
L-EncDB: A Lightweight Framework for

Privacy-Preserving Data Queries in Cloud

Computing

Jin Li a,∗

aSchool of Computer Science and Educational Software
Guangzhou University, Guangzhou, 510006 P.R. China

Zheli Liu b,∗

bCollege of Information Technical Science
Nankai University, P.R. China

Xiaofeng Chen c

cState Key Laboratory of Integrated Service Networks (ISN)
Xidian University, Xi’an, P.R. China

Fatos Xhafa d

dDepartment of Languages and Informatics Systems
Technical University of Catalonia, Spain

Xiao Tan, Duncan S. Wong e

eDepartment of Computer Science
City University of Hong Kong, Hong Kong

Abstract

With the advent of cloud computing, individuals and organizations have become in-
terested in moving their databases from local to remote cloud servers. However, data
owners and cloud service providers are not in the same trusted domain in practice.
For the protection of data privacy, sensitive data usually have to be encrypted be-
fore outsourcing, which makes effective database utilization a very challenging task.
To address this challenge, in this paper, we propose L-EncDB, a novel lightweight
encryption mechanism for database, which i) keeps the database structure, and ii)
supports efficient SQL-based queries. To achieve this goal, a new format-preserving
encryption (FPE) scheme is constructed in this paper, which can be used to encrypt
all types of character strings stored in database. Extensive analysis demonstrates

http://ees.elsevier.com/knosys/viewRCResults.aspx?pdf=1&docID=6989&rev=2&fileID=127603&msid={276C1553-DFDE-4365-8FE5-E32EA19E819B}

that the proposed L-EncDB scheme is highly efficient and provably secure under
existing security model.

Key words: Data query, outsourcing, privacy, format-preserving encryption

1 Introduction

The ever-increasing amount of valuable digital data both at home and in
business needs to be protected, since its irrevocable loss is unacceptable. The
advent of cloud storage motivates enterprises and organizations to outsource
data storage to third-party cloud providers, as evidenced by many real-life
case studies. Cloud storage services promise to be a solution for this problem.
In recent years, their popularity has increased dramatically. They offer user-
friendly, easily accessible and costsaving ways to store and automatically back
up arbitrary data, as well as data sharing between users and synchronization
of multiple devices.

As in any existing application and system, security and privacy play an ex-
tremely important role for the success, and certainly raise new challenges
among the many others that cloud storage is confronted with. Specifically,
when entrusting data to the cloud, data owner also releases control over the
data, resulting that their trust is put in the cloud service provider’s integrity
and in the security of its access control mechanisms. However, individuals and
especially businesses hesitate to entrust their data to cloud storage services
since they fear that they will lose control over it. Recent successful attacks
on cloud storage providers have exacerbated these concerns. The providers
are trying to alleviate the situation and have taken measures to keep their
customers’ data secure. The simple and popular solutions adopted for data
privacy are traditional encryption techniques such as public key encryption
or symmetric key encryption. Through these encryption methods before out-
sourcing, the security of users’s data can be protected.

However, traditional database encryption will change the data structure of
original data, and results in the impracticability of database application for
various kinds of SQL operations. If the data structure is changed, it cannot
support data operations over ciphertext such as range query and fuzzy query,
etc. Especially, there has been considerable recent interest in the paradigm of

∗ Corresponding author. Jin Li and Zheli Liu contribute to this work equally.
Email addresses: jinli71@gmail.com (Jin Li), liuzheli1978@163.com (Zheli

Liu).

2

data mining-as-service: a company (data owner) lacking in expertise or com-
putational resources can outsource its mining needs to a third party service
provider. However, both the outsourced database and the knowledge extracted
through data mining are considered private property of the data owner in many
applications. Thus, to protect data privacy while realizing data mining and
knowledge extraction, the data owner is required to transform its data without
changing its structure before outsourcing.

Contribution. To realize effective data utilization after secure outsourcing,
we propose a lightweight encrypted database mechanism denoted by L-EncDB.
This new mechanism is able to protect sensitive information while keeping the
data structure in outsourcing service for big database application. In the pro-
posed L-EncDB system, the encryption and query are based on SQL. Through
only one interface, all SQL sentences for database can be interpreted.

Furthermore, based on format-preserving encryption (FPE) technique and a
new character string FPE scheme, L-EncDB can be implemented to preserve
data type and length in ciphertext. It enables i) to encrypt data and store
them without changing original database structure, ii) to perform SQL oper-
ations on all kinds of databases, including text database such as SQLite and
Access, iii) to support SQL-based operations including advanced fuzzy and
range queries.

Innovation. In this paper, a novel FPE scheme with the method of “multi-
radix modular addition” is proposed to support the L-EncDB lightweight
framework for privacy-preserving outsourced database. The new proposed
FPE can preserve both length and storage size of character strings, which
cannot be efficiently achieved in the traditional FPE schemes. Based on the
FPE scheme, data operations such as data mining and SQL-based queries can
be directly executed over ciphertexts in the proposed L-EncDB framework.
Furthermore, L-EncDB framework can be extended to text database (such as
SQLite used in mobile) and NoSQL databases, which have not been considered
in the previous related work.

1.1 Organization

The rest of this paper proceeds as follows. In Section 2, we give a survey for
the related work to ours. In Section 3, we propose the system architecture and
construction method for the L-EncDB system. In Section 4, we propose a prac-
tical construction of FPE for character string. Its security and performance
analysis is also given in this section. In Section 5, we present the implementa-
tion of prototype for L-EncDB with the proposed FPE, and in Section 6, we
present an extension of the L-EncDB to NoSQL database encryption. Finally

3

we draw conclusion and show the future work in Section 7.

2 Related Work

We briefly discuss FPE technique and privacy-preserving database encryption
solutions in this Section.

2.1 FPE

The notion of FPE [1–4] has been proposed to generate ciphertext with the
same format as plaintext while encrypting sensitive information. More specifi-
cally, FPE can keep data type and length in the ciphertext, therefore, without
changing database structure and field type. Thus, the use of FPE enables
upgrading database security in a transparent way. The goal of FPE is to
generate ciphertext which falls in the same domain as the plaintext. Some
practical FPE schemes have been proposed for simple domains such as integer
[5], character data [3] and datetime [6]. Character data is the common data
type in database, which appears in the form of character strings, i.e., the fi-
nite sequences of characters from some character sets. However, there is no
suitable character FPE solution to preserve both length and storage size of
strings above. For a string with character from iso-8859-1 or ASCII, where
the storage size of each character is 1 byte, the length of string is equal to its
storage size, and FFX is also suitable in this case.

However, most of character sets are represented using more powerful encoding
formats, and different characters may require different byte counts to repre-
sent. In this paper, such a character set is called “multi-byte character set”.
Consider a character string of length n with each character in UTF-8, its stor-
age size will be from n bytes to 4n bytes. In this case, FFX is unsuitable. In
2012, Li et al. [7] proposed a solution based on cycle-walking [8]. However,
cycle-walking can not guarantee stable efficiency, which is impractical in most
applications. In this paper, we develop a new FPE method in Section 4.

2.2 Privacy-preserving Database Encryption

A number of research results [9–13] were proposed for privacy-preserving
database encryption. However, most of them cannot provide the complete
solution for general SQL-base operations over encrypted data. To support
query over encrypted numerical data, Hakan et al. [9] firstly presented a basic

4

Fig. 1. CryptDB architecture

Database Layer

Field_1 Field_n Additional Field

ciphertext ciphertext Keyword ciphertext

Additional Field

Keyword ciphertext

Application
System

Trusted SQL Interpretation Layer

Format-preserving
Encryption

Fuzzy Query
Encryption

Order-preserving
Encryption

1. Plaintext SQL

2. Ciphertext SQL

3. Execute SQL

SQL Flow

Data Flow
Table1

Fig. 2. L-EncDB Architecture

framework of how to ensure data security in “Database-As-Service” (DAS)
model, in which a coarse query is executed by the database service provider.
Based on this basic framework, Wu et al. [12] described a solution for query
over encrypted character strings.

One of the most typical database encryption solutions is CryptDB [14], which
explores an intermediate design point to provide confidentiality for applica-
tions that use database management systems (DBMSes). As shown in Fig. 1,
CryptDB works by intercepting all SQL queries in a database proxy, which
rewrites queries to execute over encrypted data (CryptDB assumes that all
queries go through the proxy). The proxy encrypts and decrypts all the data,
and changes some query operators, while preserving the semantics of the query.
However, CryptDB is not designed for existing database applications and the
DAS model of cloud storage. In cloud computing, users are able to store,
modify and retrieve data from anywhere in the world, as long as they have
access to the Internet. CryptDB changes the database structure and stores
the ciphertexts generating by different encryption methods.

2.3 Other Related Work

The notion of order preserving encryption (OPE) [15–18] is another important
encryption method in database to achieve the confidentiality while keeping
the order of underlying plaintexts. Such a property allows users to perform

5

comparison and range query over encrypted data without decrypting them.
Another notion related is searchable encryption (SE) [19,20], which provides
functionalities to perform keyword search over encrypted data without de-
crypting them. There are also some other related privacy-preserving methods
proposed for the security in database [21–23,14].

3 The New Advanced Secure Database System

3.1 System Model

The architecture of L-EncDB system is shown in Fig. 2. To provide data
privacy protection solution and save upgrade cost for existing DB applications,
L-EncDB system utilizes FPE technique to encrypt data.

There are two layers in the L-EncDB system, that is, the application system
layer and database layer.

(1) SQL interpretation interface deployed in database application system will
interpret all SQL sentences, encrypt constants in SQL sentence and form
SQL sentence with ciphertext. For different SQL queries, different encryp-
tion methods (FPE, fuzzy query encryption (FQE) or OPE) are used.
Note that SQL interpretation interface is viewed as an application pro-
gram interface (API).

(2) Database layer will only provide data services and not allow developers
to do any operation beyond SQL-based functions. As shown in Fig. 2,
original fields are used to store ciphertext of original data, but additional
fields are used to store additional ciphertexts for fuzzy query or range
query.

Query. SQL interpretation interface is one of the key components of L-EncDB.
As shown in Fig. 2, the application system receives the interpreted SQL sen-
tence by calling SQL interface, which takes the original SQL sentence as the
input. It then sends the interpreted SQL sentence to database. For most of
general database applications, there are two types of SQL sentences: one is
for data operation, such as insert, delete, and update. The other is for data
query, such as exact query, join query, fuzzy query, and range query. We show
how to process the interpretation for each type in our system.

As shown in Fig. 3.(a), for SQL data operation sentences, such as to insert, or
to update, each constant in the query will be encrypted using FPE. To delete
a record, the constant in the query will be encrypted using FPE as well. For
fuzzy query or range query, SQL interpretation interface will further generate

6

Table 1
FPE for data types in DB

Types Subtypes SQL Field Type FPE Scheme

Numeric
integer smallint, int

FFSEM[5]
decimal numeric, float

Char
finite length nchar, nvarchar FFX[3]

finite space char, varchar MR-FPE

Datetime N/A datetime Liu et al.[6]

Binary N/A binary, varbinary Block cipher

the query for ciphertext by using FQE or OPE and store it into an additional
filed.

As shown in Fig. 3.(b), for SQL exact keyword query, join query or nested
query, the keywords will be encrypted by FPE. For fuzzy query or range
query, the interface will use FQE or OPE to encrypt keywords, and change
the query field to its corresponding additional field.

3.2 Security Notions

For L-EncDB system, the interface for SQL interpretation can be deployed at
client side or the application service layer. We assume that there exist authen-
tication and access control methods to protect the key used in L-EncDB.

We consider two types of attackers for L-EncDB: (1) attackers with access
to database, including DBA or cloud service provider. They have access to
the encrypted data and DB structure; (2) attackers with access to both ap-
plication system and database. In another word, they are able to access SQL
interpretation interface deployed in DB applications, construct SQL sentences
with plaintext, gain interpreted SQL sentences with encrypted data, and view
all fields and structure of database.

3.3 SQL-based Data Operations

L-EncDB uses SQL interpretation interface to interpret all SQL sentence,
which is viewed as an API that can be flexibly used by developers. Next,
we describe the interpretation processes in details and show how L-EncDB
supports SQL operations and queries over encrypted data.

7

Fuzzy
Query?

Range
 Query?

yes yes

FQE OPEFPE

Data for
Insert/Update

Field Field_Extra Field_Extra

SQL for
Query

Exact
Query?

yes no

Field
Change

Encrypt
Keyword

Encrypt
Keyword

Generate New SQL Over Encrypted data

(a) (b)

Fig. 3. Interpreting SQL sentences

3.3.1 Basic SQL Operations

For basic data operation (insert, update, and delete) and query (exact query,
join query, and nested query), the interface for SQL interpretation will replace
the plaintexts with the corresponding ciphertexts encrypted by FPE. Note
that FPE is deterministic, which means that SQL-based data operation and
query operation can be directly executed over the encrypted database. For
example, “Insert into Table1(Field1, Field2) values (String1, String2)”, will
be interpreted to “Insert into Table1(Field1, Field2) values (fpek (String1),
fpek(String2))”, where fpe is the adopted FPE algorithm, k is the selected
encryption key, and fpek(x) means to encrypt x with fpe.

Similarly, the interface for SQL interpretation will replace the constants in the
queries with ciphertexts of FPE in the following SQL sentences:

• Update, “Update Table1 set Field2=String3 where Field1=String1”;
• Delete, “Delete from Table1 where Field1 = String1”;
• Exact query, “Select * from Table1 where Field1 = String1”;
• Join query, “Select Table1.* from Table1,Table2 where Table1.Field1= Ta-
ble2.Field1 and Table2.Field2=String1”;
• Nested query, “Select * from Table1 where Field1 in (select Field1 from
Table2 where Field2=String3)”.

3.3.2 Advanced Queries

Range query over encrypted data. For range query, the interface applies
OPE to generate ciphertexts and store them in additional fields. For example,
for a SQL sentence like “Insert into Table1(Field1) values (String1)”, where
Field1 is for range query, the interpreted SQL sentence will be “Insert into
Table1(Field1, Field1Extra) values (fpek(String1),OPEk(String1))”, where

8

Field1Extra is additional field for Field1, OPE is adopted OPE scheme and
OPEk(x) means to encrypt x with OPE scheme using encryption key k.

To perform range query, the SQL interpretation interface will change the query
filed into its additional field and generate the ciphertexts. For example, “Select
* from Table1 where Field1>key1” will be interpreted as “Select * from Table1
where Field1Extra>OPEk(key1)”.

For data x, y and x < y, we can have OPEk(x) < OPEk(y). Hence, the above
interpreted SQL sentence will still work in the encrypted database.

Fuzzy query over encrypted data. The interpretation for fuzzy query
is similar to range query. For example, for a SQL sentence like “Insert into
Table1(Field1) values (String1)”, where Field1 is for fuzzy query, the inter-
preted SQL sentence will be “Insert into Table1(Field1, Field1Extra) values
(fpek(String1),FQEk(String1))”, where Field1Extra is additional field for
Field1, FQE is adopted FQE scheme and FQEk(x) means to encrypt x with
FQE scheme using encryption key k.

To perform fuzzy query, the interface changes the query filed to its additional
field and generate keyword ciphertexts. For example, “Select * from Table1
where Field1 like ‘%key1%key2%”’ will be interpreted as “Select * from Table1
where Field1Extra like ‘%FQEk(key1)%FQEk(key2)%”’.

To ensure the interpreted SQL sentence works in encrypted database, an FQE
scheme supporting SQL-based fuzzy query over encrypted data is required. In
CryptDB, Popa et al. proposed a keyword search scheme based on SE scheme
[19]. However, this scheme supports only full-word keyword searches but not
arbitrary regular expressions.

The idea of adopted FQE scheme in [24] is very simple. For an n-character
string D = d1 ∥ d2 ∥ · · · ∥ dn, where ∥ denotes concatenation, it replaces
each character with its ciphertext: for each character di, 1 ≤ i ≤ n, FQE

scheme firstly expands it to l-characters string by str ← di ∥

l−1
︷ ︸︸ ︷

11 · · · 1, and
secondly encrypts str to str′ using character FPE such as FFX, then hashes
str′ into a short number using short hash function in [25], and finally, FQE
scheme encodes the resulting short number to a Unicode character. We define
the gen(c) as above cryptology function to output a Unicode character and
assume the plaintext is d1 ∥ d2 ∥ · · · ∥ dn. Then, its query for ciphertext
stored in additional field will be gen(d1) ∥ gen(d2) ∥ · · · ∥ gen(dn). For a
keyword key1=di ∥ · · · ∥ dj, 1 ≤ i ≤ j ≤ n, its ciphertext is computed as
FQEk(key1)=gen(di) ∥ · · · ∥ gen(dj).

Table 2 compares L-EncDB with Popa et al.’s CryptDB model.

9

Table 2
Comparison between L-EncDB and CryptDB

Model L-EncDB CryptDB

Fuzzy query Yes Partial

Data operation Application DB proxy and UDFs

Change DB structure Add fields Anonymize tables and columns

(1) CryptDB can only partially support fuzzy query. Our proposed L-EncDB
is more flexible and able to support the fuzzy query.

(2) On data operation, the SQL-based operations are directly executed in
DBMS. Both data encryption and decryption are executed in application
in L-EncDB. However, direct SQL-based operations cannot be supported
in CryptDB, where the trusted database proxy is used to intercept all
the SQL queries and decrypt their (encrypted) results. To intercept SQL
queries and implement encryption and decryption, CryptDB is required
to build corresponding UDFs on the DBMS server.

(3) On database structure, CryptDB anonymizes each table and column
name to achieve confidentiality. L-EncDB preserves most of original DB
structure to reduce the cost of application codes. Hence, for existing
database applications, L-EncDB is more suitable and lightweight when
enterprises and organizations outsource data storage to third-party cloud
providers.

In short, compared with the other database encryption solutions such as
CryptDB, L-EncDB is lightweight to support SQL-based operation directly
in DBMS and can be flexibly deployed in database applications.

4 New FPE Scheme for Character String

As described in section 2.1, there is no suitable FPE scheme for varchar data
type with the restriction that the ciphertext has the same length with its
corresponding plaintext. In this section, we propose a new FPE scheme for
character string with arbitrary data type, which will be used in L-EncDB.

4.1 Preliminary

Throughout the rest of the paper, we let Chars be a multi-byte character
set, and Chars∗ be character strings over Chars of any length. Moreover, for
any set S, let |S| be the number of elements in S. For a multi-byte character
set Chars, it can be divided into subsets and each subset contains characters

10

of same size. Let Charsm be a subset containing all characters with storage
size m. Let cmin = min(|Charsi|, i = 1, 2, · · ·, I), cmax = max(|Charsi|,
i = 1, 2, · · ·, I), respectively be the number of members in the smallest and
biggest subset of Chars.

The message space of character strings is described as X [Chars] = {X|X ∈
Chars∗}. Given any two character strings A,B ∈ X [Chars], denote A ∥ B

as their concatenation. ∀ X ∈ X [Chars] ⇔ X = x1 ∥ x2 ∥ · · · ∥ xi ∥ · · · ∥
xn, xi ∈ Chars. For any string X ∈ X [Chars], let l(X) and s(X) denote
the length and storage size respectively. The storage size of any character
c ∈ Chars is also represented by s(c).

We now give a review of the classical definition for FPE given by Morris et al.
[2].

Definition 1 A format-preserving encryption scheme is a function F : K ×
N ×T ×X → X ×{⊥}, where ⊥ ≠ X , and nonempty sets K, N , T , X denote

the key space, format space, tweak space and domain, respectively.

There are two kinds of character data, that is, nvarchar and varchar.

(1) If a field is defined as nvarchar(n), it means that the field can store arbi-
trary character string with length (or character number) not more than
n. The FFX method [3] is suitable for this type of domain. For example,
for a plaintext string “abcd” with the length of 4, its ciphertext encrypted
by FFX is “eadf”, which has the same length and each character is in the
same character set.

(2) If a field is defined as varchar(n), it means that the field can store arbi-
trary character string and the storage size is not more than n.

4.2 Problem Statement

New FPE. The following explains the new FPE for message space X [Chars]:

Definition 2 A Character FPE is a function F : K × N [Chars] × T ×
X [Chars] → X [Chars], where N [Chars] is the formatspace of character

strings, K, T , X [Chars] are respectively the key space, tweak space and do-
main.

Let X [Chars] denote message space defined by format N . In our FPE for
strings with type of varchar, the format space is defined by both length and
storage size, that is N [Chars] = {(l(X), s(X))|X ∈ X [Chars]}.

11

An example. Assume that a concrete Chars is defined as {‘a’, ‘b’, ‘c’, ‘d́’,
‘é’}. In Chars, s(‘a’)=s(‘b’)=s(‘c’)=1, i.e., the storage size of character ‘a’,
‘b’ and ‘c’ is 1 byte. But s(‘d́’)= s(‘é’)=2, i.e., the storage size of character ‘d́’
and ‘é’ is 2 bytes. Thus, Chars is a multi-byte character set.

To better express the format of string X = x1 ∥ x2 ∥ · · · ∥ xi ∥ · · · ∥ xn, where
xi ∈ Chars, 1 ≤ i ≤ n. Let Ω(X) be its structure and Ω(X) = {ω1, · · ·, ωI},
where ωi = |{xj ∈ X|s(xj) = i}| and ωi is the number of characters in string
X with storage size i. For example, for string X=“abééé”, its structure is
Ω(X)={2, 3}, i.e., 2 characters of storage size 1 byte, 3 Latin characters of
2 bytes, and its format is N(X) = (5, 8), which means that length is 5 and
storage size is 8 bytes.

4.3 Scheme Description

4.3.1 Basic Idea

For a multi-byte character set Chars, we establish a mapping from a subset
Charsm to an integer set Zn = {0, 1, · · ·, n − 1}, where n is the character
elements of Charsm, that is n = |Charsm|. For each character c, let v(c) be
its mapping value in Zn.

For strings with type of varchar, FPE will preserve both length and storage
size. Each character c will be represented as “< value, radix >”, where value
is mapping value of c in Zn, i.e., value = v(c), and radix is the element number
of Charss(c), i.e., radix = n = |Charss(c)|. For convenience, let r(c) be the
radix of character c.

A new FPE for character string based on Feistel network is given, where
Modular addition is an important component. In the new FPE scheme, the
result of addition has the same radix as that of left operand because the
modulo is radix of left operand. Thus, the output has the same format as the
input. We call such modular addition as “multi-radix modular addition” and
denote it as ⊞, while ⊟ as its inverse operation.

Definition 3 For x and y, which are represented as “< v(x), r(x) >” and

“< v(y), r(y) >” respectively, the multi-radix modular addition is defined as:

x ⊞ y=(v(x) + v(y)) mod r(x). Its inverse is defined as x ⊟ y=(v(x) − v(y))
mod r(x).

An example. Assume that we have a multi-byte character set Chars={‘a’,
‘b’, ‘c’, ‘d́’, ‘é’} and two subsets, that is, Chars1={‘a’, ‘b’, ‘c’} and Chars2={‘d́’,
‘é’}. We also assume that we have two characters x=‘a’ and y=‘é’, which are
represented as “<0, 3>” and “<1, 2>” respectively. “x ⊞ y” is computed by

12

Li, っ(Li) Ri, っ(Ri)

+

Li+1, っ(Li+1) Ri+1, っ(Ri+1)

Xi, っ(Xi)

Xi+1, っ(Xi+1)=っ(Li+1)+っ(Ri+1)=っ(Xi)

Encryption

Algorithm (A,B)

For i :=1 to rn do

 modulo :=A[i].radix
Z[i].radix:=A[i].radix

 Z[i].value:=A[i].value+B[i].value
 Z[i].value:=Z[i].value mod modulo
return Z

Modular Addition

PRF

Li+1, っ(Li+1) Ri+1, っ(Ri+1)

Li, っ(Li) Ri, っ(Ri)

Xi+1, っ(Xi+1)

Xi, っ(Xi)=っ(Li)+っ(Ri)=っ(Xi+1)

Decryption

-PRF

+ Algorithm (A,B)

For i :=1 to rn do
 modulo :=A[i].radix

Z[i].radix:=A[i].radix
 Z[i].value:=A[i].value-B[i].value
 Z[i].value:=Z[i].value mod modulo
return Z

Modular Subtraction

-

(a) (b)

(c) (d)

Fig. 4. FPE for character string and modular operations

‘a’⊞‘é’=(0+1) mod 3 and its result is “<1, 3>”, which represented by charac-
ter ‘b’ in Chars1. The inverse operation is defined by ‘b’⊟‘é’=(1-1) mod 3 and
its result is “<0, 3>”, which represented by character ‘a’ in Chars1. Similarly,
the addition “y ⊞ x” is defined by ‘é’⊞‘a’ =(1+0) mod 2 and results in “<1,
2>”, which represented by character ‘é’ in Chars2. The inverse operation is
defined by ‘é’⊟‘a’=(1-0) mod 2 and results in “<1, 2>”, which represented by
character ‘é’ in Chars2.

4.3.2 Description

Our new FPE can be described by three algorithms, that is, Setup, Encrypt,
and Decrypt.

Setup: It generates the initial parameters, including the encryption key k and
the number of Feistel rounds rn.

Encrypt : It takes as input the string X, key k and the round number rn.
For the i-th round, its process is shown in Fig. 4. More specifically, three
steps will be included. First, it divides the input Xi into a left part Li and a
right part Ri. Li is returned as its right part, Li+1 = Ri ⊞ PRF (Li) as left
part, in which PRF is instantiated by AES-CBC. Fig. 4 also describes the
multi-radix modular addition algorithm, which ensures Ω(Li+1) = Ω(Ri) and
Ω(Xi+1) = Ω(Xi), i.e., the output of i-th round has the same format as the
input.

13

Decrypt : It takes as input string X ′, key k and the round number rn. As
shown in Fig. 4.(b), it divides input Xi+1 into Li+1 and Ri+1. Then it outputs
Ri+1 as the left part, Ri = Li+1 ⊟ PRF (Ri+1) as the right part. The multi-

radix modular subtraction algorithm is described in Fig. 4.(d), which ensures
Ω(Ri) = Ω(Li+1) and Ω(Xi+1) = Ω(Xi), i.e., the output of this Feistel round
has the same format as its input.

4.4 Security analysis

According to [2], the PRP security notion under chosen plaintext attack, i.e.,
PRP-CPA, is defined by PRP game PRPA

ξ between challenger C and adversary
A as follows.

Setup: C selects a boolean value b← {0, 1} in random, generates the symmetric
key K for FPE scheme ξ in domain X , and selects a uniform permutation π

on X .

Phase: A can adaptively ask C for the corresponding ciphertext for any string
X ∈ X . If b = 0, C responds with π(X), otherwise with ξK(X).

Guess : A outputs a predicate value b′. If b = b′, the security game returns 1.
Otherwise, it returns 0.

Definition 4 An FPE scheme ξ is PRP-CPA secure if any polynomial time

adversary has only a negligible advantage in PRP game shown above, where

the advantage is defined as

Adv
PRP
ξ (A)

def
= Pr[PRPA

ξ ⇒ 1]− 1
2

Theorem 1 If the underlying round function is a secure pseudo random per-

mutation, our new FPE scheme achieves the PRP security.

Proof 1 Assume that there exists an adversary breaks the security of our FPE

scheme, a simulator will be built to show the insecurity of PRF , that is, the

simulator could break the indistinguishability of PRF from a truly random

permutation P . Next, we show how to use A to construct a distinguisher D.
Whenever A queries the encryption oracle with a string X, D selects a random

value b = {0, 1}. If b = 0, it computes X ′ with PRF , otherwise it computes

X ′ with P . Finally, D returns the result X ′ back to A.

It can be seen that the view of A when run as a sub-routine by D is distributed

identically to the view of A in game PRPA
ξ . Thus if the adversary can succeed

in attacking the FPE, there is a distinguisher D having the same probability

on distinguishing PRF with P in polynomial time.

14

5 Implementation and Evaluation

5.1 Implementation Details

The experiment for our L-EncDB system is conducted to evaluate its effi-
ciency. We implement the system through an open kernel API of C++ DLL
for L-EncDB, called GenerateSQL, which takes as input a plaintext SQL sen-
tence and outputs interpreted encrypted SQL sentence. To implement FPE
schemes, AES and big number in open source library polarssl are used. Users
can improve their database security based on such a DLL with authentication
and access control mechanisms.

GenerateSQL

FPEAES FQEOPE

FFX MR-FPE FPE-DATETIME

(a) Kernel interface of L-EncDB

CREATE TABLE users(
uid, int; //FPE
uname varchar(50);//FPE,FUZZY
address varchar(255);//FPE
);
CREATE TABLE salary(
uid int; //FPE
money int;//FPE,RANGE
);

(b) The schema with annotations

Fig. 5. Implementation details

As shown in Fig. 5.(a), GenerateSQL API uses techniques of FPE (“MR-
FPE” is used to identify the proposed FPE scheme for character string), OPE,
FQE to interpret SQL sentences. To provide correct interpretation to users,
it requires that: (1) the fields of fuzzy query field and range query are named
as Field Fuzzy and Field Order respectively; (2) DB structure is open to L-
EncDB DLL. That is, L-EncDB DLL must know DB structure, and the fields
should be encrypted for fuzzy query or range query. To achieve this goal,
the schema with annotations shown in Fig. 5.(b) is used, in which annotation
“FPE” denotes the encryption of FPE, “FUZZY” and “RANGE” denote fuzzy
query and range query respectively.

The SQL sentences interpretation performs as follows. Firstly, it analyzes SQL
sentence, decides operations and tables to execute. Secondly, based on opera-
tion and table structure, it decides whether encryption, fuzzy query or range
query are needed. Finally, it completes the interpretation of SQL sentences
with suitable encryption schemes.

15

Table 3
Execution time of encryption

Scheme Encryption Decryption

AES 0.00015 ms 0.00015 ms

OPE 9.80000 ms 0.00000 ms

FQE FFX*n ms 0.00000 ms

10000 15000 20000 25000 30000 35000 40000
0

50

100

150

200

T
im

e
co

st
 (

m
s)

Number of Encryption

 FFX
 MR-FPE
 FPE-DATETIME

(a) FPE schemes

10000 15000 20000 25000 30000 35000 40000
0

20

40

60

80

100

120

140

160

180

200

220

240

T
im

e
co

st
 (

m
s)

Number of Encryption

 Other Computation
 AES

(b) MR-FPE scheme

Fig. 6. Execution time of FPE schemes

5.2 Experimental Evaluation

L-EncDB is external encryption mechanism independent from database. The
adopted encryption algorithms affect DB operation performance. To evaluate
its performance, two issues are addressed: 1) the performance of FPE encryp-
tion algorithms for batch data encryption, 2) the performance of OPE.

As shown in Fig. 5.(a), encryption algorithms include FFSEM, FFX, MR-FPE,
FPE-DateTime, FQE and OPE. We programm for these encryption algorithms
and experiment for their average execution time. For FFSEM, FFX and MR-
FPE, we set Feistel rounds number as 12, use AES-CBC to construct random
function. All our experiments are performed in Windows 7 operation system
with the Intel(R)Core(TM)i5-3337U @ 1.80GHZ and 4GB memory.

The performance evaluation of encryption algorithms are shown in Fig. 6 and
Table 3. From them, we can get the following results:

(1) the average execution time of AES is about 0.15us;
(2) as shown in Fig. 6.(a), two FPE algorithms based on Feistel network, i.e.,

FFX and MR-FPE, the average execution times are very close, which are
around 30 times of that of AES algorithm. FPE-DateTime algorithm uses
FFX (with the character set of {‘0’,· · ·,‘9’}) as integer FPE to compute

16

the offset; hence average execution time is also close to FFX;
(3) as shown in Fig. 6.(b), the average execution time of MR-FPE is about

5us, which is about 30 times of that of AES. For each run, MR-FPE
algorithm executes not only AES algorithm and modular arithmetic, but
also coding and decoding operations. Among them, the execution time of
AES algorithm is about 1.8us for 12 Feistel rounds, but other operations
including modular arithmetic and coding operations cost about 3.2us.

(4) OPE’s average execution time is the lowest; its decryption time is 0ms
for never decrypting OPE ciphertext in L-EncDB;

(5) FQE’s execution time is related to the length n of plaintext and FPE’s
execution time, and in practical applications, the data for fuzzy query is
often less than 100, thus FQE scheme will be more efficient than OPE.

In practical applications using L-EncDB, for each DB operation, the rounds
of encryption are different, which are linearly increasing with the number of
fields in the operation. For a SQL insert sentence with 30 fields and no range
query or fuzzy query, the execution time for each insert operation is about
0.09ms, i.e., the system can interpret 11000 SQL sentences within 1s. Thus,
the system can meet needs for most of applications.

Evaluation in web applications. The L-EncDB is a lightweight mechanism
and can be easily deployed in various kinds of database applications. In our
evaluation, we use it to build a secure website based on the above implementa-
tion details. The webpage programming language is Java (jsp, javabean, jdbc,
etc), and the web server is Resin (with version of 3.1.12). Java Native Interface
(JNI) technique is used to call functions of C++ DLL. To construct the test
platform, we use Java language to construct an application, in which the open
source library named “HTTPClient” is used to visit the specified webpage in
our website. Moreover, the Mysql is selected as the database server.

0 20000 40000 60000 80000

0

20000

40000

T
im

e
co

st
 (

m
s)

Number of operations

 SQL Insert
 SQL Update
 SQL Query
 Cryptology operation

(a) SQL operations

0 20000 40000 60000 80000
0

10000

20000

30000

T
im

e
co

st
 (

m
s)

Number of operations

 SQL Insert
 Insert using L-EncDB

(b) Two kinds of Insert operation

Fig. 7. Comparison between SQL operations and encryption

To evaluate the performance in real web applications, we focus on the compar-
ison of execution time between SQL operations and L-EncDB operations. We

17

test the basic SQL operations including insert, update and query. From Fig.
7, we can see that the execution time of SQL query operation is longer than
the other SQL operations. As shown in Fig. 7.(a), the average execution time
of query is about 0.6ms, but that of insert and update is only about 0.3ms.
Execution time of SQL insert operation using L-EncDB is very close to that
without encryption as shown in Fig. 7.(b).

6 Extension of L-EncDB to NoSQL Database Encryption

With the advent of the Internet Web2.0 site, traditional SQL-based relational
databases cannot be applied and many challenges arise, including:

(1) Performance problem. To provide dynamic pages and information for
user, thousands of read and write requests are produced each second in
web2.0 site, and results in high concurrent load of database. However,
SQL-based databases can not meet this requirement.

(2) Storage problem. In big data background, each user will produce massive
dynamic information. For example, in Friendfeed, 250 million of user dy-
namic records are generated in a month. In this case, the efficiency will
be unbearable when the traditional SQL-based relational databases are
used to query over such records.

To solve the above challenges, NoSQL (Not Only SQL) databases have been
developed and widely used in practice. BigTable of Goole and Dynamo of
Amazon are successful implementation of NoSQL.

In the cloud computing, more and more enterprises also need to outsource
NoSQL database to construct their business applications. Our L-EncdDB can
be easily extended to NoSQL database encryption with the following proper-
ties.

(1) Independence of database. L-EncDB are always deployed in the client
side, in which data encryption and decryption are all executed in the
application.

(2) Queries over encrypted data. In L-EncDB, exact query can be reserved
because of the deterministic encryption. The range query can also be
applied for the order-preserving encryption.

After extending the implementation of SQL interpretation interface accord-
ing to operation syntax of different NoSQL databases, L-EncDB can be used
to encrypt the data in these databases while preserving the query syntax.
For example, in the case of MongoDB, SQL interpretation interface can be
implemented by replacing the constants in the queries:

18

• Insert, “db.users.save({name:“String1” age:Age1, country:“String2”})” will
insert a record with three attribute name, age and country;
• Update, “ db.users.update({ “name”: “String1”}, { $set:{ “country”:“String3”
}})” will update “country” as “String3” in the record in which the value of
attribute “name” is “String1”;
• Delete, “db.users.remove({“name”: “String1”})” will delete the record in
which the value of attribute “name” is “String1”;
• Exact query, “db.users.find({“name”: “String1”})” will query the record in
which the value of attribute “name” is “String1”;
• Range query, “db.users.find({“age”:{$in:[Age1, Age2]}})” will query the
records in which the value of attribute“age” is in the range of Age1 to
Age2 ;
• Fuzzy query, MongoDB uses regular expression to achieve fuzzy query, for
example, the SQL sentence “SELECT * FROM users where name like ‘A%”’
will be “db.users.find(“name” :/ˆA/)”. So, the fuzzy query expression can
be interpreted as “db.users.find(“name” :/ˆFQEk(A)/)”.

7 Conclusion and Future Work

In this paper, we proposed a novel L-EncDB mechanism, which provides a
secure and privacy-preserving data utilization for outsourced database such
as SQL-based encryption and query mechanism. Such a new mechanism for
database does not change the data structure after encryption and can be
efficiently realize data utilization such as privacy-preserving knowledge ex-
traction, after outsourcing database into the cloud. In this new mechanism, it
utilizes a core interface provided as API to interpret SQL operations, which
allows to protect sensitive information in database applications. Experimen-
tal results demonstrate that the new L-EncDB is efficient and can be applied
to big database for privacy-preserving applications. Finally, we also showed
how to extend our L-EncDB to realize the privacy-preserving queries over
encrypted NoSQL Database.

To make the L-EncDB mechanism more practical, SQL-based range query
methods with better performance will be investigated in future to support
comparison over ciphertexts. Especially, we will extend it to privacy-preserving
knowledge extraction for outsourcing database, and further provide some prac-
tical data publishing methods suitable for our framework.

19

References

[1] J. Black, P. Rogaway, Ciphers with arbitrary finite domains, in: Topics
in Cryptology–CT-RSA, Vol. 2271 of Lecture Notes in Computer Science,
Springer, 2002, pp. 114–130.

[2] B. Morris, P. Rogaway, T. Stegers, How to encipher messages on a small domain:
Deterministic encryption and the thorp shuffle, in: Advances in Cryptology–
CRYPTO 2009, Vol. 5677 of Lecture Notes in Computer Science, Springer,
2009, pp. 286–302.

[3] M. Bellare, P. Rogaway, T. Spies, The ffx mode of operation for format-
preserving encryption, NIST submission.

[4] V. T. Hoang, B. Morris, P. Rogaway, An enciphering scheme based on a card
shuffle, in: Advances in Cryptology–Crypto 2012, Vol. 7417 of Lecture Notes in
Computer Science, Springer, 2012, pp. 1–13.

[5] S. Terence, Feistel finite set encryption mode., NIST Proposed Encryption
Mode.

[6] Z. Liu, C. Jia, J. Li, Format-preserving encryption for datetime, in: Intelligent
Computing and Intelligent Systems, Vol. 2, Springer, 2010.

[7] M. Li, Z. Liu, J. Li, C. Jia, Format-preserving encryption for character data,
Journal of Networks (2012) 1239–1244.

[8] J. Li, C. Jia, Z. Liu, Cycle-walking revisited: consistency, security, and efficiency,
in: Security and Communication Networks, 2012.

[9] H. Hakan, L. Bala, L. Chen, M. Sharad, Executing sql over encrypted data in the
database-service-provider model, in: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, ACM, 2002, pp. 216–227.

[10] S. Evdokimov, O. Guenther, Encryption techniques for secure database
outsourcing, in: Computer Security – ESORICS 2007, Vol. 4734 of Lecture
Notes in Computer Science, Springer, 2007, pp. 327–342.

[11] C. Wang, Q. Wang, K. Ren, Towards secure and effective utilization over
encrypted cloud data, in: the 31st International Conference on Distributed
Computing Systems Workshops, IEEE, 2011, pp. 282–286.

[12] Z. Wu, G. Xu, Z. Yu, X. Yi, E. Chen, Y. Zhang, Executing sql queries over
encrypted character strings in the database-as-service model, in: Knowledge-
Based Systems, Vol. 35, 2012, pp. 332–348.

[13] K. Choy, W. Lee, H. C. Lau, L. Choy, A knowledge-based supplier intelligence
retrieval system for outsource manufacturing, in: Knowledge-Based Systems,
Vol. 18, 2005, pp. 1–17.

[14] R. A. Popa, N. Zeldovich, H. Balakrishnan, Cryptdb: protecting confidentiality
with encrypted query processing, in: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ACM, 2011, pp. 85–100.

20

[15] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, Order preserving encryption
for numeric data, in: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, ACM, 2004, pp. 563–574.

[16] A. Boldyreva, N. Chenette, Y. Lee, A. O’Neill, Order-preserving symmetric
encryption, in: Advances in Cryptology–EUROCRYPT 2009, Vol. 5479 of
Lecture Notes in Computer Science, Springer, 2009, pp. 224–241.

[17] R. A. Popa, F. H. Li, N. Zeldovich, An ideal-security protocol for order-
preserving encoding., in: Proc. of the 34th IEEE Symposium on Security and
Privac, 2013.

[18] I. Yakut, H. Polat, Estimating nbc-based recommendations on arbitrarily
partitioned data with privacy, in: Knowledge-Based Systems, Vol. 36, 2012,
p. 353C362.

[19] D. X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted
data, in: Proceedings of the 21st IEEE Symposium on Security and Privacy,
IEEE, 2000, pp. 44–55.

[20] D. Boneh, B. Waters, Conjunctive, subset, and range queries on encrypted
data, in: 4th Theory of Cryptography Conference, Vol. 4392 of Lecture Notes
in Computer Science, Springer, 2007, pp. 535–554.

[21] K. W. Lin, Y.-C. Lo, Efficient algorithms for frequent pattern mining in many-
task computing environments, in: Knowledge-Based Systems, Vol. 49, 2013, pp.
10–21.

[22] M. I. M. A. S. Umer Khalid, Abdul Ghafoor, Cloud based secure and
privacy enhanced authentication & authorization protocol, in: Knowledge-
Based Systems, Vol. 22, 2013, pp. 680–688.

[23] A. S. Sattar, J. Li, X. Ding, J. Liu, M. Vincent, A general framework for privacy
preserving data publishing, in: Knowledge-Based Systems, Vol. 54, 2013, pp.
276–287.

[24] Z. Liu, H. Ma, J. Li, C. Jia, Secure storage and fuzzy query over encrypted
databases, in: Network and System Security, 2013, pp. 439–450.

[25] L. H. Nguyen, A. W. Roscoe, Short-output universal hash functions and their
use in fast and secure data authentication, in: Fast Software Encryption, Vol.
7549 of Lecture Notes in Computer Science, Springer, 2012, pp. 326–345.

21

L-EncDB: A Lightweight Framework for

Privacy-Preserving Data Queries in Cloud

Computing

Jin Li a,∗

aSchool of Computer Science and Educational Software
Guangzhou University, Guangzhou, 510006 P.R. China

Zheli Liu b,∗

bCollege of Information Technical Science
Nankai University, P.R. China

Xiaofeng Chen c

cState Key Laboratory of Integrated Service Networks (ISN)
Xidian University, Xi’an, P.R. China

Fatos Xhafa d

dDepartment of Languages and Informatics Systems
Technical University of Catalonia, Spain

Xiao Tan, Duncan S. Wong e

eDepartment of Computer Science
City University of Hong Kong, Hong Kong

Abstract

With the advent of cloud computing, individuals and organizations have become in-
terested in moving their databases from local to remote cloud servers. However, data
owners and cloud service providers are not in the same trusted domain in practice.
For the protection of data privacy, sensitive data usually have to be encrypted be-
fore outsourcing, which makes effective database utilization a very challenging task.
To address this challenge, in this paper, we propose L-EncDB, a novel lightweight
encryption mechanism for database, which i) keeps the database structure, and ii)
supports efficient SQL-based queries. To achieve this goal, a new format-preserving
encryption (FPE) scheme is constructed in this paper, which can be used to encrypt
all types of character strings stored in database. Extensive analysis demonstrates

Preprint submitted to Knowledge-Based Systems 25 March 2014

*Manuscript with marked changes

that the proposed L-EncDB scheme is highly efficient and provably secure under
existing security model.

Key words: Data query, outsourcing, privacy, format-preserving encryption

1 Introduction

The ever-increasing amount of valuable digital data both at home and in
business needs to be protected, since its irrevocable loss is unacceptable. The
advent of cloud storage motivates enterprises and organizations to outsource
data storage to third-party cloud providers, as evidenced by many real-life
case studies. Cloud storage services promise to be a solution for this problem.
In recent years, their popularity has increased dramatically. They offer user-
friendly, easily accessible and costsaving ways to store and automatically back
up arbitrary data, as well as data sharing between users and synchronization
of multiple devices.

As in any existing application and system, security and privacy play an ex-
tremely important role for the success, and certainly raise new challenges
among the many others that cloud storage is confronted with. Specifically,
when entrusting data to the cloud, data owner also releases control over the
data, resulting that their trust is put in the cloud service provider’s integrity
and in the security of its access control mechanisms. However, individuals and
especially businesses hesitate to entrust their data to cloud storage services
since they fear that they will lose control over it. Recent successful attacks
on cloud storage providers have exacerbated these concerns. The providers
are trying to alleviate the situation and have taken measures to keep their
customers’ data secure. The simple and popular solutions adopted for data
privacy are traditional encryption techniques such as public key encryption
or symmetric key encryption. Through these encryption methods before out-
sourcing, the security of users’s data can be protected.

However, traditional database encryption will change the data structure of
original data, and results in the impracticability of database application for
various kinds of SQL operations. If the data structure is changed, it cannot
support data operations over ciphertext such as range query and fuzzy query,
etc. Especially, there has been considerable recent interest in the paradigm of

∗ Corresponding author. Jin Li and Zheli Liu contribute to this work equally.
Email addresses: jinli71@gmail.com (Jin Li), liuzheli1978@163.com (Zheli

Liu).

2

data mining-as-service: a company (data owner) lacking in expertise or com-
putational resources can outsource its mining needs to a third party service
provider. However, both the outsourced database and the knowledge extracted
through data mining are considered private property of the data owner in many
applications. Thus, to protect data privacy while realizing data mining and
knowledge extraction, the data owner is required to transform its data without
changing its structure before outsourcing.

Contribution. To realize effective data utilization after secure outsourcing,
we propose a lightweight encrypted database mechanism denoted by L-EncDB.
This new mechanism is able to protect sensitive information while keeping the
data structure in outsourcing service for big database application. In the pro-
posed L-EncDB system, the encryption and query are based on SQL. Through
only one interface, all SQL sentences for database can be interpreted.

Furthermore, based on format-preserving encryption (FPE) technique and a
new character string FPE scheme, L-EncDB can be implemented to preserve
data type and length in ciphertext. It enables i) to encrypt data and store
them without changing original database structure, ii) to perform SQL oper-
ations on all kinds of databases, including text database such as SQLite and
Access, iii) to support SQL-based operations including advanced fuzzy and
range queries.

Innovation. In this paper, a novel FPE scheme with the method of “multi-
radix modular addition” is proposed to support the L-EncDB lightweight
framework for privacy-preserving outsourced database. The new proposed
FPE can preserve both length and storage size of character strings, which
cannot be efficiently achieved in the traditional FPE schemes. Based on the
FPE scheme, data operations such as data mining and SQL-based queries can
be directly executed over ciphertexts in the proposed L-EncDB framework.
Furthermore, L-EncDB framework can be extended to text database (such as
SQLite used in mobile) and NoSQL databases, which have not been considered
in the previous related work.

1.1 Organization

The rest of this paper proceeds as follows. In Section 2, we give a survey for
the related work to ours. In Section 3, we propose the system architecture and
construction method for the L-EncDB system. In Section 4, we propose a prac-
tical construction of FPE for character string. Its security and performance
analysis is also given in this section. In Section 5, we present the implementa-
tion of prototype for L-EncDB with the proposed FPE, and in Section 6, we
present an extension of the L-EncDB to NoSQL database encryption. Finally

3

we draw conclusion and show the future work in Section 7.

2 Related Work

We briefly discuss FPE technique and privacy-preserving database encryption
solutions in this Section.

2.1 FPE

The notion of FPE [1–4] has been proposed to generate ciphertext with the
same format as plaintext while encrypting sensitive information. More specifi-
cally, FPE can keep data type and length in the ciphertext, therefore, without
changing database structure and field type. Thus, the use of FPE enables
upgrading database security in a transparent way. The goal of FPE is to
generate ciphertext which falls in the same domain as the plaintext. Some
practical FPE schemes have been proposed for simple domains such as integer
[5], character data [3] and datetime [6]. Character data is the common data
type in database, which appears in the form of character strings, i.e., the fi-
nite sequences of characters from some character sets. However, there is no
suitable character FPE solution to preserve both length and storage size of
strings above. For a string with character from iso-8859-1 or ASCII, where
the storage size of each character is 1 byte, the length of string is equal to its
storage size, and FFX is also suitable in this case.

However, most of character sets are represented using more powerful encoding
formats, and different characters may require different byte counts to repre-
sent. In this paper, such a character set is called “multi-byte character set”.
Consider a character string of length n with each character in UTF-8, its stor-
age size will be from n bytes to 4n bytes. In this case, FFX is unsuitable. In
2012, Li et al. [7] proposed a solution based on cycle-walking [8]. However,
cycle-walking can not guarantee stable efficiency, which is impractical in most
applications. In this paper, we develop a new FPE method in Section 4.

2.2 Privacy-preserving Database Encryption

A number of research results [9–13] were proposed for privacy-preserving
database encryption. However, most of them cannot provide the complete
solution for general SQL-base operations over encrypted data. To support
query over encrypted numerical data, Hakan et al. [9] firstly presented a basic

4

Fig. 1. CryptDB architecture

Database Layer

Field_1 Field_n Additional Field

ciphertext ciphertext Keyword ciphertext

Additional Field

Keyword ciphertext

Application
System

Trusted SQL Interpretation Layer

Format-preserving
Encryption

Fuzzy Query
Encryption

Order-preserving
Encryption

1. Plaintext SQL

2. Ciphertext SQL

3. Execute SQL

SQL Flow

Data Flow
Table1

Fig. 2. L-EncDB Architecture

framework of how to ensure data security in “Database-As-Service” (DAS)
model, in which a coarse query is executed by the database service provider.
Based on this basic framework, Wu et al. [12] described a solution for query
over encrypted character strings.

One of the most typical database encryption solutions is CryptDB [14], which
explores an intermediate design point to provide confidentiality for applica-
tions that use database management systems (DBMSes). As shown in Fig. 1,
CryptDB works by intercepting all SQL queries in a database proxy, which
rewrites queries to execute over encrypted data (CryptDB assumes that all
queries go through the proxy). The proxy encrypts and decrypts all the data,
and changes some query operators, while preserving the semantics of the query.
However, CryptDB is not designed for existing database applications and the
DAS model of cloud storage. In cloud computing, users are able to store,
modify and retrieve data from anywhere in the world, as long as they have
access to the Internet. CryptDB changes the database structure and stores
the ciphertexts generating by different encryption methods.

2.3 Other Related Work

The notion of order preserving encryption (OPE) [15–18] is another important
encryption method in database to achieve the confidentiality while keeping
the order of underlying plaintexts. Such a property allows users to perform

5

comparison and range query over encrypted data without decrypting them.
Another notion related is searchable encryption (SE) [19,20], which provides
functionalities to perform keyword search over encrypted data without de-
crypting them. There are also some other related privacy-preserving methods
proposed for the security in database [21–23,14].

3 The New Advanced Secure Database System

3.1 System Model

The architecture of L-EncDB system is shown in Fig. 2. To provide data
privacy protection solution and save upgrade cost for existing DB applications,
L-EncDB system utilizes FPE technique to encrypt data.

There are two layers in the L-EncDB system, that is, the application system
layer and database layer.

(1) SQL interpretation interface deployed in database application system will
interpret all SQL sentences, encrypt constants in SQL sentence and form
SQL sentence with ciphertext. For different SQL queries, different encryp-
tion methods (FPE, fuzzy query encryption (FQE) or OPE) are used.
Note that SQL interpretation interface is viewed as an application pro-
gram interface (API).

(2) Database layer will only provide data services and not allow developers
to do any operation beyond SQL-based functions. As shown in Fig. 2,
original fields are used to store ciphertext of original data, but additional
fields are used to store additional ciphertexts for fuzzy query or range
query.

Query. SQL interpretation interface is one of the key components of L-EncDB.
As shown in Fig. 2, the application system receives the interpreted SQL sen-
tence by calling SQL interface, which takes the original SQL sentence as the
input. It then sends the interpreted SQL sentence to database. For most of
general database applications, there are two types of SQL sentences: one is
for data operation, such as insert, delete, and update. The other is for data
query, such as exact query, join query, fuzzy query, and range query. We show
how to process the interpretation for each type in our system.

As shown in Fig. 3.(a), for SQL data operation sentences, such as to insert, or
to update, each constant in the query will be encrypted using FPE. To delete
a record, the constant in the query will be encrypted using FPE as well. For
fuzzy query or range query, SQL interpretation interface will further generate

6

Table 1
FPE for data types in DB

Types Subtypes SQL Field Type FPE Scheme

Numeric
integer smallint, int

FFSEM[5]
decimal numeric, float

Char
finite length nchar, nvarchar FFX[3]

finite space char, varchar MR-FPE

Datetime N/A datetime Liu et al.[6]

Binary N/A binary, varbinary Block cipher

the query for ciphertext by using FQE or OPE and store it into an additional
filed.

As shown in Fig. 3.(b), for SQL exact keyword query, join query or nested
query, the keywords will be encrypted by FPE. For fuzzy query or range
query, the interface will use FQE or OPE to encrypt keywords, and change
the query field to its corresponding additional field.

3.2 Security Notions

For L-EncDB system, the interface for SQL interpretation can be deployed at
client side or the application service layer. We assume that there exist authen-
tication and access control methods to protect the key used in L-EncDB.

We consider two types of attackers for L-EncDB: (1) attackers with access
to database, including DBA or cloud service provider. They have access to
the encrypted data and DB structure; (2) attackers with access to both ap-
plication system and database. In another word, they are able to access SQL
interpretation interface deployed in DB applications, construct SQL sentences
with plaintext, gain interpreted SQL sentences with encrypted data, and view
all fields and structure of database.

3.3 SQL-based Data Operations

L-EncDB uses SQL interpretation interface to interpret all SQL sentence,
which is viewed as an API that can be flexibly used by developers. Next,
we describe the interpretation processes in details and show how L-EncDB
supports SQL operations and queries over encrypted data.

7

Fuzzy
Query?

Range
 Query?

yes yes

FQE OPEFPE

Data for
Insert/Update

Field Field_Extra Field_Extra

SQL for
Query

Exact
Query?

yes no

Field
Change

Encrypt
Keyword

Encrypt
Keyword

Generate New SQL Over Encrypted data

(a) (b)

Fig. 3. Interpreting SQL sentences

3.3.1 Basic SQL Operations

For basic data operation (insert, update, and delete) and query (exact query,
join query, and nested query), the interface for SQL interpretation will replace
the plaintexts with the corresponding ciphertexts encrypted by FPE. Note
that FPE is deterministic, which means that SQL-based data operation and
query operation can be directly executed over the encrypted database. For
example, “Insert into Table1(Field1, Field2) values (String1, String2)”, will
be interpreted to “Insert into Table1(Field1, Field2) values (fpek (String1),
fpek(String2))”, where fpe is the adopted FPE algorithm, k is the selected
encryption key, and fpek(x) means to encrypt x with fpe.

Similarly, the interface for SQL interpretation will replace the constants in the
queries with ciphertexts of FPE in the following SQL sentences:

• Update, “Update Table1 set Field2=String3 where Field1=String1”;
• Delete, “Delete from Table1 where Field1 = String1”;
• Exact query, “Select * from Table1 where Field1 = String1”;
• Join query, “Select Table1.* from Table1,Table2 where Table1.Field1= Ta-
ble2.Field1 and Table2.Field2=String1”;
• Nested query, “Select * from Table1 where Field1 in (select Field1 from
Table2 where Field2=String3)”.

3.3.2 Advanced Queries

Range query over encrypted data. For range query, the interface applies
OPE to generate ciphertexts and store them in additional fields. For example,
for a SQL sentence like “Insert into Table1(Field1) values (String1)”, where
Field1 is for range query, the interpreted SQL sentence will be “Insert into
Table1(Field1, Field1Extra) values (fpek(String1),OPEk(String1))”, where

8

Field1Extra is additional field for Field1, OPE is adopted OPE scheme and
OPEk(x) means to encrypt x with OPE scheme using encryption key k.

To perform range query, the SQL interpretation interface will change the query
filed into its additional field and generate the ciphertexts. For example, “Select
* from Table1 where Field1>key1” will be interpreted as “Select * from Table1
where Field1Extra>OPEk(key1)”.

For data x, y and x < y, we can have OPEk(x) < OPEk(y). Hence, the above
interpreted SQL sentence will still work in the encrypted database.

Fuzzy query over encrypted data. The interpretation for fuzzy query
is similar to range query. For example, for a SQL sentence like “Insert into
Table1(Field1) values (String1)”, where Field1 is for fuzzy query, the inter-
preted SQL sentence will be “Insert into Table1(Field1, Field1Extra) values
(fpek(String1),FQEk(String1))”, where Field1Extra is additional field for
Field1, FQE is adopted FQE scheme and FQEk(x) means to encrypt x with
FQE scheme using encryption key k.

To perform fuzzy query, the interface changes the query filed to its additional
field and generate keyword ciphertexts. For example, “Select * from Table1
where Field1 like ‘%key1%key2%”’ will be interpreted as “Select * from Table1
where Field1Extra like ‘%FQEk(key1)%FQEk(key2)%”’.

To ensure the interpreted SQL sentence works in encrypted database, an FQE
scheme supporting SQL-based fuzzy query over encrypted data is required. In
CryptDB, Popa et al. proposed a keyword search scheme based on SE scheme
[19]. However, this scheme supports only full-word keyword searches but not
arbitrary regular expressions.

The idea of adopted FQE scheme in [24] is very simple. For an n-character
string D = d1 ∥ d2 ∥ · · · ∥ dn, where ∥ denotes concatenation, it replaces
each character with its ciphertext: for each character di, 1 ≤ i ≤ n, FQE

scheme firstly expands it to l-characters string by str ← di ∥

l−1
︷ ︸︸ ︷

11 · · · 1, and
secondly encrypts str to str′ using character FPE such as FFX, then hashes
str′ into a short number using short hash function in [25], and finally, FQE
scheme encodes the resulting short number to a Unicode character. We define
the gen(c) as above cryptology function to output a Unicode character and
assume the plaintext is d1 ∥ d2 ∥ · · · ∥ dn. Then, its query for ciphertext
stored in additional field will be gen(d1) ∥ gen(d2) ∥ · · · ∥ gen(dn). For a
keyword key1=di ∥ · · · ∥ dj, 1 ≤ i ≤ j ≤ n, its ciphertext is computed as
FQEk(key1)=gen(di) ∥ · · · ∥ gen(dj).

Table 2 compares L-EncDB with Popa et al.’s CryptDB model.

9

Table 2
Comparison between L-EncDB and CryptDB

Model L-EncDB CryptDB

Fuzzy query Yes Partial

Data operation Application DB proxy and UDFs

Change DB structure Add fields Anonymize tables and columns

(1) CryptDB can only partially support fuzzy query. Our proposed L-EncDB
is more flexible and able to support the fuzzy query.

(2) On data operation, the SQL-based operations are directly executed in
DBMS. Both data encryption and decryption are executed in application
in L-EncDB. However, direct SQL-based operations cannot be supported
in CryptDB, where the trusted database proxy is used to intercept all
the SQL queries and decrypt their (encrypted) results. To intercept SQL
queries and implement encryption and decryption, CryptDB is required
to build corresponding UDFs on the DBMS server.

(3) On database structure, CryptDB anonymizes each table and column
name to achieve confidentiality. L-EncDB preserves most of original DB
structure to reduce the cost of application codes. Hence, for existing
database applications, L-EncDB is more suitable and lightweight when
enterprises and organizations outsource data storage to third-party cloud
providers.

In short, compared with the other database encryption solutions such as
CryptDB, L-EncDB is lightweight to support SQL-based operation directly
in DBMS and can be flexibly deployed in database applications.

4 New FPE Scheme for Character String

As described in section 2.1, there is no suitable FPE scheme for varchar data
type with the restriction that the ciphertext has the same length with its
corresponding plaintext. In this section, we propose a new FPE scheme for
character string with arbitrary data type, which will be used in L-EncDB.

4.1 Preliminary

Throughout the rest of the paper, we let Chars be a multi-byte character
set, and Chars∗ be character strings over Chars of any length. Moreover, for
any set S, let |S| be the number of elements in S. For a multi-byte character
set Chars, it can be divided into subsets and each subset contains characters

10

of same size. Let Charsm be a subset containing all characters with storage
size m. Let cmin = min(|Charsi|, i = 1, 2, · · ·, I), cmax = max(|Charsi|,
i = 1, 2, · · ·, I), respectively be the number of members in the smallest and
biggest subset of Chars.

The message space of character strings is described as X [Chars] = {X|X ∈
Chars∗}. Given any two character strings A,B ∈ X [Chars], denote A ∥ B

as their concatenation. ∀ X ∈ X [Chars] ⇔ X = x1 ∥ x2 ∥ · · · ∥ xi ∥ · · · ∥
xn, xi ∈ Chars. For any string X ∈ X [Chars], let l(X) and s(X) denote
the length and storage size respectively. The storage size of any character
c ∈ Chars is also represented by s(c).

We now give a review of the classical definition for FPE given by Morris et al.
[2].

Definition 1 A format-preserving encryption scheme is a function F : K ×
N ×T ×X → X ×{⊥}, where ⊥ ≠ X , and nonempty sets K, N , T , X denote

the key space, format space, tweak space and domain, respectively.

There are two kinds of character data, that is, nvarchar and varchar.

(1) If a field is defined as nvarchar(n), it means that the field can store arbi-
trary character string with length (or character number) not more than
n. The FFX method [3] is suitable for this type of domain. For example,
for a plaintext string “abcd” with the length of 4, its ciphertext encrypted
by FFX is “eadf”, which has the same length and each character is in the
same character set.

(2) If a field is defined as varchar(n), it means that the field can store arbi-
trary character string and the storage size is not more than n.

4.2 Problem Statement

New FPE. The following explains the new FPE for message space X [Chars]:

Definition 2 A Character FPE is a function F : K × N [Chars] × T ×
X [Chars] → X [Chars], where N [Chars] is the formatspace of character

strings, K, T , X [Chars] are respectively the key space, tweak space and do-
main.

Let X [Chars] denote message space defined by format N . In our FPE for
strings with type of varchar, the format space is defined by both length and
storage size, that is N [Chars] = {(l(X), s(X))|X ∈ X [Chars]}.

11

An example. Assume that a concrete Chars is defined as {‘a’, ‘b’, ‘c’, ‘d́’,
‘é’}. In Chars, s(‘a’)=s(‘b’)=s(‘c’)=1, i.e., the storage size of character ‘a’,
‘b’ and ‘c’ is 1 byte. But s(‘d́’)= s(‘é’)=2, i.e., the storage size of character ‘d́’
and ‘é’ is 2 bytes. Thus, Chars is a multi-byte character set.

To better express the format of string X = x1 ∥ x2 ∥ · · · ∥ xi ∥ · · · ∥ xn, where
xi ∈ Chars, 1 ≤ i ≤ n. Let Ω(X) be its structure and Ω(X) = {ω1, · · ·, ωI},
where ωi = |{xj ∈ X|s(xj) = i}| and ωi is the number of characters in string
X with storage size i. For example, for string X=“abééé”, its structure is
Ω(X)={2, 3}, i.e., 2 characters of storage size 1 byte, 3 Latin characters of
2 bytes, and its format is N(X) = (5, 8), which means that length is 5 and
storage size is 8 bytes.

4.3 Scheme Description

4.3.1 Basic Idea

For a multi-byte character set Chars, we establish a mapping from a subset
Charsm to an integer set Zn = {0, 1, · · ·, n − 1}, where n is the character
elements of Charsm, that is n = |Charsm|. For each character c, let v(c) be
its mapping value in Zn.

For strings with type of varchar, FPE will preserve both length and storage
size. Each character c will be represented as “< value, radix >”, where value
is mapping value of c in Zn, i.e., value = v(c), and radix is the element number
of Charss(c), i.e., radix = n = |Charss(c)|. For convenience, let r(c) be the
radix of character c.

A new FPE for character string based on Feistel network is given, where
Modular addition is an important component. In the new FPE scheme, the
result of addition has the same radix as that of left operand because the
modulo is radix of left operand. Thus, the output has the same format as the
input. We call such modular addition as “multi-radix modular addition” and
denote it as ⊞, while ⊟ as its inverse operation.

Definition 3 For x and y, which are represented as “< v(x), r(x) >” and

“< v(y), r(y) >” respectively, the multi-radix modular addition is defined as:

x ⊞ y=(v(x) + v(y)) mod r(x). Its inverse is defined as x ⊟ y=(v(x) − v(y))
mod r(x).

An example. Assume that we have a multi-byte character set Chars={‘a’,
‘b’, ‘c’, ‘d́’, ‘é’} and two subsets, that is, Chars1={‘a’, ‘b’, ‘c’} and Chars2={‘d́’,
‘é’}. We also assume that we have two characters x=‘a’ and y=‘é’, which are
represented as “<0, 3>” and “<1, 2>” respectively. “x ⊞ y” is computed by

12

Li, っ(Li) Ri, っ(Ri)

+

Li+1, っ(Li+1) Ri+1, っ(Ri+1)

Xi, っ(Xi)

Xi+1, っ(Xi+1)=っ(Li+1)+っ(Ri+1)=っ(Xi)

Encryption

Algorithm (A,B)

For i :=1 to rn do

 modulo :=A[i].radix
Z[i].radix:=A[i].radix

 Z[i].value:=A[i].value+B[i].value
 Z[i].value:=Z[i].value mod modulo
return Z

Modular Addition

PRF

Li+1, っ(Li+1) Ri+1, っ(Ri+1)

Li, っ(Li) Ri, っ(Ri)

Xi+1, っ(Xi+1)

Xi, っ(Xi)=っ(Li)+っ(Ri)=っ(Xi+1)

Decryption

-PRF

+ Algorithm (A,B)

For i :=1 to rn do
 modulo :=A[i].radix

Z[i].radix:=A[i].radix
 Z[i].value:=A[i].value-B[i].value
 Z[i].value:=Z[i].value mod modulo
return Z

Modular Subtraction

-

(a) (b)

(c) (d)

Fig. 4. FPE for character string and modular operations

‘a’⊞‘é’=(0+1) mod 3 and its result is “<1, 3>”, which represented by charac-
ter ‘b’ in Chars1. The inverse operation is defined by ‘b’⊟‘é’=(1-1) mod 3 and
its result is “<0, 3>”, which represented by character ‘a’ in Chars1. Similarly,
the addition “y ⊞ x” is defined by ‘é’⊞‘a’ =(1+0) mod 2 and results in “<1,
2>”, which represented by character ‘é’ in Chars2. The inverse operation is
defined by ‘é’⊟‘a’=(1-0) mod 2 and results in “<1, 2>”, which represented by
character ‘é’ in Chars2.

4.3.2 Description

Our new FPE can be described by three algorithms, that is, Setup, Encrypt,
and Decrypt.

Setup: It generates the initial parameters, including the encryption key k and
the number of Feistel rounds rn.

Encrypt : It takes as input the string X, key k and the round number rn.
For the i-th round, its process is shown in Fig. 4. More specifically, three
steps will be included. First, it divides the input Xi into a left part Li and a
right part Ri. Li is returned as its right part, Li+1 = Ri ⊞ PRF (Li) as left
part, in which PRF is instantiated by AES-CBC. Fig. 4 also describes the
multi-radix modular addition algorithm, which ensures Ω(Li+1) = Ω(Ri) and
Ω(Xi+1) = Ω(Xi), i.e., the output of i-th round has the same format as the
input.

13

Decrypt : It takes as input string X ′, key k and the round number rn. As
shown in Fig. 4.(b), it divides input Xi+1 into Li+1 and Ri+1. Then it outputs
Ri+1 as the left part, Ri = Li+1 ⊟ PRF (Ri+1) as the right part. The multi-

radix modular subtraction algorithm is described in Fig. 4.(d), which ensures
Ω(Ri) = Ω(Li+1) and Ω(Xi+1) = Ω(Xi), i.e., the output of this Feistel round
has the same format as its input.

4.4 Security analysis

According to [2], the PRP security notion under chosen plaintext attack, i.e.,
PRP-CPA, is defined by PRP game PRPA

ξ between challenger C and adversary
A as follows.

Setup: C selects a boolean value b← {0, 1} in random, generates the symmetric
key K for FPE scheme ξ in domain X , and selects a uniform permutation π

on X .

Phase: A can adaptively ask C for the corresponding ciphertext for any string
X ∈ X . If b = 0, C responds with π(X), otherwise with ξK(X).

Guess : A outputs a predicate value b′. If b = b′, the security game returns 1.
Otherwise, it returns 0.

Definition 4 An FPE scheme ξ is PRP-CPA secure if any polynomial time

adversary has only a negligible advantage in PRP game shown above, where

the advantage is defined as

Adv
PRP
ξ (A)

def
= Pr[PRPA

ξ ⇒ 1]− 1
2

Theorem 1 If the underlying round function is a secure pseudo random per-

mutation, our new FPE scheme achieves the PRP security.

Proof 1 Assume that there exists an adversary breaks the security of our FPE

scheme, a simulator will be built to show the insecurity of PRF , that is, the

simulator could break the indistinguishability of PRF from a truly random

permutation P . Next, we show how to use A to construct a distinguisher D.
Whenever A queries the encryption oracle with a string X, D selects a random

value b = {0, 1}. If b = 0, it computes X ′ with PRF , otherwise it computes

X ′ with P . Finally, D returns the result X ′ back to A.

It can be seen that the view of A when run as a sub-routine by D is distributed

identically to the view of A in game PRPA
ξ . Thus if the adversary can succeed

in attacking the FPE, there is a distinguisher D having the same probability

on distinguishing PRF with P in polynomial time.

14

5 Implementation and Evaluation

5.1 Implementation Details

The experiment for our L-EncDB system is conducted to evaluate its effi-
ciency. We implement the system through an open kernel API of C++ DLL
for L-EncDB, called GenerateSQL, which takes as input a plaintext SQL sen-
tence and outputs interpreted encrypted SQL sentence. To implement FPE
schemes, AES and big number in open source library polarssl are used. Users
can improve their database security based on such a DLL with authentication
and access control mechanisms.

GenerateSQL

FPEAES FQEOPE

FFX MR-FPE FPE-DATETIME

(a) Kernel interface of L-EncDB

CREATE TABLE users(
uid, int; //FPE
uname varchar(50);//FPE,FUZZY
address varchar(255);//FPE
);
CREATE TABLE salary(
uid int; //FPE
money int;//FPE,RANGE
);

(b) The schema with annotations

Fig. 5. Implementation details

As shown in Fig. 5.(a), GenerateSQL API uses techniques of FPE (“MR-
FPE” is used to identify the proposed FPE scheme for character string), OPE,
FQE to interpret SQL sentences. To provide correct interpretation to users,
it requires that: (1) the fields of fuzzy query field and range query are named
as Field Fuzzy and Field Order respectively; (2) DB structure is open to L-
EncDB DLL. That is, L-EncDB DLL must know DB structure, and the fields
should be encrypted for fuzzy query or range query. To achieve this goal,
the schema with annotations shown in Fig. 5.(b) is used, in which annotation
“FPE” denotes the encryption of FPE, “FUZZY” and “RANGE” denote fuzzy
query and range query respectively.

The SQL sentences interpretation performs as follows. Firstly, it analyzes SQL
sentence, decides operations and tables to execute. Secondly, based on opera-
tion and table structure, it decides whether encryption, fuzzy query or range
query are needed. Finally, it completes the interpretation of SQL sentences
with suitable encryption schemes.

15

Table 3
Execution time of encryption

Scheme Encryption Decryption

AES 0.00015 ms 0.00015 ms

OPE 9.80000 ms 0.00000 ms

FQE FFX*n ms 0.00000 ms

10000 15000 20000 25000 30000 35000 40000
0

50

100

150

200

T
im

e
co

st
 (

m
s)

Number of Encryption

 FFX
 MR-FPE
 FPE-DATETIME

(a) FPE schemes

10000 15000 20000 25000 30000 35000 40000
0

20

40

60

80

100

120

140

160

180

200

220

240

T
im

e
co

st
 (

m
s)

Number of Encryption

 Other Computation
 AES

(b) MR-FPE scheme

Fig. 6. Execution time of FPE schemes

5.2 Experimental Evaluation

L-EncDB is external encryption mechanism independent from database. The
adopted encryption algorithms affect DB operation performance. To evaluate
its performance, two issues are addressed: 1) the performance of FPE encryp-
tion algorithms for batch data encryption, 2) the performance of OPE.

As shown in Fig. 5.(a), encryption algorithms include FFSEM, FFX, MR-FPE,
FPE-DateTime, FQE and OPE. We programm for these encryption algorithms
and experiment for their average execution time. For FFSEM, FFX and MR-
FPE, we set Feistel rounds number as 12, use AES-CBC to construct random
function. All our experiments are performed in Windows 7 operation system
with the Intel(R)Core(TM)i5-3337U @ 1.80GHZ and 4GB memory.

The performance evaluation of encryption algorithms are shown in Fig. 6 and
Table 3. From them, we can get the following results:

(1) the average execution time of AES is about 0.15us;
(2) as shown in Fig. 6.(a), two FPE algorithms based on Feistel network, i.e.,

FFX and MR-FPE, the average execution times are very close, which are
around 30 times of that of AES algorithm. FPE-DateTime algorithm uses
FFX (with the character set of {‘0’,· · ·,‘9’}) as integer FPE to compute

16

the offset; hence average execution time is also close to FFX;
(3) as shown in Fig. 6.(b), the average execution time of MR-FPE is about

5us, which is about 30 times of that of AES. For each run, MR-FPE
algorithm executes not only AES algorithm and modular arithmetic, but
also coding and decoding operations. Among them, the execution time of
AES algorithm is about 1.8us for 12 Feistel rounds, but other operations
including modular arithmetic and coding operations cost about 3.2us.

(4) OPE’s average execution time is the lowest; its decryption time is 0ms
for never decrypting OPE ciphertext in L-EncDB;

(5) FQE’s execution time is related to the length n of plaintext and FPE’s
execution time, and in practical applications, the data for fuzzy query is
often less than 100, thus FQE scheme will be more efficient than OPE.

In practical applications using L-EncDB, for each DB operation, the rounds
of encryption are different, which are linearly increasing with the number of
fields in the operation. For a SQL insert sentence with 30 fields and no range
query or fuzzy query, the execution time for each insert operation is about
0.09ms, i.e., the system can interpret 11000 SQL sentences within 1s. Thus,
the system can meet needs for most of applications.

Evaluation in web applications. The L-EncDB is a lightweight mechanism
and can be easily deployed in various kinds of database applications. In our
evaluation, we use it to build a secure website based on the above implementa-
tion details. The webpage programming language is Java (jsp, javabean, jdbc,
etc), and the web server is Resin (with version of 3.1.12). Java Native Interface
(JNI) technique is used to call functions of C++ DLL. To construct the test
platform, we use Java language to construct an application, in which the open
source library named “HTTPClient” is used to visit the specified webpage in
our website. Moreover, the Mysql is selected as the database server.

0 20000 40000 60000 80000

0

20000

40000

T
im

e
co

st
 (

m
s)

Number of operations

 SQL Insert
 SQL Update
 SQL Query
 Cryptology operation

(a) SQL operations

0 20000 40000 60000 80000
0

10000

20000

30000

T
im

e
co

st
 (

m
s)

Number of operations

 SQL Insert
 Insert using L-EncDB

(b) Two kinds of Insert operation

Fig. 7. Comparison between SQL operations and encryption

To evaluate the performance in real web applications, we focus on the compar-
ison of execution time between SQL operations and L-EncDB operations. We

17

test the basic SQL operations including insert, update and query. From Fig.
7, we can see that the execution time of SQL query operation is longer than
the other SQL operations. As shown in Fig. 7.(a), the average execution time
of query is about 0.6ms, but that of insert and update is only about 0.3ms.
Execution time of SQL insert operation using L-EncDB is very close to that
without encryption as shown in Fig. 7.(b).

6 Extension of L-EncDB to NoSQL Database Encryption

With the advent of the Internet Web2.0 site, traditional SQL-based relational
databases cannot be applied and many challenges arise, including:

(1) Performance problem. To provide dynamic pages and information for
user, thousands of read and write requests are produced each second in
web2.0 site, and results in high concurrent load of database. However,
SQL-based databases can not meet this requirement.

(2) Storage problem. In big data background, each user will produce massive
dynamic information. For example, in Friendfeed, 250 million of user dy-
namic records are generated in a month. In this case, the efficiency will
be unbearable when the traditional SQL-based relational databases are
used to query over such records.

To solve the above challenges, NoSQL (Not Only SQL) databases have been
developed and widely used in practice. BigTable of Goole and Dynamo of
Amazon are successful implementation of NoSQL.

In the cloud computing, more and more enterprises also need to outsource
NoSQL database to construct their business applications. Our L-EncdDB can
be easily extended to NoSQL database encryption with the following proper-
ties.

(1) Independence of database. L-EncDB are always deployed in the client
side, in which data encryption and decryption are all executed in the
application.

(2) Queries over encrypted data. In L-EncDB, exact query can be reserved
because of the deterministic encryption. The range query can also be
applied for the order-preserving encryption.

After extending the implementation of SQL interpretation interface accord-
ing to operation syntax of different NoSQL databases, L-EncDB can be used
to encrypt the data in these databases while preserving the query syntax.
For example, in the case of MongoDB, SQL interpretation interface can be
implemented by replacing the constants in the queries:

18

• Insert, “db.users.save({name:“String1” age:Age1, country:“String2”})” will
insert a record with three attribute name, age and country;
• Update, “ db.users.update({ “name”: “String1”}, { $set:{ “country”:“String3”
}})” will update “country” as “String3” in the record in which the value of
attribute “name” is “String1”;
• Delete, “db.users.remove({“name”: “String1”})” will delete the record in
which the value of attribute “name” is “String1”;
• Exact query, “db.users.find({“name”: “String1”})” will query the record in
which the value of attribute “name” is “String1”;
• Range query, “db.users.find({“age”:{$in:[Age1, Age2]}})” will query the
records in which the value of attribute“age” is in the range of Age1 to
Age2 ;
• Fuzzy query, MongoDB uses regular expression to achieve fuzzy query, for
example, the SQL sentence “SELECT * FROM users where name like ‘A%”’
will be “db.users.find(“name” :/ˆA/)”. So, the fuzzy query expression can
be interpreted as “db.users.find(“name” :/ˆFQEk(A)/)”.

7 Conclusion and Future Work

In this paper, we proposed a novel L-EncDB mechanism, which provides a
secure and privacy-preserving data utilization for outsourced database such
as SQL-based encryption and query mechanism. Such a new mechanism for
database does not change the data structure after encryption and can be
efficiently realize data utilization such as privacy-preserving knowledge ex-
traction, after outsourcing database into the cloud. In this new mechanism, it
utilizes a core interface provided as API to interpret SQL operations, which
allows to protect sensitive information in database applications. Experimen-
tal results demonstrate that the new L-EncDB is efficient and can be applied
to big database for privacy-preserving applications. Finally, we also showed
how to extend our L-EncDB to realize the privacy-preserving queries over
encrypted NoSQL Database.

To make the L-EncDB mechanism more practical, SQL-based range query
methods with better performance will be investigated in future to support
comparison over ciphertexts. Especially, we will extend it to privacy-preserving
knowledge extraction for outsourcing database, and further provide some prac-
tical data publishing methods suitable for our framework.

19

References

[1] J. Black, P. Rogaway, Ciphers with arbitrary finite domains, in: Topics
in Cryptology–CT-RSA, Vol. 2271 of Lecture Notes in Computer Science,
Springer, 2002, pp. 114–130.

[2] B. Morris, P. Rogaway, T. Stegers, How to encipher messages on a small domain:
Deterministic encryption and the thorp shuffle, in: Advances in Cryptology–
CRYPTO 2009, Vol. 5677 of Lecture Notes in Computer Science, Springer,
2009, pp. 286–302.

[3] M. Bellare, P. Rogaway, T. Spies, The ffx mode of operation for format-
preserving encryption, NIST submission.

[4] V. T. Hoang, B. Morris, P. Rogaway, An enciphering scheme based on a card
shuffle, in: Advances in Cryptology–Crypto 2012, Vol. 7417 of Lecture Notes in
Computer Science, Springer, 2012, pp. 1–13.

[5] S. Terence, Feistel finite set encryption mode., NIST Proposed Encryption
Mode.

[6] Z. Liu, C. Jia, J. Li, Format-preserving encryption for datetime, in: Intelligent
Computing and Intelligent Systems, Vol. 2, Springer, 2010.

[7] M. Li, Z. Liu, J. Li, C. Jia, Format-preserving encryption for character data,
Journal of Networks (2012) 1239–1244.

[8] J. Li, C. Jia, Z. Liu, Cycle-walking revisited: consistency, security, and efficiency,
in: Security and Communication Networks, 2012.

[9] H. Hakan, L. Bala, L. Chen, M. Sharad, Executing sql over encrypted data in the
database-service-provider model, in: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, ACM, 2002, pp. 216–227.

[10] S. Evdokimov, O. Guenther, Encryption techniques for secure database
outsourcing, in: Computer Security – ESORICS 2007, Vol. 4734 of Lecture
Notes in Computer Science, Springer, 2007, pp. 327–342.

[11] C. Wang, Q. Wang, K. Ren, Towards secure and effective utilization over
encrypted cloud data, in: the 31st International Conference on Distributed
Computing Systems Workshops, IEEE, 2011, pp. 282–286.

[12] Z. Wu, G. Xu, Z. Yu, X. Yi, E. Chen, Y. Zhang, Executing sql queries over
encrypted character strings in the database-as-service model, in: Knowledge-
Based Systems, Vol. 35, 2012, pp. 332–348.

[13] K. Choy, W. Lee, H. C. Lau, L. Choy, A knowledge-based supplier intelligence
retrieval system for outsource manufacturing, in: Knowledge-Based Systems,
Vol. 18, 2005, pp. 1–17.

[14] R. A. Popa, N. Zeldovich, H. Balakrishnan, Cryptdb: protecting confidentiality
with encrypted query processing, in: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ACM, 2011, pp. 85–100.

20

[15] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, Order preserving encryption
for numeric data, in: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, ACM, 2004, pp. 563–574.

[16] A. Boldyreva, N. Chenette, Y. Lee, A. O’Neill, Order-preserving symmetric
encryption, in: Advances in Cryptology–EUROCRYPT 2009, Vol. 5479 of
Lecture Notes in Computer Science, Springer, 2009, pp. 224–241.

[17] R. A. Popa, F. H. Li, N. Zeldovich, An ideal-security protocol for order-
preserving encoding., in: Proc. of the 34th IEEE Symposium on Security and
Privac, 2013.

[18] I. Yakut, H. Polat, Estimating nbc-based recommendations on arbitrarily
partitioned data with privacy, in: Knowledge-Based Systems, Vol. 36, 2012,
p. 353C362.

[19] D. X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted
data, in: Proceedings of the 21st IEEE Symposium on Security and Privacy,
IEEE, 2000, pp. 44–55.

[20] D. Boneh, B. Waters, Conjunctive, subset, and range queries on encrypted
data, in: 4th Theory of Cryptography Conference, Vol. 4392 of Lecture Notes
in Computer Science, Springer, 2007, pp. 535–554.

[21] K. W. Lin, Y.-C. Lo, Efficient algorithms for frequent pattern mining in many-
task computing environments, in: Knowledge-Based Systems, Vol. 49, 2013, pp.
10–21.

[22] M. I. M. A. S. Umer Khalid, Abdul Ghafoor, Cloud based secure and
privacy enhanced authentication & authorization protocol, in: Knowledge-
Based Systems, Vol. 22, 2013, pp. 680–688.

[23] A. S. Sattar, J. Li, X. Ding, J. Liu, M. Vincent, A general framework for privacy
preserving data publishing, in: Knowledge-Based Systems, Vol. 54, 2013, pp.
276–287.

[24] Z. Liu, H. Ma, J. Li, C. Jia, Secure storage and fuzzy query over encrypted
databases, in: Network and System Security, 2013, pp. 439–450.

[25] L. H. Nguyen, A. W. Roscoe, Short-output universal hash functions and their
use in fast and secure data authentication, in: Fast Software Encryption, Vol.
7549 of Lecture Notes in Computer Science, Springer, 2012, pp. 326–345.

21

