for guiding drug design programs.

Using the thermodynamic cycle illustrated in Figure 1, the

relative binding affinities of two ligands can be described by the

difference in the free energies associated with the chemical

transformation of one ligand into the other in the bound and sol-

vent environments, respectively, i.e.

DDGbind
Li!Lj

¼ DGbind
Lj

� DGbind
Li

¼ DGprot
RLi !RLj

� DGsolv
Li!Lj

(1)

In traditional free energy perturbation (FEP)11 and thermody-

namic integration (TI),12 the free energy changes associated with

these vertical ‘‘arms’’ of the thermodynamic cycle are evaluated

by alchemically morphing one ligand into the other. In these

methods, multiple simulations are performed at discrete points

along the transformation pathway between the end-states. For

these simulations, the Hamiltonian governing the dynamics of

the system is defined as:

H ¼ Tx þ ð1� kÞV0 þ kV1 (2)

where V0 and V1 are the potential energy contributions associ-

ated with the two end-points and the ‘‘k’’ parameter indicates

the distance along the transformational pathway. Using FEP, the

free energy change is computed from the ensemble averages

generated at discrete k values:

DGk¼0!k¼1 ¼
X1
k¼0

� 1

b
ln expð�bðHðkþdkÞ � HðkÞÞÞ
� �

k
(3)

where b 5 (kBT)
21. To ensure adequate sampling within each

of these simulations, the free energy change barrier between k
and k 1 dk should be less than �2 kcal/mol.1,13
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For drug design purposes, the computational demands of these

traditional free energy calculations are significant as simulations

at multiple k values must be performed for each pair of ligands

that are investigated. By contrast, the k-dynamics simulation

method which was developed in the Brooks’ lab is an appreciably

more efficient method for computing relative hydration or binding

free energies for a series of molecules.14 In k-dynamics, which

was inspired by the work of Liu and Berne15 and Tidor,16 the k
parameter is treated as a dynamic variable with a fictitious mass

and is propagated along with the atomic coordinates throughout

the course of a simulation. In this way, it is possible to obtain free

energy estimates for a full ‘‘arm’’ of the thermodynamic cycle

within one simulation. Furthermore, k-dynamics is no longer lim-

ited to a comparative analysis of two ligands, but rather can

simultaneously evaluate multiple ligands in a given simulation. In

this case, each ligand is assigned a value of k with the constraint

that
PN

i¼1 k
2 ¼ 1 for N ligands. In the context of structure-based

drug design, these k-dynamics simulations are akin to competitive

binding experiments in which all the ligands compete for a com-

mon receptor on the basis of their relative free energies using

multiple copy simultaneous search approaches.17

This review focuses on k-dynamics simulation methods in

which the k parameters scale the potential energy contributions of

the corresponding ligands and where k is treated as a dynamic

variable whose value is modified at each time step. First, we pres-

ent the general theory and the main features of k-dynamics simu-

lations. Second, we will highlight the chemical applications that

have been explored using k-dynamics simulation methods and

finally, we will provide a prospective about how k-dynamics can

be used increasingly in structure-based drug design.

k-Dynamics Theory and Methods

k-Dynamics Theory

The k-dynamics methodology has been described in detail in

Kong and Brooks14 and Guo et al.18 Here, we provide a brief

overview of the key equations governing the k-dynamics simula-

tions and analyses in the context of computing relative binding

affinities for multiple ligands. Unlike traditional FEP or TI cal-

culations, k is treated as a dynamic particle with fictious mass

mk. The dynamics of the system is generated from the extended

Hamiltonian:

Hextended X; kf g; xf gð Þ ¼ Tx þ Tk þ V X; kf g; xf gð Þ (4)

where the first two terms represent the kinetic energies of the

atomic coordinates and k variables, respectively. The hybrid

potential energy function for a protein and a total of L ligands is

constructed as:

V X; kf g; xf gð Þ ¼
XL
i¼1

k2i Vi X; xið Þ � Fið Þ þ Venv Xð Þ and

XL
i¼1

k2i ¼ 1 ð5Þ

where X and xi are the coordinates of the environment and

ligand i, respectively, and k2i and Fi are the coupling parameter

and biasing potential, respectively, that are associated with

ligand i. The use of k2i ensures that the individual k values are

positive and the restraint ensures that the k values are in the

range of [0,1] throughout the simulation trajectory. If all poten-

tial energy terms are scaled by k then significant geometric dis-

tortions of the ligand are prevalent at very small values of k. To
retain near-equilibrium conformations of the ligands, it is sug-

gested that the intramolecular bond and angle energy terms

should not be scaled.

The difference in free energy between any two ligands i and
j, with biasing potentials Fi and Fj, respectively, can then be

determined from a given simulation by:

DDGi!j ¼ DGj � DGi ¼ � 1

b
In
P k2j ¼ 1; k2m 6¼j ¼ 0

n o� �

P k2i ¼ 1; k2m 6¼i ¼ 0
n o� �

(6)

where Pðk2i ¼ 1; fk2m6¼i ¼ 0gÞ corresponds to the probability

that the hybrid system is in a state that is dominated by ligand

i. In practice, the ratio of the probability of states dominated

by k2i 5 1 and k2j 5 1 are obtained from the relative amount

of time that k2i and k2j are greater than a given cutoff value

during a given simulation. In general, cutoff values between

0.8 and 0.9 are employed; however, the sensitivity of the com-

puted relative binding affinities to the cutoff value will depend

on the smoothness of the free energy landscape with respect to

k. To obtain accurate estimates of the relative free energies,

each ligand must regularly sample the dominant state. Ligands

with free energies that are within 2–3 kcal/mol of each other

will adequately sample all ki 5 1 states. In the following sec-

tion, the use of biasing potentials will be discussed that enable

ligands whose free energy differences are greater than 3 kcal/

mol to successfully compete with each other for the dominant

state.

Bitetti-Putzer et al.19 introduced an alternate method for

obtaining relative free energies from a single k-dynamics simu-

lations. In this generalized ensemble TI (GETI) method, snap-

shots from a k-dynamics trajectory are sorted into bins according

to their ki value and then the traditional TI equation:

DGk¼0!k¼1 ¼
Z 1

0

@H kð Þ
@k

� �
dk (7)

Figure 1. Thermodynamic cycle for computing the relative binding

free energies of two ligands (L1 and L2) to a common receptor (R).
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can be used to compute the change in free energy associated

with each individual bin. With thorough sampling of both ligand

states, Bitetti-Putzer et al. demonstrated that the free energy esti-

mate converged significantly more quickly using GETI than via

standard TI methods and was relatively insensitive to the adjust-

able parameters of this method, that is, the choice of the width

and number of bins. Although this method enables relative free

energies to be obtained from a single simulation, unlike the

probability ratio method in eq. (6), it is restricted to sampling

two ligands simultaneously.

Biasing Potentials

The biasing potentials, Fi, that were introduced in eq. (5) have

two purposes. First, Fi can be used as a reference free energy. For

example, if the biasing potentials {F} are 0 for all ligands then

eq. (5) is the free energy associated with one arm of the thermo-

dynamic cycle in Figure 1. Alternatively, the set of Fi values

could be the free energies associated with the corresponding

ligand transformations in the solvent environment, i.e. one-half of

the thermodynamic cycle; by using these reference free energies

in the protein-ligand simulations, eq. (5) simply becomes the rela-

tive free energy for the full thermodynamic cycle. This latter

strategy has been successfully applied for rapidly screening and

ranking ligands directly from the probabilities of each ligand

being in the k 5 1 state in the bound simulations when their {F}

are assigned from the corresponding solvent simulations.

Second, Fi can serve as biasing potentials to focus the sam-

pling in a particular region of phase space. Since accurate esti-

mates of the relative free energies depend upon adequate sam-

pling of all k2i 5 1 (or, in practice, k2i [ 0.8) within a given

simulation, biasing potentials can be chosen to reduce the barrier

height between different states along the reaction coordinates.

Guo et al.18 proposed an iterative strategy, which is similar

in spirit to the entropy sampling method of Lee20 and Hao and

Scheraga,21 to optimize the biasing potentials for a given set of

ligands. In this strategy, the estimated free energies of each

ligand from a simulation are selected as the biasing potentials

for the corresponding ligands in the subsequent simulation. Data

from multiple simulation trajectories may be combined using the

weighted histogram analysis method22,23 to obtain more accurate

estimates of the free energy. The probability histogram from R
simulations with L ligands is given by:

PR
Ff g k2

� �	 
 ¼
PR

k¼1 Nk k2
� �	 


exp �b
PL

i¼1 �Fik
2
i

	 
� �
PR

m¼1 nm exp fm � b
PL

i¼1 �Fik
2
i

	 
� � (8)

where Nk is the number of snapshots with {k2} in the kth simu-

lation and nm is the total number of snapshots taken in the mth
simulation and

exp �fmð Þ ¼
X
k2f g

Pm
Ff g k2

� �	 

(9)

The estimated free energy relative to the reference free

energy {F} after the Rth simulation is:

Gi Ff g ¼ � 1

b
ln PRFf g k2i ¼ 1; k2m6¼i ¼ 0

� �
(10)

By using eqs. (8)–(10) in an iterative fashion, in each succes-

sive simulation, the updated biasing potentials should render the

ligands increasingly competitive with one another for the domi-

nant state and, thus, the convergence of the free energies should

improve. However, in the presence of large barriers between the

endpoints, these biases of Fi, which are linearly scaled by ki, may

not sufficiently flatten the free energy surface. In these situations,

biasing potentials that depend on k may be utilized to provide bet-

ter control over simulation efficiency and sampling space. In the

following section, the use of biasing potentials for restraining the

conformational space that a given ligand samples is described.

Restraining Potentials for Multiple

Topology Representations

In performing these simulations in which ligands are alchemi-

cally transformed from one to another either a nonphysical

hybrid ligand must be constructed or each ligand must be explic-

itly represented. In the former construction, or single hybrid rep-

resentation, atoms that are common to the ligand series are rep-

resented only once as a common core and are treated as ‘‘envi-

ronment’’ atoms in the Hamiltonian. The portions of the ligands

which vary are each represented by individual noninteracting

moieties that are attached to the common core. This approach

helps to reduce the degrees of freedom within the system and

focuses the sampling on the specific chemical variations on the

ligand core. This is an efficient strategy when the ligands adopt

similar binding modes within the receptor. However, if a series

of ligands adopts several distinct conformations within the bind-

ing pocket, it may be difficult to adequately sample all confor-

mations within a given simulation and obtain reliable estimates

of the relative binding affinities.

By contrast, in multiple topology representations, multiple

complete ligands are represented explicitly in a simulation though

they do not interact with one another directly. In this representa-

tion, the ligands sample independent conformations within the

binding pocket. Although a variety of binding modes can be well

sampled throughout the k-dynamics simulations, adding restrain-

ing potentials to the hybrid potential in eq. (5) is recommended to

ensure that ligands that are only weakly coupled to the environ-

ment (i.e. when their respective k values are low) do not wander

outside the vicinity of the binding pocket. This restraining poten-

tial depends on ki and the atomic coordinates of ligand i as well
as the average coordinates of the environment atoms, X0, such

that the hybrid potential energy is described by:

V X; kf g; xf gð Þ ¼ Venv Xð Þ þ
XL
i¼1

k2i Vi X; xið Þ � Fið Þ

þ
XL
i¼1

Ri X0; ki; xið Þ ð11Þ

The restraining potential ensures that the ligands remain in

low-energy regions of conformational space and is defined as:

Ri ¼ a Vi X0; xið Þ � Fið Þ 1� k2i
	 


where 0 < a < 1 (12)

1694 Knight and Brooks • Vol. 30, No. 11 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc



where a determines how to scale the biasing potential when k2i
approaches 0 and thus the extent of the conformational space

about the initial binding orientation that may be sampled. Small

values of a give rise to weak restraining potentials and enlarge the

sampling space for the ligand; by contrast, large values of a limit

the sampling space even when k2i is near 0. Studies have shown

that an a value of 0.3 provides a good balance of the probabilities

and restraining of the ligands.24 By contrast, a[ 5 tends to result

in large populations of states with intermediate k values and, with

small values of a, the restraining potential is not sufficiently

strong to keep the ligand within the binding pocket. This restrain-

ing potential has the added advantage of preventing high-energy

states that cause instability in the integration algorithm when

small increases in ki when ki approaches 0 can cause significant

spikes in the energy.

By including this restraining potential, the relative binding

free energy is estimated by:

DDGi!j � � 1

b
ln

P k2j ¼ 1; k2m6¼j ¼ 0
n o� �

P k2i ¼ 1; k2m6¼i ¼ 0
n o� �

0
@

1
A

þ 1

Nj

X
kj¼0

a VR
j � Fj

� �
� 1

Ni

X
ki ¼0

a VR
i � Fi

	 
 ð13Þ

where the second and third terms represent the average restrain-

ing potentials for ligands i and j when their respective k values

are 0 (or in practice, when ki \ 0.05 and kj \ 0.05). In this

case, the environment atoms are assumed to move more slowly

than the ligand atoms and so the time invariant coordinates X0

can be approximated by the instantaneous coordinates X(t).
Thus, the restraining potential Ri(X0, xi) has been replaced by

Ri(X(t),xi). Using this approximation, the system does not strictly

obey Newton’s equations of motion since the restraining poten-

tial is only ‘‘seen’’ by the ligands with low k values. However,

the dominant ligand and environment atoms do retain Newtonian

motion in the k-dynamics simulations. Equation 13 also assumes

that the entropy terms related to the restraining potential cancel

due to the similarity of the ligands. It has been shown that the

second and third terms in eq. (13) converge more rapidly than

the probabilities computed from the trajectories, especially for

weak binders25 and that the specific value of a influences the

sampling efficiency but not in principle the final free energy

estimates.24

When R simulations are generated with the mth simulation

using a set of biasing potentials {Fm
i }, the probability at the

desired biasing potentials {F0
i } (i.e. the solvation free energies

of the ligands) may be estimated by:

PR
F0f g k2

� �	 
 ¼
Pn

k¼1 Nk k2
� �	 


exp b
PL

i¼1 k2i þ 1� k2i
	 


a
	 


Fo
i

� �
Pn

m¼1 nm exp fm þ b
PL

i¼1 k2i þ 1� k2i
	 


a
	 


Fm
i

� �
(14)

where

exp �fmð Þ ¼
X
k2f g

Pm
F0f g k2

� �	 

(15)

The relative binding free energies can then be estimated by:

DDGi!j � � 1

b
ln

pRF0f g k2j ¼ 1; k2m6¼j ¼ 0
n o� �

pRF0f g k2i ¼ 1; k2m6¼i ¼ 0
n o� �

0
@

1
A

þ 1

Nj

X
kj¼0

a VR
j � F0

j

� �
� 1

Ni

X
ki¼0

a VR
i � F0

i

	 
 ð16Þ

where the second and third terms correspond to the restraining

potentials of ligand i and j and are summed over the states in

which the respective k2 values are zero.

k-Dynamics Implementation in CHARMM

k-dynamics has been incorporated into the CHARMM macromo-

lecular modeling software package26 within the BLOCK module.

In this module, the system is partitioned into the environment

(including any atoms which are invariant among the ligands)

and the individual ligands (or atoms that constitute the unique

portions of the ligands). Initial k values, mk and F are specified

for each partition of the system and additional restraining poten-

tials can be applied to a specific partition or can be used to cou-

ple two partitions. Once the system partitions and biasing and

restraining potentials are defined, molecular dynamics simula-

tions can be used to sample atomic coordinates and k values.

In Tidor’s original studies using simulated annealing techni-

ques16,27 and in the chemical-MC/MD method of Pitera and

Kollman,28 k was treated as a dynamic variable that was varied

via a Monte Carlo scheme after every molecular dynamics step

in which the atomic coordinates were propagated. Though Tidor

sampled intermediate k values throughout the simulations, Pitera

and Kollman only sampled the end-states, i.e. where at each

timestep one ligand was ‘‘real’’ (i.e. k 5 1) and all others were

‘‘ghosts’’ (i.e. k 5 0). In these latter simulations, jumping

between k values of 0 and 1 did not hinder the effective sam-

pling of each ligands in the systems that were investigated.

However, the authors confess that other systems may not be

amenable to sampling in this manner and that intermediate k
values might be required. In developing k-dynamics simulations

in our group, appropriately biased k-dynamics propagated by

molecular dynamics simulations yielded improved transition fre-

quencies over those propagated by trial moves based on Monte

Carlo methods (unpublished data).

k-Dynamics Applications

Rapid Screening and Accurate Calculations

for Multiple Ligands

One of the key advantages of k-dynamics over traditional FEP

and TI methods arises from its ability to assess the thermody-

namic properties of multiple chemical moieties in a single simu-

lation. These chemical moieties can include individual complete

ligands or multiple substituents attached to a common ligand

1695k-Dynamics Free Energy Simulation Methods
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core. Using eq. (6), relative free energies of all ligand pairs may

be assessed using probabilities obtained from the same trajec-

tory. In addition to the computational gains afforded by k-dy-
namics by sampling all k values and multiple chemical moieties

simultaneously, studies using k-dynamics have demonstrated its

ability to rapidly and reliably differentiate between good and

poor binders (whether the ‘‘binding site’’ is a traditional protein

environment in binding free energies or an analogous shell of

solvent molecules in hydration free energies). When the overall

binding affinity among the species differs by less than 2 kcal/

mol, they all compete reasonably well for binding, and k � 1 is

well represented for each species. In general, any species whose

binding affinity differs by more than 3 kcal/mol from the most

favorable binder can be easily screened out within tens of pico-

seconds of simulation time because it cannot adequately com-

pete, i.e., it never reaches the k � 1 state. For most drug design

applications, it is sufficient to identify the poor binders and then

to obtain more precise estimates of the relative free energies

among the good binders by lengthening the simulations and, if

need be, by incorporating additional biasing potentials. The fol-

lowing examples provide concrete illustrations of how k-dynam-

ics simulations are effective at rapid screening and obtaining

accurate free energy estimates.

Kong and Brooks,14 in their initial article, investigated the

hydration free energies of four small organic molecules. Within

short simulations (100ps) in explicit solvent, the compound with

the poorest hydration free energy could be identified unambigu-

ously. However, due to the large energy barrier between two of

the substituents, the system was trapped in different local min-

ima depending on the initial assigned k values and the accurate

ordering of the remaining compounds required the addition of

biasing potentials. Once the biasing potentials were applied, the

computed relative hydration free energies using eq. (6) for pairs

of compounds from the subsequent simulation agreed very well

with other published theoretical calculations and experimental

data.

Similar results were achieved by Guo et al.18 for hydration

free energies for a series of larger benzamidine derivatives.29 By

using the gas phase free energies as the reference free energy

values {F}, a single k-dynamics trajectory of only 30ps provided

the correct relative ranking of the four compounds. Different

combinations of initial k values yielded similar results suggest-

ing that the free energy landscape for this system was relatively

smooth. By studying a pair of benzamidine derivatives and using

the iterative technique described in Biasing Potentials, Guo et al.

confirmed that the k-dynamics results were in excellent agree-

ment with FEP calculations and achieved a comparable degree

of precision with two times greater efficiency.

Researchers at Schering-Plough used k-dynamics to compute

the relative binding affinities for seven 6-mer peptide inhibitors of

hepatitis C virus (HCV) protease.30 A hybrid inhibitor was con-

structed in which five residues formed the common core and the

sixth residue contained seven discrete sidechains. Within a single

k-dynamics trajectory, these seven variants of the inhibitor could

be classified as strong or weak binders. Figure 2 illustrates how ki
5 1 was sampled sufficiently often for the strong binders that

their relative binding affinities could be reliably computed. Addi-

tional simulations which contained the weak binders and only one

of the strong binders as a reference molecule enabled all relative

binding free energies to be computed accurately. These theoretical

estimates were within 0.6 kcal/mol of the experimentally deter-

mined value for five of the seven ligands and all agreed with

experiment within 2.0 kcal/mol. In performing a series of FEP

simulations for several pairs of these 6-mer peptide inhibitors,

similar results were obtained but at five times the computational

expense of the corresponding k-dynamics simulations.

Exploring Alternate Binding Modes

With k-Dynamics Simulations

Multiple topology k-dynamics with the restraining potential

described the Methods section has been used to investigate dif-

Figure 2. a) Schematic of the HCV protease inhibitors. b) Chemical identities and binding data for

the HCV protease inhibitors. c) Reprinted by permission from Guo et al.30 Example of the k-dynamics

trajectory of seven inhibitors during a 300ps simulation. The names of the inhibitors are shown on the

right.
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ferent ligand orientations within a single simulation and to com-

pute relative free energies for series of ligands that have differ-

ent binding modes within a common protein target. Banba and

Brooks25 studied alternate binding modes of a series of hetero-

cycles within an artificial cavity in cytochrome c peroxidase.

Each ligand was explicitly represented and, without the restrain-

ing potential, six ligands became trapped in local minima associ-

ated with their respective incorrect initial ligand orientations and

rendered the simulations unstable because the high-energy states

sampled by the unbound ligands. By applying restraining poten-

tials eq. (12), within 300ps the best binder of the ligand series

was readily identified. These trends were further validated by

Damodaran et al.24 in which a series of monosubstituted benzene

derivatives were bound to b-cyclodextrin.
Conventional molecular dynamics simulations will tend to

restrict the sampling of ligands to their initial orientation within

a given binding pocket. By contrast, with appropriately selected

biases and restraining potentials k-dynamics simulations allow

ligands to sample alternative binding modes.31 For example, Fig-

ure 3 depicts the orientations that toluene samples within the b-
cyclodextrin host cavity throughout a k-dynamics as well as a

conventional molecular dynamics trajectory.24 In addition, k-dy-
namics was able to identify the crystallographic binding mode

of five-membered ring heterocycles bound to the cytochrome c

peroxidase cavity regardless of the initial binding orientation

and determine the relative free energy contributions of different

binding modes based on their relative populations of dominant

states in the course of a single simulation trajectory.25 Confor-

mational sampling via MD simulations was restricted to the

ligand’s initial orientation due to the large energy barriers

between the alternate binding orientations. Traditional FEP and

TI simulations also tend to be restricted to the initial binding

orientation since simulations are performed for values of k that

are large enough that they can not sufficiently lower the poten-

tial energy barrier between alternative binding orientations.

Thus, k-dynamics is a robust free energy method even when the

binding mode of a potential new therapeutic is unknown. In

fact, it has been suggested that the value of a and Fi in eqs. (11)

and (12) can be tuned to sample alternate binding orientations.31

Modeling Protein Mutations

Pitera and Kollman32 used chemical-MC/MD to compute the rel-

ative free energies of a series of single amino acid sidechains.

For these simulations, they determined the relative hydration

free energies of blocked alanine, serine and valine residues in

good agreement with TI calculations. In addition, they modeled

the effect that mutations at a critical site in T4 lysozyme exert

on the stability of the protein. For most of the mutants, the rela-

tive free energies of folding obtained from the chemical-MC/

MD calculations (i.e. by using the relative populations of the

dominant sidechains that were observed in simulations of both

the folded protein and a free tripeptide mimicking the unfolded

chain) were within 1 kcal/mol of the values obtained from

experiments and from traditional TI calculations.

In this work, Pitera and Kollman highlight the importance of

including all relevant sidechain rotamer states of the residues

under investigation as well as the need for long simulation times

(i.e. [5ns) to reach convergence. They experienced difficulties

in sampling between sidechains that differed significantly in vol-

ume (e.g. arginine and glycine) and in charge (e.g. glutamic acid

and lysine) and suggest that chemical-MC/MD will be most

effective in comparing natural or non-natural sidechains that are

similar in size. k-dynamics as it is implemented in CHARMM

where fractional values of k can be obtained (as opposed to the

discrete ‘‘real, k 5 1’’ and ‘‘ghost, k 5 0’’ assignments associ-

ated with chemical-MC/MD; see Methods) should enable more

frequent transitions among the end-states and facilitate the sam-

pling even among sidechains that differ significantly from one

another. This is currently under investigation in our group in the

context of modeling protein stability as well as discerning the

influence of binding site mutations on ligand binding affinities.

Variations of k-Dynamics

In the past decade, k-dynamics simulation methods have stimu-

lated the development of other theoretical approaches in which

the k parameter scales the potential energy and dynamically

varies throughout the course of a simulation.

Constant pHMD (CPHMD) was also developed in the

Brooks’ lab and may be considered an application of k-dynamics

in which fictious k particles are used to propagate titration

degrees of freedom. The end-states in this approach represent

the deprotonated (k 5 0) and protonated (k 5 1) states.33 This

work was extended into two dimensions to model simultaneous

titration at two competing sites, such as the two histidine proto-

nation sites and two oxygen atoms in carboxyl groups.34,35

CPHMD has been used to study a variety of applications includ-

ing pH-dependent helix folding,36 folding and aggregation pro-

pensities in amyloid peptides,37 identification of folding inter-

mediates that involve ionizable sidechains,38 and the elucidation

of acid-base catalytic mechanisms.39

Recently, Abrams et al.40 incorporated a dynamic k parame-

ter into their adiabatic free energy dynamics (AFED) for gener-

Figure 3. Reproduced with permission from Damodaran et al.

J Phys Chem B 2001, 105, 9316. Distributions in the host cavity of

the toluene ligand from MD and k-dynamics trajectories.
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ating free energy profiles along reaction paths. In this k-AFED
method, by choosing switching functions that generate a high

barrier between the endpoints and by carefully assigning the

temperature and mass of the ‘‘k’’, k can be effectively adiabati-

cally decoupled from the rest of the system and thus the proba-

bility distribution in k directly leads to the free energy profiles

of interest. This method was successfully used to compute

hydration free energies of methane and methanol in explicit

water. These results are in agreement both with experimental

values and published FEP and TI calculations yet were obtained

with significantly less computational expense than the traditional

free energy methods.

In another strategy, Bitetti-Putzer et al.41 employ k as a self-

regulating sampling variable to efficiently traverse high-energy

barriers and to thoroughly explore low-energy basins. By using

multiple copies of a subset of the system and intermittently

varying their associated k values a copy in a high-energy region

will adopt a small k value and will sample more broadly until it

finds a low-energy region at which time its k value will increase

and the copy will begin to sample more finely. Bitteti-Putzer

et al. implemented k-dynamics in which atomic coordinates and

k values were propagated via Monte Carlo sampling. In their

study of the entry of an indole fragment into the nonpancreatic

secretory phospholipase A2 binding pocket, k MC moves for the

multiple copies of the indole fragments were proposed much

less frequently than those for the atomic coordinates and were

limited to a maximum move of 0.2. This method was shown to

be more effective than multiple copy simulation search methods

(i.e. where equal fixed k values are assigned for each indole

fragment) for crossing the free energy barrier associated with

diffusion of the ligand from the surface of the protein into the

binding pocket and for identifying the correct low-energy posi-

tion and orientation of the bound indole fragment.

Advancing k-Dynamics in Structure-Based

Drug Design

Developing Multi-Site k-Dynamics

Except for CPHMD, k-dynamics applications to date have

focused on simulating differences at single sites in a given sys-

tem. These differences have ranged from chemical moieties

attached to a specific substituent site on a common core com-

pound14,18,29 to complete, explicitly represented ligands24,25,31

to amino acids sidechains within peptides30 and larger pro-

teins.32 k-dynamics simulation methods are currently being

extended to model differences at multiple distinct sites simulta-

neously in a given system. In this way approach, chemical

modifications at multiple substituent sites on a common core

may be investigated within a single k-dynamics simulation.

Structure-activity relationship (SAR) studies that form the

backbone of most drug optimization strategies often investigate

the effect of altering chemical moieties at different positions

on a lead compound. However, not all combinations of moi-

eties are exhaustively synthesized to determine their experimen-

tal binding affinities with respect to a given protein target.

Multi-site k-dynamics would mimic these SAR experiments yet

would effectively evaluate all combinations of substituents to

identify the drug candidate which would have the optimal

binding affinity. In these simulations, each substituent site is

identified with a specific k parameter and the sum of the k val-

ues at each site is restrained to 1.

To obtain reliable relative free energies, each combination of

k2i 5 1 across the substituent sites would need to be adequately

sampled. Thus, increasing the number of substituent sites under

investigation may require more aggressive sampling methods. In

practice, the most favorable substituent at each site should be

readily identified if the effects of the substitutions at different

sites on the common core are primarily additive in nature. In

these simulations, the moieties at each site that are associated

with the optimal binder would be the dominant states that were

sampled with the highest probability. More complicated relation-

ships among sites can be envisioned where a drug may experi-

ence favorable interactions with the binding pocket residues due

to the presence of a fragment type at either one substituent site

or another, but not both sites simultaneously. For example, for

substituent sites that are located in close proximity to one

another, the drug may orient itself such that the favorable frag-

ment can adopt the necessary interactions with the binding

pocket. Alternatively, spatially separated substituents might

influence binding in mutually exclusive ways. In a binding

pocket of relatively fixed dimensions, the common core may be

able to successfully accommodate a bulky fragment at either

‘‘end’’ of the core, but not at both ‘‘ends’’ simultaneously. In our

group, we will be exploring the ability of k-dynamics to address

both of these contexts.

Predicting Effects of Drug Resistance

In addition to investigating multiple substituent sites on a com-

mon core to model a series of ligands, variations in the binding

pockets themselves may also be explored. By developing a

hybrid model of the binding pocket for a protein target, the

effects of anticipated mutations upon a ligand’s binding ability

may also be assessed. This may be especially important in the

case of developing drug molecules for virus proteins, for exam-

ple, whose ready ability to mutate leads to substantial drug re-

sistance and reduced long-term efficacy of pharmaceuticals.42–44

In practice, ligands that demonstrate favorable binding affinities

to the wild-type protein may be exposed to alternate binding

pockets via simulation methods. k-dynamics simulations can be

performed in which a ligand effectively ‘‘sees’’ and responds to

multiple sidechains at highly-mutatable residues that line the

binding pocket. In this case, the hybrid molecule now consists

of a protein target in which, at multiple distinct sites, different

amino acid sidechains are attached to a common a-carbon. Side-
chains at each site do not ‘‘see’’ each other and their respective

interactions with the environment are scaled by k; the mutant

sidechains would ‘‘see’’ those from other sites in proportion to

the product of their k values. The relative binding affinity

between the ligand and the wild-type and mutant proteins indi-

cates the ability of the ligand to retain its efficacy in the pres-

ence of clinically important mutations. With multi-site k-dynam-

ics, variations in both the binding pocket as well as the ligand
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core itself may be assessed simultaneously. From this multi-

dimensional hybrid system, multiple ligands can be investigated

simultaneously and ligands that do not bind well to all clini-

cally-relevant proteins are effectively screened out.

Conclusions

The k-dynamics free energy methodology has been developed to

obtain accurate estimates of relative hydration free energies and

binding affinities. This approach is based on the idea that multi-

ple ligands compete for a common receptor on the basis of their

relative free energies and that multiple ligands are modeled con-

currently in a common receptor environment using a multiple

copy simultaneous search strategy. In k-dynamics simulations,

the k parameter is treated as a dynamic variable and is propa-

gated along with the atomic coordinates and velocities through-

out the course of a simulation; in this way, only one simulation

is required to sample all k values between the ligand end-states

(i.e. k 5 0 and k 5 1). Furthermore, multiple ligands can be

assessed simultaneously where the potential energy term associ-

ated with each ligand is scaled according to its k value.

To date, studies of hydration free energies and binding affin-

ities of small molecules have been investigated using k-dynam-

ics simulations. It is clear from these studies, that k-dynamics

simulations can rapidly screen out poor binders among a series

of compounds. When the free energy surface is relatively

smooth the k 5 1 states for the remaining compounds will be

well sampled which enable accurate calculations of the relative

free energies. When the free energy surface is more rugged,

biasing potentials can be readily employed to overcome large

energy barriers between the end-points.

k-dynamics simulations are also able to sample more exten-

sive conformational space and are less likely to get trapped in

local energy minima than traditional molecular dynamics simula-

tions methods. For a series of ligands which have alternate bind-

ing conformations, k-dynamics simulations have been successful

at identifying binding modes that are observed in crystal struc-

tures even when the simulations are initialized from incorrect

orientations.

Results from k-dynamics simulations agree well with other

theoretical methods, like FEP, and with experimental results

where available; although, agreement between the theoretical

estimates and experimental data will also depend heavily on the

quality of the force field parameters that are used in the simula-

tions. By enabling the range of k values to be sampled within a

single simulation trajectory and by simultaneously modeling on

the order of 5–10 ligands, the computational expense of free

energy calculations relative to traditional FEP and TI methods

decreases dramatically.

k-dynamics has been implemented in CHARMM and efforts

are ongoing to extend the scope of k-dynamics in structure-

based drug design, specifically to allow multiple sites of varia-

tions to be targeted within a single simulation. Multi-dimen-

sional hybrid ligands will allow relative binding affinities of a

significantly larger number of unique ligands to be evaluated.

Using multi-site k-dynamics for hybrid binding pockets, ligands

can be screened against clinically-important binding pockets. k-

dynamics simulations are not intended to be a panacea for all

stages of drug optimization, but can be used in conjunction with

other methods as an effective and efficient method to refine

docked poses, systematically screen variations of a lead com-

pound or obtain reliable free energy estimates for promising

ligands.45 Finally, k-dynamics has also stimulated the develop-

ment of free energy methods that enable the efficient exploration

of important biological phenomena such as pH-dependent con-

formational changes and mechanisms via constant pH molecular

dynamics33–35 and barrier crossings in protein-ligand complexes

by using k as a self-regulating sampling variable.41
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