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Lévy fluctuations and mixing in dilute
suspensions of algae and bacteria
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Swimming micro-organisms rely on effective mixing strategies to achieve efficient nutrient
influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed
that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a
dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this obser-
vation can be explained by the fact that the algae induce a fluid flow that may
occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quan-
titative theory of enhanced mixing in dilute active suspensions, however, is lacking at present.
In particular, it is unclear how non-Gaussian signatures in the tracers’ position distribution
are linked to the self-propulsion mechanism of a micro-organism. Here, we develop a systema-
tic theoretical description of anomalous tracer diffusion in active suspensions, based on a
simplified tracer-swimmer interaction model that captures the typical distance scaling of a
microswimmer’s flow field. We show that the experimentally observed non-Gaussian tails
are generic and arise owing to a combination of truncated Lévy statistics for the velocity
field and algebraically decaying time correlations in the fluid. Our analytical considerations
are illustrated through extensive simulations, implemented on graphics processing units to
achieve the large sample sizes required for analysing the tails of the tracer distributions.
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1. INTRODUCTION

Brownian motion presents one of the most beautiful
manifestations of the central limit theorem in Nature
[1]. Reported as early as 1784 by the Dutch scientist
Jan van Ingen-Housz [2], the seemingly unspectacular
random motion of mesoscopic particles in a liquid
environment made an unforeseeable impact when
Perrin’s seminal experiments of 1909 [3] yielded con-
vincing evidence for the atomistic structure of liquids.
This major progress in our understanding of non-
living matter—which happened long before direct
observations of atoms and molecules came within exper-
imental reach—would not have been possible without
the works of Sutherland [4] and Einstein [5], who were
able to link the microscopic properties of liquids to a
macroscopic observable, namely the mean square
displacement (MSD) of a colloidal test particle.
Caused by many quasi-independent random collisions
with surrounding molecules, Brownian motion in a pas-
sive liquid is quintessentially Gaussian, as predicted by
the central limit theorem. Remarkably, however, recent
experiments by Leptos et al. [6] revealed notable
non-Gaussian features in the probability distribution of
a tracer particle, when a small concentration of micro-
scale swimmers, in their case unicellular biflagellate
Chlamydomonas reinhardtii algae, was added to the
fluid. Understanding this apparent violation of the cen-
tral limit theorem presents a challenging unsolved
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problem, whose solution promises new insights into the
mixing strategies of micro-organisms [7]. Here, we shall
combine extensive analytical and large-scale numerical
calculations to elucidate the intimate connection between
the flow field of an individual micro-organism and the
anomalous (non-Gaussian) diffusion of tracer particles
in a dilute swimmer suspension.

Modern high-speed microscopy techniques resolve the
stochastic dynamics of micron-sized tracer particles to an
ever increasing accuracy [8,9]. This opens the exciting
possibility of using high-precision tracking experiments
to probe the statistics of the flow fields created by
active swimmers, and hence their connection to physical
properties and evolutionary strategies of micro-organisms
that live in liquid environments [6,10,11]. Furthermore, a
novel class of micromechanical devices [12,13] uses non-
equilibrium fluctuations generated by bacteria as a
fundamental ingredient of their operation. To explain
and exploit the non-equilibrium conditions in active
suspensions, it is important to fully understand the
relation between the experimentally observed features of
tracer displacements and the characteristics (such as
self-propulsion mechanisms) of the algae or bacteria.

The observations of Leptos et al. [6] demonstrate
that the time-dependent probability distributions of
tracer displacements in dilute algae suspensions exhibit
tails that decay much more slowly than would be
expected if the tracers obeyed purely Gaussian
statistics. At high swimmer concentrations, enhanced
transport might be expected [14—17], as collective
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behaviour emerges from swimmer interactions, which can
lead to the formation of large-scale vortices and jets. In
dilute suspensions, however, where swimmer—swimmer
interactions can be neglected, a satisfactory quantitative
understanding of the underlying velocity statistics is still
lacking. Below, we are going to show that the velocity dis-
tribution produced by the swimmers takes a tempered (or
regularized) Lévy form [18,19], and that the long-time be-
haviour of the tracers’ positional probability distribution
function can be understood in terms of correlated trun-
cated Lévy flights [20]. In a dilute suspension of
swimmers, the fundamental ingredient of such anomalous
behaviour is an ultraslow convergence of the central limit
theorem. This is different from tracers that undergo non-
Gaussian diffusion in other complex systems, like col-
loidal gels [21] or granular gases [22], where spatio-
temporal correlations are predominant.

If a microswimmer is self-propelled, with no external
forces acting, its flow field scales with distance as r " for
an exponent n> 2 [23]. We will demonstrate that it is
this form of the power-law decay that is responsible for
the anomalous diffusion of tracer particles [6]. Remarkably,
qualitatively different behaviour can be expected in sus-
pensions of sedimenting swimmers: if gravity plays an
important role for the swimmer dynamics, the far-field
flow decays as 7~ and tracers will diffuse normally. Finally,
our results suggest that, on sufficiently long times scales,
anomalous tracer diffusion in dilute active suspensions
can be viewed as a natural example of a stochastic process
described by a fractional diffusion equation.

2. MODEL

Given an advecting flow wuy(t,7), generated by a dilute
suspension of N self-swimming micro-organisms, we
model the dynamics x(t) of a passive, colloidal tracer
particle (radius a) by an overdamped Langevin
equation of the form:

%m(t) = uy(t, z(t)) + /2Dy &(t). (2.1)

The random function &(t) = (&;(t))i=123 represents
uncorrelated Gaussian white noise with (&(¢))=0
and (&(1)&(t)) = 86;6(t — '), describing stochastic
collisions between the tracer and the surrounding
liquid molecules. The thermal diffusion coefficient Dy
in a fluid of viscosity m is determined by the Stokes—
Einstein relation Dy = kgT/(67ma).

If the Reynolds number is very small, the net flow
owing to o =1, ..., N active swimmers, located at pos-
itions X“(¢) and moving at velocity V°(¢), is, in good
approximation, the sum of their individual flow fields wu,

N

uy(t, ) = Z u(z|I'7(t))
o (2.2)
and

re(t) = (X7(¢), vI(1)).

As we are interested in physical conditions similar to
those in the experiments of Leptos et al. [6], our analysis
will focus on a dilute suspension of active particles,
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corresponding to the limit of a small volume filling
fraction ¢ < 1. In this case, binary encounters between
swimmers are negligible perturbations. Moreover, we
can ignore random reorientation of swimmers caused
by rotational diffusion (owing to thermal fluctuations)
and search behaviour (like chemotaxis or phototaxis),
since these effects take place on the order of several
seconds and thus are not relevant to the tracer dynamics.
Indeed, in dilute homogeneous solutions, it is irrelevant
for the tracer statistics (even on longer time scales)
whether a tracer experiences two successive scatterings
from the same tumbling swimmer or from two different
non-tumbling swimmers. It is therefore sufficient to
assume that each swimmer moves ballistically,

X7(t) = X+ tVy. (2.3)

For dilute suspensions, the initial swimmer coor-
dinates I7(0) = (Xy,Vy’) are independent and
identically distributed random variables with one-par-
ticle probability density function (PDF) & (I}).
More specifically, we assume that the distribution of
the initial positions X~ is spatially uniform and that
the swimmers have approximately the same speed V,
that is @, (I7) o< 8(V — | Vi’|). To complete the defini-
tion of the model, we need to specify the flow field
u(x|I" 7(t)) generated by a single swimmer. There are
various strategies for achieving directed propulsion at
the microscale [24]. Small organisms, like algae and
bacteria, can swim by moving their slender filaments in
a manner not the same under time reversal. Self-motile
colloids, a class of miniature artificial swimmers, are
powered with interfacial forces induced from the environ-
ment [25]. Although both of these are active particles,
microscopic details of their geometry and self-propulsion
can lead to different velocity fields. This, in turn, affects
how a tracer migrates in their flow. In the Stokes regime,
if external forces are absent, self-propelled particles or
micro-organisms generate velocity fields decaying as r >
or faster [23,25]. As we are interested in the general features
of mixing by active suspensions, and there is no universal
description of the flow around an active object, it is helpful
to consider simplified velocity field models that capture
generic features of real microflows.

We shall focus on two simplified models (figure 1)
that can be interpreted as contributions in a general
multipole expansion of a flow field. Specifically, we
will compare a co-oriented toy model [26] with a trivial
angular dependence

en

u(wr”)z(KV)<m) QO n>1 (24a)

to a more realistic dipolar (or stresslet) flow field [27]

u(z|7) = (kV) <m>

(o8

x B2 R —1]R”.  (2.4b)
In equations (2.4a,b), the vector R(t):= X(t) — x
connects the swimmer and tracer position at time f,
R := R°/|R’| is the associated umit vector, and
£ =V’ V defines the swimmer’s orientation and
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Figure 1. Flow fields of the model swimmers considered in our analytical and numerical calculations. In both plots, the swimmer
is oriented upwards and the flow is normalized by the swimming speed. The arrows indicate velocity direction and the colours
represent magnitude. (a) Co-oriented model with r~2 decay and (b) stroke-averaged flow generated by a dipolar ‘pusher’.
Parameters are those of figure 2.

(a) (b)

47V gy A(10])
(um's)

102 0.1 1 10 102

lul (um s~

10? 0.1 1 10
lvl (um s~

lvl (um s

Figure 2. Velocity probability density function (PDF) of a tracer particle in the flow generated by different concentrations of
swimmers. The solid curves are based on approximation (3.3), using the exact second and fourth moments of the velocity
PDFs, as shown in the appendices. (a) For the co-oriented model (2.4) with long-range hydrodynamics n=1, the velocity
PDFs from simulations (symbols) converge rapidly to the Gaussian distribution predicted by the central limit theorem (solid
curves), even at low volume fractions ¢ >~ 0.4%. (b) By contrast, for the co-oriented model with n = 2, the central limit theorem
convergence is very slow and the velocity distribution exhibits strongly non-Gaussian features at volume fractions similar to those
realized by recent experiments [6]. (¢) The velocity PDF for the dipolar swimmer model looks very similar to that of our
co-oriented model (b), which means the angular dependence does not play an important role for the velocity distribution.
Simulation parameters are k = 0.4875, V=50 pms ', and € = 5 wm. The sample size is 4 x 10° throughout. Red circles or
solid line, ¢ = 0.4%; orange squares or solid line, ¢ = 0.8%; green triangles or solid line, ¢ = 1.6%; cyan inverted traingles or

solid line, ¢ = 3.2%. In figure 7, the one-dimensional data of (@) and (b) are displayed as a semilog plot.

swimming direction. The parameter € characterizes the
swimmer length scale, k is a dimensionless constant that
relates the amplitude of the flow field to the swimmer
speed and A regularizes the singularity of the flow field
at small distances. The co-oriented ‘toy model’ (2.4a),
owing to its minimal angular dependence, is useful for pin-
pointing how the tracer statistics depend on the distance
scaling of the flow field. For n = 1, the scaling is equivalent
to that of an ‘active’ colloid or forced swimmer, whereas
for n > 2, the scaling resembles that of various natural
swimmers not subjected to an external force. In particu-
lar, the case n=2 allows us to ascertain the effects of
the angular dependence of the flow-field structure on
tracer diffusion, by comparing against the more realistic
dipolar model (C 1). The latter is commonly considered
as a simple stroke-averaged description for natural micro-
swimmers [28,29]. As shown in Dunkel et al. [26], stroke-
averaged models are able to capture the most important
aspects of the tracer dynamics on time scales longer
than the swimming stroke of a micro-organism.

3. RESULTS

We are interested in computing experimentally accessi-
ble, statistical properties of the tracer particles, such as
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their velocity PDF, correlation functions and position
PDF. These quantities are obtained by averaging suit-
ably defined functions with respect to the N-swimmer
distribution @y = II,®(Iy). A detailed description
of the averaging procedure and a number of exact
analytical results are given in the appendices, below
we shall restrict ourselves to discussing the main results
and their implications.

We begin by considering the equal-time velocity
PDF and velocity autocorrelation function at a fixed
point in the fluid. As we are primarily interested in
the swimmer contributions, we will focus on the deter-
ministic limit Dy =0 first. The additive effect of
thermal Brownian motion will be taken into account
later, when we discuss the position statistics of the
tracer. Considering a suspension of N swimmers,
confined by a spherical volume of radius A, the equal-
time velocity PDF ¢y 4(v) and velocity autocorrelation
function Cy 4(t) of the flow field near the centre of the
container are formally defined by

b4 (v) = (8(v — uy(0,0))) (3.1a)

and

Cyna(t) == (un(t,0)uxn(0,0)), (3.1b)
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Figure 3. Owing to the different flow topologies, the velocity
autocorrelation function for dipolar swimmers (C 1) decays
faster than that for the co-oriented model (2.4a) with n= 2.
Solid curves indicate the exact analytical solution and sym-
bols correspond to simulation data. Dotted and dashed
curves illustrate, respectively, the long-time approximation
and its behaviour in the thermodynamic limit. Parameters
are those of figure 2. Red circles or solid line, dipolar model,
exact; red dashed line, dipolar model, equation (3.10a); red
dotted line, dipolar model, equation (3.10b); orange squares
or solid line, co-oriented model, exact.

where the average (-) is taken with respect to the
spatially uniform initial distribution of the swimmers.
For the models (2.4a,b), it is possible to determine
¢n 4 and Cy 4 analytically.

3.1. Velocity probability density function: slow
convergence of the central limit theorem
forn>2

To elucidate the origin of the unusual velocity statistics
in an active suspension, let us consider the tracer vel-
ocity PDF when there is a single swimmer present,
1 A(v). The tail of this function reflects large tracer vel-
ocities generated by close encounters with the swimmer.
It is instructive to start with the (unphysical) limit A = 0,
where the interaction diverges at short distances and
there is no cut-off for large velocities. In this case, one
readily finds from equation (A 5a) that asymptotically
¢1.4(0,0) oc |v| "33 This means that the variance of
the probability distribution is finite for n = 1, but infinite
for n>2. According to equation (2.2), the flow field
owing to N swimmers is the sum of N independent and
identically distributed random variables. Hence, the cen-
tral limit theorem predicts that, for A =0 and n =1, the
velocity distribution ¢y 4 converges to a Gaussian in the
large N limit, whereas for A =0 and n > 2 one expects
non-Gaussian behaviour owing to the infinite variance
of 1A

For a real swimmer, the flow field is strongly increas-
ing in the vicinity of the swimmer [23,30], but remains
finite owing to lubrication effects and non-zero swim-
mer size. This corresponds in our model to a positive
value of A. For A > 0, the variance of the one-swimmer
PDF ¢, 4 remains finite and, formally, the conditions
for the central limit theorem are satisfied for all n > 1.
However, for n>2, the variance of ¢; 4 remains
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Figure 4. Mean square displacement at different volume frac-
tions. Solid lines are analytical upper bounds, 6(Dy -+ oK
Ve)t >(A[z(t)]?), and symbols display the ensemble average
from simulations. Parameters are those of figure 2. Red circles
or solid line, ¢ = 0.0%; orange squares or solid line, ¢ = 0.4%;
green triangles or solid line, ¢ = 0.8%; cyan inverted triangles
or solid line, ¢ = 1.6%.

very large and the convergence to a Gaussian limiting dis-
tribution is very slow. Our subsequent analysis
demonstrates that the velocity PDF is more accurately
described by a tempered Lévy-type distribution.

These statements are illustrated in figure 2, which
shows velocity PDFs obtained numerically (symbols)
and from analytical approximations (solid curves)
for the co-oriented model with n=1 (figure 2a) and
n=2 (figure 2b), and the dipolar model (figure 2¢) at
different swimmer volume fractions ¢:= N(e/A)>. As
evident from figure 2a, for n=1, the velocity PDF
indeed converges rapidly to the Gaussian shape, in
accordance with the central limit theorem. By contrast,
for velocity fields decaying as r~ " with n > 2, the con-
vergence is surprisingly slow and one observes strongly
non-Gaussian features at small filling fractions ¢. The
arrows highlight this regime, which shows a power-law
dependence of the wvelocity distribution on
the magnitude of the velocity, a signature of a
Lévy distribution.

The remarkably slow convergence to the
Gaussian central limit theorem prediction can
be wunderstood quantitatively by considering the
characteristic function

Xola) = jd%exp<—iqv>¢<v> (3.2)

of the velocity PDF (A 5a). A detailed analytical calcu-
lation (see the appendices) shows that the exact result
for x4(g) can be approximated by

Xollal) = exp{—[(claf* + ©)** = u]}.  (33)

The coefficients ¢ and w are explicitly given by
equation (B 19¢) for the co-oriented model or by using
equation (C7) for the dipolar model. The probability
distribution ¥,(|q|), which reduces to a Gaussian for
a =2, is of the tempered Lévy form, and gives rise to
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the following tracer velocity moments

(v]*) = 3acu®? (34a)

and

(o['y = 152 u42 + a(u® — 1)]. (3.4b)

By studying asymptotic behaviour in the small
cut-off limit A — 0 one finds that, for velocity fields
u decaying as r~ ",

n=1=a=2 and n>2=a=3/n. (3.5)

This result confirms that for colloidal-type inter-
actions with n=1 the velocity PDF is Gaussian,
whereas for n > 2 deviations from Gaussianity occur
in agreement with our numerical results of figure 2. In
the limit u = 0, equation (3.3) describes the family of
Lévy stable distributions. These distributions arise
from a generalized central limit theorem [31] relevant
to random variables having an infinite variance. Specifi-
cally for n = 2, one recovers the Holtsmark distribution
that describes the statistics of the gravitational force
acting on a star in a cluster [32] and of the velocity
field created by point vortices in turbulent flows [33].
These examples both consider fluctuations that occur
owing to interactions decaying as 7~ > in three dimen-
sions, which lead to a Lévy stable distribution with
a=3/2 (neglecting regularization). In such a case,
the probability distributions for each component v; are
not independent as X,(|q|) does not factorize. Never-
theless, the marginal probability distribution that
results from integrating over the other dimensions is a
Lévy stable distribution with the same a. A different
situation occurs in one dimension as a power-law distri-
bution that falls off like v~ " has a divergent variance for
any n. This is the case for single molecules that undergo
sudden jumps [34,35], which are well-described by Lévy
statistics even if n=1.

However, for realistic non-singular flow fields,
corresponding to finite values of A, we generally have
m > 0. Specifically, by matching the exact velocity
moments to those in equation (A 11), one finds that
for the co-oriented model (2.4a) with n=1

1

€\ 2

_ 1 2
c—2N( A) (kV)[1 + £ + 201og(0)] (3.6)
at leading order in £:= A/A, whereas for n =2
1 (5m4\ " ;
c=3 (12 ) (kV)? "3 (3.7a)
and
107\ 7? /A\?
w ( 3 ) <e) o7, (3.7b)

For the dipolar model (C 1), one obtains the same
scaling of (¢,u) with (¢,A) as in equation (B 19d) but
with a slightly different numerical prefactor, yielding
in the small cut-off limit A — 0

3

o = (V) (5) (3:80)
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and

Gely =20 (1) 'e ()

= : (3.8b)

Note that equation (3.6) suggests for colloidal-type
flow fields with woc 7', the appropriate thermodyn-
amic limit is given by N,A — oo such that N/A*=
const., whereas we must fix ¢ = const. if wocr ",
n>2. Furthermore, equations (3.7b) and (3.8a)
imply that u — 0 and (|v|?) — oo for a vanishing regu-
larization parameter A — 0. This illustrates that Lévy-
type behaviour becomes more prominent, the more
‘singular’ the velocity field in the vicinity of
the swimmer.

The solid curves in figure 2 are based on approxi-
mation (3.3), using the exact second and fourth
moments of the velocity PDF's, as given in the appen-
dices. For woc 72, the Gaussian prediction of the
central limit theorem becomes accurate only at large
volume fractions (¢ > 25%). In the dilute regime ¢ <
1, the bulk of the probability comes from a Lévy
stable distribution before it crosses over to
quasi-Gaussian decay, reflected by the (truncated)
power-law tails in figure 2b,c. We may thus conclude
that the fluid velocity in a dilute swimmer suspension
is a biophysical realization of truncated Lévy-type
random variables [20].

3.2. Flow-field autocorrelation

The similarity of figure 2b,c suggests that the angular
flow-field structure is not important for the equal-time
velocity distribution. By contrast, the velocity auto-
correlation function Cy 4(t) depends sensitively on the
angular details, as illustrated in figure 3. For both our
co-oriented model (2.4a) with n= 1,2 and the dipolar
model (C1), the function Cy4(?) can be determined
analytically (see the appendices). From the exact
results, one finds that for n =2 in the thermodynamic
limit at long times t>> 7.:=¢€/V

Cya(t) = ?wvf (77) (3.9)

For comparison, the velocity autocorrelation
function for dipolar swimmers can be approximated by

Cra(t) = ¢(xV)?

) 1 382 3§ . >
(€>12 N +Z+7_ﬁ’ * = 5
X |— )| — *
A5 ) 302 2 38 '
— —ﬁ‘f'g“r?, x < S,
(3.10q)

where ¢, := 4¢/7 and s :=tV/A <1. The approxi-
mation (C16), shown as the dotted line in figure 3,
becomes exact at long times. In the thermodynamic



Lévy fluctuations owing to algae and bacteria 1. M. Zaid et al.

1319

limit, it reduces to

Cva(t) ~ e(kV)?

1 —3t2 t<r
- ) = )
x (5)3—77 o (3.100)
A5 | #0038
A_ZA <y
A O

where 7),:=4A/(7V). Note that equation (C18) pre-
dicts an asymptotic ¢ ® decay, which is considerably
faster than the ¢t ! decay for the co-oriented model,
cf. equation (B 29¢). This is due to the different angular
structure of their respective flow fields. The excellent
agreement between simulation data and the exact ana-
lytic curves (solid) in figure 3 also confirms the validity
of our simulation scheme (see numerical methods in
appendix D).

3.3. Mean square displacement

Having discussed the velocity statistics, we next analyse
the tracer displacements. To that end, we will focus on
the practically more relevant dipolar swimmer case, and
include the effects of thermal Brownian motion (so
Dy>0). A first quantifier, that can be directly
measured in experiments, is the MSD (A[z(t)]*) ~
(A[z(t)]*) 5 + 6Dyt. Assuming spatial homogeneity and
spatially decaying correlations, the velocity auto-
correlation function can be used to obtain an upper
bound for the swimmer contribution

ALy = L a7 L dr(un (7, (7)) un(r, 2(7))

< Jt dr Jt dr{uy(7,0)uy(t,0)).

0 0
(3.11)
Inserting the approximate result (C 18), we find
2t L <
- T 93> A
5Ta 357 '

Alz(t)DN < 6¢K2 Vet
(Afz(t)] )N < 6¢x” Ve o 22

ApA_ A >
t 52 35t
(3.12)

TX-

Equation (3.12) implies that tracer diffusion owing
to the presence of dipolar swimmers is ballistic at
short times ¢ < 7, and normal at large times t>> 7,
(figure 4). Qualitatively, the predicted linear growth
(A[(t)]?) oc t agrees with the experimental results of
Leptos et al. [6]. Generally, the asymptotic diffusion
constant will be of the form D ~ D, + vek?® Ve, where
v is a numerical prefactor of order unity that encodes
spatial correlations neglected in equation (3.11).

3.4. Evolution of the position probability
density function

The spatial motion of a passive tracer in a fluctuating
flow w(t,r) is described by the position PDF P(t,r) =
(8(r — x(t))). For Gaussian fields, uniquely defined
by the two-point correlation function (u,;(t,7)u;(t,7)),
it is possible to characterize P(t,7) analytically for
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some classes of trajectories x(t) [36]. However, our
analysis above indicates that the statistics in an active
suspension are neither 8-correlated nor Gaussian, exhi-
biting features of Lévy processes.

Generally, the hierarchy of correlations in Lévy
random fields is poorly understood [37]. It is therefore
unclear how to adapt successful models of random
advection by a Gaussian field [38] or, more generally,
extend the understanding of coloured Gaussian noise
[36] to coloured Lévy processes. These theoretical
challenges make it very difficult, if not impossible, to
construct an effective diffusion model that bridges the
dynamics of P(t,r) on all of the time scales. Partial the-
oretical insight can be gained, however, by considering
the asymptotic short- and long-time behaviour.

At short times t < 7, the position PDF combines bal-
listic transport from constant swimmer advection and
diffusive spreading from thermal Brownian effects. For
experimentally relevant parameters [6], normal diffusion
is much stronger than the advection and, at these times,
the dynamics of P(t,7) are captured by the normal diffu-
sion equation. If Brownian motion is neglected, we have
P(tr) =t pya(r/t) with ¢y(v) as the tempered
Lévy velocity PDF. The resulting ‘ballistic’ Lévy distri-
bution is in good agreement with simulation data for
Dy =0 at short times, see inset of figure 5a.

For long times ¢>> ), after the correlations of the
velocity field have vanished (typically after several
seconds), we may interpret a tracer diffusing in an
active suspension as a realization of an uncorrelated
tempered Lévy process. Effectively, this corresponds
to replacing uy(t,7) from equation (A 1) with a 8-corre-
lated but non-Gaussian random function {(¢). To
characterize the statistical properties of the swimmer-
induced noise {(t), we need to specify its characteristic
functional F[t;k(s)] [39]. Our earlier findings, that the
asymptotic MSD grows linearly in time and that the
velocity field amplitudes follow a tempered Lévy
stable distribution, suggest the functional form:

Flt k(s)] = exp{DaKat -, [ astae+ |k<s>2}“/2}.
(3.13)

Here, D, is an anomalous diffusion coefficient of
dimensions m% ' and the regularization parameter
K has dimensions m ™", For a = 2, {(t) reduces to Gaus-
sian white noise. Note we may also derive the functional
Flt;k(s)] under the assumption that {(t) consists of
independent  increments with the equal-time
distribution from equation (3.3). Using a standard
procedure outlined in Budini & Cédceres [40], the
Fokker—Planck equation corresponding to
equation (3.13) is found to be

0 a

i 0 = {Dul K — (K? — V*)**| + DyV?} P,
where we also included the contribution from normal
diffusion. In Fourier space, the solution of equation
(3.14) reads

(3.14)

P(t, k) = ePelKe =+ )= DilkP’t (3.15)
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Figure 5. Radial position PDF of a tracer in a dilute suspen-
sion of dipolar swimmers at various times. Solid curves
represent analytical forms of P(¢,r) and symbols illustrate his-
tograms determined from simulations. Insets (b) and (¢) show
the same quantities on a log—log scale. Volume fractions and
symbols are those of figure 4. Parameters are those of figure 2
with Dy=0.245 pm’~'. (a) Short-time regime. At these
times, Brownian motion effectively dominates constant advec-
tion for our choice of parameters. In the limit of no thermal
noise (inset), the position PDF is the tempered Lévy velocity
PDF ¢y 4(v) after a rescaling with ¢. (b) Transient behaviour.
This period corresponds to an intermediate decay of the vel-
ocity autocorrelation. (¢) Asymptotic long-time regime.
Eventually, random advection from many low Reynolds
number swimmers becomes equivalent to a tempered Lévy
flight. The solution to the fractional diffusion equation
(3.14) is matched against simulations by fitting its coefficients
D, and K, see also figure 6.

Using a Levenberg—Marquardt algorithm that
numerically evaluates the inverse Fourier transform,
we fit the coefficients D, and K to the data from our
simulations. Equation (3.15) compares well against
the long-time data in figures 5¢ and 6, especially in

J. R. Soc. Interface (2011)

P(t.x) (um")

Figure 6. Time evolution of the marginal position PDF at a
volume fraction ¢=1.6%. Solid curves represent
equation (3.15) with fitted coefficients (shown only at long
times) and symbols illustrate histograms determined from
simulations. Simulation parameters are those of figure 2
with Dy = 0.245 um*s ™', Fit parameters are o = 3/2, D, =
0.253 um®s~ !, and K =0.0825um ' Red circles, t=1s;
orange squares, t = 5 s; green triangles, ¢t = 25s; cyan inverted
triangles or solid line, ¢t = 50 s; purple diamonds or solid line,
t=100s. At intermediate times ¢ >~ 1 s, our data resemble the
measurements from Leptos et al. [6].

the asymptotic regime. It is worth emphasizing that,
although the motion of the tracers at long times is
non-Gaussian and described by a fractional diffusion
equation, the asymptotic MSD exhibits normal
growth, (A[z(t)]?) o< t.

On intermediate time scales, when the velocity
autocorrelations are already decaying, but still non-
negligible owing to their ¢ ® scaling (figure 3), the
transient behaviour of the position PDF can interpreted
as a superposition of two distinct components:
(i) Quasi-ballistic tracer displacements, which are rem-
nants of the short-time dynamics and may dominate
the tails of the tracer position distribution, and (ii) frac-
tional diffusive behaviour owing to the onset of tracer
scattering by multiple swimmers. A quantitative com-
parison suggests that the measurements of tracer
diffusion in Chlamydomonas suspensions by Leptos
et al. [6], who focused on the range ¢ < 2 s, are exploring
this intermediate regime.

4. CONCLUSIONS

Understanding the mixing and swimming strategies of
algae and bacteria is essential for deciphering the
driving factors behind evolution from unicellular to
multicellular life [10]. Recent experiments on tracer
diffusion in dilute suspensions of unicellular
biflagellate C. reinhardtii algae [6] have shown that
micro-organisms are able to significantly alter the flow
statistics of the surrounding fluid, which may result in
anomalous (non-Gaussian) diffusive transport of
nutrients throughout the flow.

Here, we have developed a systematic theoretical
description of anomalous tracer diffusion in dilute, active



Lévy fluctuations owing to algae and bacteria 1. M. Zaid et al.

1321

suspension. We demonstrated analytically and by means
of simulations on a graphics processing unit (GPU) that,
depending on the distance scaling of microflows, qualitat-
ively different flow-field statistics can be expected. For
colloidal-type flow fields that scale as ' (owing to the
presence of an external force), the local velocity fluctu-
ations in the fluid are predominantly Gaussian even at
very small volume filling fraction, as expected from the
classical central limit theorem. By contrast, flow fields
that rise as 72 or faster in the vicinity of the swimmer
will exhibit Lévy signatures. Very recent measurements
by Rushkin et al. [41] appear to confirm this prediction.
When the statistics are non-Gaussian, our results show
that the asymptotic convergence properties of velocity
fluctuations in active swimmer suspensions are well-
approximated by truncated Lévy random variables [20].
Though we prepared data for swimmers that are ‘pullers’
(k < 0), these statements are also true for ‘pushers’ (k >
0) as long as the suspension remains statistically
homogeneous and isotropic.

With regard to experimental measurements, it is
important to note that the tracer velocity is a well-
defined observable only if thermal Brownian is
negligible (corresponding to the limit Dy = 0). Other-
wise, the associated displacements over a time-interval
At contain a component that scales as v/At. This fact
must be taken into account, when one attempts to
reconstruct velocity distributions from discretized tra-
jectories: if thermal Brownian motion is a relevant
contribution in the tracer dynamics, the measured dis-
tributions will vary depending on the choice of the
discretization interval.

Our analysis further illustrates that, for homo-
geneous suspensions, the angular shape of the
swimmer flow field is not important for the local vel-
ocity distribution, which is dominated by the radial
flow structure. By contrast, the temporal decay of the
velocity correlations sensitively depends on the angular
topology of the individual swimmer flow fields. Specifi-
cally, our analytical calculations predict that velocity
autocorrelations in a dipolar swimmer suspension
vanish algebraically as ¢ °. This prediction could, in
principle, be tested experimentally by monitoring the
flow field at a fixed point in the fluid, using a set-up
similar to that in Rushkin et al. [41].

Finally, we propose that the asymptotic tracer
dynamics can be approximated by a fractional diffusion
equation with linearly growing asymptotic MSD. If the
swimmers also undergo directional changes (owing to
stimuli response or thermal fluctuations), the net
result will only be a further decorrelation of the velocity
fluctuations (assuming the suspension remains homo-
geneous and isotropic). In such a case, the tempered
Lévy PDF predicted by equation (3.14) should
become valid at earlier times. It would be interesting
to learn whether the fractional evolution of the tracer
position distributions at long times can be confirmed
experimentally. This, however, will require observa-
tional time spans that go substantially beyond those
considered in Leptos et al. [6].

In conclusion, the correct and complete interpre-
tation of experimental data requires an extension of
Brownian motion beyond the currently existing
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approaches [18,19,36]. Although many challenging
questions remain—in particular, regarding the consist-
ent formulation of a generalized diffusion theory that
combines Lévy-type fluctuations with time cor-
relations—we hope that the present work provides a
first step towards a better understanding of present
and future experiments.

We thank Ray Goldstein and Ralf Metzler for helpful
discussions. This work was supported by the Natural
Sciences and Engineering Research Council of Canada
(I. M. Z.), and the ONR, USA (I. M. Z. and J. D.).

APPENDIX A. SUMMARY OF MODEL
ASSUMPTIONS

A.1. Tracer dynamics

We consider the three-dimensional motion (t) = (;(t))
of a passive tracer particle in a fluid that contains o=
1,..., N active particles (such as algae or bacteria),
which are described l%y phase space coordinates
I''={r’} ={(X(t),X (t))}. We assume that, in
good approximation, the tracer particle does not affect
the swimmers, so that I(t) is approximately independent
of (t). Neglecting Brownian motion effects (corresponding
to Dy =0 in equation (2.1) of the main text), the tracer
motion can be described by the overdamped equation
(low Reynolds number or Stokes regime)

Z(t) = uy(t, x)

and v (A1)
uy(t, ) = Z u(z|7(t)).

o=1

Here, uy denotes the velocity field generated by N
swimmers and u(z/I™”) the contribution of an individ-
ual swimmer o to the fluid flow at position x. In
appendix §§B and C below, we shall study two different
models for u(x|I'?).

A.2. Swimmer dynamics and statistics

We restrict our considerations to the dilute limit of
small swimmer concentrations. In this case, we may
assume that the swimmers move _%pproximately on
straight lines at constant velocity X (¢) = V. Then,
I'°(t) is uniquely determined by its initial condition
Iy :=17(0)= (X7, Vy), and we have

X7(t) = X+ tVy. (A2)

Throughout, it is assumed that the swimmer speed
is roughly the same and equal to V and that, initially,
the swimmers are uniformly distributed in a large
spherical container (radius A), i.e. the initial con-
ditions Iy = (X§,Vy) are iid. random variables
with joint PDF

N
(1) = [ &%)
and (A3)
o _ L(XFIV) (Vi = V)
(Dl(n)) - (477_/%)/13 4,?7.1/2 ’
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where Z(y|V) is the indicator function of the spherical
container volume V = {x:|z| < A},

1, yeV,

Z(ylV) ¢={07 ye& V. (Ad)

We are interested in the velocity distribution at the
centre of the volume, formally defined by

by 4(v) :=(8(v — un(0,0))),

and, moreover, in the flow-field autocorrelation func-
tion at a fixed point in the fluid far from the
boundaries,

(Aba)

Cya(t,) == (un(t,0)un(0,0)),

where (-) indicates an average with respect to the
initial swimmer distribution (A 3). Generally, we
are interested in evaluating these quantities
in some suitably defined thermodynamic limit N,
A — o0,

(A5b)

A.3. Characteristic function

Consider the characteristic function x4 of some velocity
PDF ¢(v), defined by

Xo(a) == Jddvexp<—iqv>¢<v>. (A6)

Then, by inverse Fourier transformation, we have

b(v) =

jddqexp<iqv>x¢(q>. (A7)

1
(2m)°

Given x4(q), the second and fourth velocity moment
can be obtained by differentiation

(v])g = —Agxs(0) and (Jv|')y = A7x4(0). (AB)

In particular, for three-dimensional spherically sym-
metric velocity PDF ¢(v) = ¢p(v) with v=|v|, we
have x,(q) = x4(q), where ¢=|q|. In this case, the
differential operators simplify to

2
A= (62 +7]8q)

and (A9a)
2 __ 2 2 2_ 4 4 3
A% = (aq+qaq =0+ 0

Below, we shall show that the velocity PDF of a
tracer in the presence of active swimmers can be
approximated by a tempered Lévy stable distribution
with a characteristic function

Xo(0) = exp{~[(cd® + pu®)** = u]},  (A10)

which yields for the second and fourth velocity moment
(v]*) = 3acu®? (Alla)

and
(o["y = 15au 2 + a(u® —1)]. (A11b)
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The tempered Lévy distribution in equation (A 10)
reduces to either the Gaussian prediction from the
central limit theorem as w becomes large (many swim-
mers) or the Lévy stable distribution from the
generalized central limit theorem [31] as u — 0 (unregu-
larized swimmers).

APPENDIX B. FIRST EXAMPLE:
REGULARIZED CO-ORIENTED MODEL

We first consider the model interaction

E’VL

u(:c|F0") = (KVg) W’

(Bla)
where € can be interpreted as the swimmer radius,
0 < k<1 is a dimensionless coupling constant, A a
regularization parameter, Vy the swimmer velocity

(assumed to be constant) and
r’(t) = X(t) — x (B1b)

is the vector connecting the swimmer position at time
t, X(t) = X§ + tVg, with the space point .

B.1. Velocity probability density function
of the tracer particle

Inserting the Fourier representation of the é-function,
we can rewrite equation (A 5a) as

bua(v) = s [ @ arven(ry)

1
(2m)°
X exp{iq lv — Z uw(0|Iy)

p

(B2)

}.

Using spherical variables, Xy’ = R and V| = vV
for both the initial swimmer positions and velocities,
we find

P A ,
dya(v) = ( W//‘s) (277)3Jd3qexp(1qv)
A ) n R
X Uo dRRZJdQ exp(—iKVRn_'_)\n q2)
(B3)

Introducing a rescaled radial position variable y=
R/A, and performing the angular integral over d{2,
we obtain

1. .
biav) = [@genlial(@). (Bda
(2m)
where

! in[A,(y)|qll]"
KV (q :{SJ dnyM} B 4b
(@=13), W =3 0lq (B 42

is the characteristic function of ¢y 4 with
An(y) = SNy (B4c)

Y+ (A/A)
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It is useful to rewrite K2 in the equivalent form: and
Lo N L (V) rextn [ 3(n—1)
KY :[3J ng dy 1 cos(4, g} J dy P[4, ()] =—— (=) {——2
@)= [3) dgf wiestalan] o | A =T (G) Gy
=: [K.(9)]", x [(2n = 3)€" + (5n — 6)¢2"
where K,(g) is the characteristic function for the one- 9—18n+11n? .
swimmer case. 3(n—1) ¢
+ (n—1)(n—3)(2n —3)
x HypGeom2F1
B.1.1. Ezact second and fourth velocity moments. We 33
note that, for m € N, [1,—7 + n’ —E”] } (B94d)
n’n
5 1 For example, for the (n = 2) model, these expressions
2mp (0) = (—1)™ J 2 g2m B simplify to
9,"K,(0) = (-1) 2m+10dyy ,  (B6D)
9V K (0) = 0 B6 Jld (4,02 =2 (2)] (7 )arctan( 1) —
= =—(= — |arctan| - | — ———
q 71,( ) ( C) 0 yy n y 2 A ( g 1+€2
1 3
PN ) _ (1™ 2 g2m (B10a)
and im0 VK (0) = (<) 32 | dyya
2K 0) wog
= 0" K,(0). 6
g —n 1
1 se\4 re\4
2 4_ 1 et e
From these expressions, one finds Jo dy y"[An(y)] 16 (A) (/\)
9,KY(0) =0, (B7a) 1 1 1-02 8
o N ) X Zarctanz —|—1 822+§1 [
9, K, (0) = N[0, K,(0)], (B7b) (1+6)° 3(1+86)
31N () B10b
PKEN(0)=0 (B7c) (B100)
and 3;1 KN(0) =3(N —1) N[ag K,(0))? The first integral, and hence (|v|*),, diverges as
| 1/X if one lets the cut-off A — 0 (which is equival-
+N [8(1 K(0)], (B7d) ent to ¢—0). More precisely, in  this
and, therefore, limit, equations (B 9) reduce in leading order of
(A/A) to
AKYN(0) =3N[92K,(0 B3
n ( ) [ q Tl( )] ( a’) <|v|2>¢ ~ 3T7;—(KV)2(P(§) (B 11a)
and and
A’KN(0) = 15N(N — 1)[0*K,(0)] 5
o (0) = 15NN = 1)[6, K, (0)] (ol = 22(x V) o (5)". (B110)
+ 5N, K, (0). (B8b)

Equations (B 8) hold for any spherically symmetric
distribution in three dimensions. From the above
expressions, one finds the following exact formulas for
the velocity moments in this model:

1

(o) = ijO dy o [An(y)]

(B9a)

and

1

[<\v|2>¢12+31vj0 dys[A ()],

<|v|4>¢:M

o (B9b)

where,using the abbreviation [ := A/A,

[ avanor =2 2

W =

+ = (n — 3)HypGeom2F1 {1,%,3 —; n, —E"] }

(B9c¢)
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where ¢:= N(e/A)* is the volume filling fraction.

B.1.2. Approximation by a tempered Lévy distribution.
We would like to approximate the exact characteristic
function K2 from equation (B5) by the tempered
Lévy law

< _ 2 2\a/2 a

Xg(q) = exp{—[(cq” + p)"" — un}, (B12)

which exhibits quasi-Gaussian behaviour for small ¢,
corresponding to large velocities,

2
Xo(q) = exp (—au“%%) . (B13)

To motivate the ansatz (B12), we write equation
(B 4b) as

KX (q) = exp{=Nn[K,(q)]},

and consider the limit A = 0. In this case, the double
integral for the one-swimmer characteristic function

(B 14)
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K,(q) from equation (B 5) can be calculated exactly for
n = 1,2,3 in terms of trigonometric, hypergeometric and
sine integral functions. By expanding the resulting
expressions In[K,(¢g)] for a large volume A > e, one
obtains for n =1 a Gaussian limiting distribution

K (q) ~ exp(—T1 ¢*)
and (B15a)
Ty = 1N (£)° (V)™

By contrast, for n > 2 the limiting distribution is
found to be of the Holtsmark type, i.e.

K,]LV(Q) = exp(f an3/n)
and (B15b)
€

T, =t,N (A)S(KV)?’/”,

where t, is a constant of order unity; specifically,
t» = v/8m/5 and & = w/4. For comparison, if we let
n — 0 in equation (B 12), we obtain
Xo(a) = exp(—c**¢"), (B15¢)
Thus, by comparing with equations (B15) and
(B15¢), we can identify

and

n>2=a=3

n

(B16b)

Before determining the remaining parameters
(¢, ), it is worthwhile to note that the effective
temperature scales differently with volume and swim-
mer number for n=1 and n > 2, respectively: in the
case of a colloidal-type velocity field with n=1, the
effective temperature 7T; is proportional to the area
filling fraction N(e/A)?, see equation (B 15a),
whereas for swimmer-type flow fields with n>2
the effective temperature T, scales with the wvolume
filling fraction

¢ := N(e/A), (B17)

see equation (B15b). This suggests that, for n=1,
the appropriate thermodynamic limit corresponds to
N,A — oo while keeping the ratio N/A® fixed,
whereas for n>2 one should let N,A— oo such
that N/A® remains constant.

It remains to discuss how to identify the parameters
(¢,n), which we shall do next for the cases n=1,2,3.
For n=1, the procedure is rather straightforward; in
the case of n=23, we are going to determine
(¢,n) by matching the second and fourth velocity
moments of the tempered Lévy ansatz (B 12), which
were given in equation (A 11), to the exact
moments (B9).

n=1. In this case, according to equation (B 16), we
have a=2, and the ansatz (B12) reduces to the
Gaussian

Xo(a) = exp(—cq®). (B18a)
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By comparing with equation (B 15a), we see that ¢ = T7,
ie.
€
A
where we now also included the leading order cor-
rections in £ = A/A.

n= 2. In this case, we have @ = 3/2 and the velocity

moments (A 11) of the tempered Lévy ansatz (B 12)
take the form:

c:%N( )Z(Kv)2[1+€+2£1og(£)], (B 18b)

(o) = e (B19a)
and
(ol = 8u 224472~ 1)) (B19D)
Solving these equations for (¢, w) yields
) (5> 1/3 <|’U|2>5/3
c==|= -
9N (ol = 5(u)
and (B19c¢)

- (§> 2/3 oy
T8 e = s

Here, we can insert for {|v|”) and (|v|*), the exact
expressions (B9); this gives the fit curves shown in
figure 2 of the main paper. Furthermore, by expand-
ing the resulting formula for large volume A >> €, A,
we find

and (B19d)

107\ 7% /A\?
= | — — /3
(5 ()

n= 3. In this case, we have o =1 and the general
expression for the velocity moments of the tempered
Lévy law from equation (A 11) reduce to

(Jof?) = 3! (B200)
and
(o] =153 (m+1). (B 200)
Solving these equations for (¢, w) yields
B
9(|v|"y — 15¢|v[*)?
and (B20c¢)
50"’

3oy - 5( o)

Inserting for {|v|?) and (|v|") the exact expressions
(B9) and expanding for A > €, A, we obtain

03
c==(kV)*¢*> and p,:5<z) ®. (B20d)

>
3
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Figure 7. Marginal velocity PDF of a tracer particle in the flow generated by different concentrations of swimmers, using the
co-oriented model with (a) n=1 and (b) n= 2. These one-dimensional PDFs reflect the Gaussian or Lévy nature of their
corresponding three-dimensional PDFs. Volume fractions and symbols are those of figure 2.

Note that for a vanishing A — 0, the parameter w
goes to zero in equations (B 19d) and (B 20d), which
implies that the second moment (|v?) diverges. This
also illustrates why for n > 2—or, more precisely, for
n>3/2 if one allows for non-integer exponents n—
there is no convergence to a Gaussian distribution
in the limit A — 0. See figures 2 and 7 in that
regard.

B.2. Velocity autocorrelation function

We are interested in the fluid’s velocity autocorrelation
function (A 5b) for the power-law model (B 1). We start
from equation (A 5b), which can be written as

Cya(t) = Z (ui (2| T () ui (0[T)). (B21)

Assuming, as before, that the initial swimmer pos-
ition and velocities are distributed according to
equation (A 3), we can simplify

Cya(t) = N(kV)

n n

€ €
X7+ EVET ) (X5 + A7)

=: N(kV)?c,(1).

)

x
(

(B22)

Using spherical velocity and position variables, Xj =

X and V{ = V42, and inserting the one-swimmer
PDF from equation (A 3), we find

A .
0
ea(t) = Jdﬂj dXX24 3/13 Ji—
T
0 o ) (B23)
€ €
(IXQ2+ tVQ" + A"y (X" +A")
Introducing rescaled variables
X 1% ’ A
Yi=—, Si=—, =,
A A A (B24a)
2= 00
and noting that
IXQ+tVO| = Al + & +2sy2)]%, (B24b)
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we can rewrite equation (B 23) in the form:

€\ 2n 1 3 [d0
" P —_— Q 2_ —_
cn(t) (A) Jd JO dyy 477J Ao

1 1
(P + 8> + 252)" 2 0y L0
(B 25)
By virtue of the identity
1
JdQJdQ £(2) = (4m)(2m) J d:f (2),  (B26)
-1
Equation (B 25) can expressed as
3 7€\ 2n 1 2
cen(t) = B (Z) JO dym Iu(s,9), (B27a)
where
! 1
Jau(s,y) == J dz . (B27b
(5:9) -1 (PP+ 2+ 2syz)n/2 + o ( )

We next provide explicit results for n =1 and n = 2.
n= 1. In this case, we find

s+y—|s—
Jl(sa y) = Y Syl y|
RN {w] (B28a)
sy s+y+4

The remaining integral y-integration in equation
(B 27a) can be easily computed numerically. However,
the correlation function ¢(¢) can also be expressed ana-
lytically in terms of the polylogarithm Li,(z), defined by

o0 k
Lij(z) =Y % 2] < 1, (B 28b)
k=1

and analytical continuation for |z > 1. Li,(z) is real

valued for real z<1 and possesses the integral
representation
z ¥ ket
Li = dk . B2
W) = g | W (B2sc)
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Considering a sufficiently large volume such that 0 <
s < 1, we obtain

+ (26 —-2)s+20(1 + ﬂ)arctanh(l )

)

(1+0" (1407
(s+0*  (s+0*

) (29
_Ll2( 8>+L ( ié)
(i) -3 )

with R denoting the real part. In particular, in the ther-
modynamic limit N,A — oo such that ¢ = N(e/A)*=
const, we find that the autocorrelation function
Cy, A( ) = N(kV)? ¢, (t) becomes constant

+ {slog

=

(B28d)

CH (1) = 3(k V)2 (B 28e¢)

This situation, however, is unrealistic for real swim-
mers, which typically generate flow fields that decay
with n > 2.

n = 2. In this case, we find

4sy

1+——75—].
(s—y)" + &

1
Jo(s,y) = —log (B29a)

2sy

Considering again 0 < s < 1, the correlation function
¢2(t) may be written in terms of the Dilogarithm
Lis(2) as

4s
(s— 1)2 4 ¢2

) 571+M1 142
08 s+1+4 o8 s+ 2
1 -
Liy (s zﬁ) L, (s + M)
S S
C(s—1—# C(s+1—
(") () |

(B 29b)

() :—Z(A)4i3{ log(s)log |1+

with R denoting the real part. In the thermodyna-
mic limit N,A — oo such that ¢ = N(e/A)® = const.,
we find at large times ¢>> 7.:= €/ V for the full auto-
correlation function

ct(a) = 2T gfuevy? ().

1 (B29¢)
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APPENDIX C. SECOND EXAMPLE:
REGULARIZED DIPOLAR SWIMMER
MODEL

Let us now consider a more realistic dipolar swimmer
flow-field model, defined by

v(z|Iy) = (kV) (m) B2 R) 1]

x R, A>0, (Cla)
where k>0 (k<0) correspond to an extensile

(contractile) swimmer, and

R7(t) := X(t) —z, R(t)’ %,
so o VIl) _ s
0Q°(1) = = Q. (C1b)

As before, we assume, for simplicity, that a swim-
mer’s orientation does not change over time. The
dipolar swimmer model (C 1) exhibits the same distance
scaling as the regularized power-law model from
equation (B1) with n=2, but the directional depen-
dence is different. As a consequence, as we shall see
below, the velocity PDFs of the two models are very
similar but the correlation functions show qualitatively
different behaviour.

C.1. Tracer velocity probability density

function
C.1.1.  Characteristic ~ function. Using spherical
variables, Xj = X and V] = V& for both the

initial ~swimmer positions and velocities, the
characteristic function of the velocity PDF can be writ-
ten as

KY(q) = [Ks(q)]",

where the one-swimmer -characteristic function is
given by

Ks(q) :(477//;42)_1%7]: dRRQJdQJdQ

xexp{—i(KV) (X;ij@ [3(@9)2_ 1} (q!))}.
(C3)

(C2)

Hence, with y:= R/A, £:=A/A and z := 00,

3 1 ) 1
wa):§;J0dnydQJ1

dzexp{—i(KV) (;)2 (yf—j@ (322 — 1)(qﬂ)}.
(C4)
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Choosing ¢q= (0,0,|q|) = (0,0,¢), with no loss of For linear swimmer motions, we further have
generality, we find
1 1 1 R(t):=X+tV, X=XQ, V=V (C8h
Ko =3[ dui? [ az| ageostong.  (cs0)
0 -t 0 with X and V denoting the initial swimmer position
where and velocity; £ and 2 are the corresponding unit
ol vectors. Defining the dimensionless velocity auto-
D(y,z) := (kV) (£ (g/w) (322 —1). (C5b)  correlation function c¢g(t) by Cs= N(kV)cs(t),

This result can be used to evaluate analytically the
moments of the tracer velocity PDF.

C.1.2. Velocity moments. From equations (C5)
and (B 8), we find the following exact results for the
second and fourth velocity moments:

(Jof?) = N(xV)?
€\ (6 [arctan(1/¢) 1
< (3) {5[ ‘ _1+£2H (C6a)
and
(o) = N(xV)'
e\8| 3 |3arctan(1/¢) 3+ 8% —3¢*
s )
5N -1
t3y

(C6D)
where £:= A/A is the rescaled regularization cut-off.
In the small cut-off limit £ — 0, we find

(|v|2) ~ ‘%’T(K V)2g0(§) (C7a)

and
(ol"y = 25k V) o (5)°.

These expressions are quite similar to those
obtained for the power-law model with n=2, see
equation (B 11). The moments (C7) can be used to
determine the parameters of the corresponding tem-
pered Lévy velocity distribution (B19d) by means
of equations (B12). However, as we shall see below,
the two models give rise to very different
velocity correlations.

(C7b)

C.2. Velocity autocorrelation function

We are interested in the velocity autocorrelation
function (A 5b) of the fluid near the centre of the
volume, which can be written as

Cs(t)=N(kV) <<|R(t)|2+)l2> <|R(O)|2 +A2>

< {3LQ R -1} {3[QRO)] - 1}1”2(15)1?,(0)).

(C8a)
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we obtain

62 €2
cs(t) :< .
i X+ 1tV + 2% ) | X]* + A2

~ 2
X00 +tv (C9)
Xl3<|x+th|> L
P A 0X0)
B o )

In the limit ¢= 0, one recovers the second velocity
moment, cg(0) = (|v?|) /[N(k V).

For t > 0, using the notation from equations (B 23)
and (B 24), we have

cs(ﬁ)=e4<< ! >( 521 )
X242 )\ X2+ 22V2 42t VX2 + A2
3(Xz+tV)? X+tVz >
X2+ £2V242tVXz VXZ+R2V2Z12tVX/
(C10)

Substituting y:= X/A, £=A/A, s:=tV/A and
using the identity (B), this can be written as

and (Clla)

where
1 1 2 2
Y 3z —1
L(H =] d d
1) Jo yJ—l Z<€2 + y2> (€2 +P+ 2+ 2syz)
y+ sz 3(yz+ s)°
X 172 2/2
(y* + s + 2syz) (y* + s + 2syz)
(C11b)
and
1 1 o
L(t)y=1] d d
2(1) Jo yJ—l Z<£2 + ?J2>
o 32 -1
2+ g2+ 2+ 2syz
yt sz 7 (C1lc)
(y? + s* + 2syz)
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The integration over z can be performed analytically,
and the remaining y-integrals can be written as

1
dyji(y; s,£)

Li(1) :J

0
and (C12a)

1

1(%) :j dyir(y: 5,0),

0

where
3(3s* +25%y% + 3yh)
3255202 (y2 + 12)
[(s=9)°(s+9)° = (s+1)*(s— y)ls — yl]
302(s% — 912 — 5(2)
80sty(y* + £2)
302[—32s" + 18y + 40y20* + 15¢*
+252(1942 + 562)]
160s°y?(y? + £2)
[(s+y)—[s—yll
201s* + 185s5%y> — 174y*
28055 y(y? + £?)
[(s+v)* + (s — y)ls— v]
201s* + 5965%y> — 381y*
560s1y%(y? + £2)
[(s+9)* = (s—y)ls— ]
3(s% — 2 — 12)%[355 — (2 — 902) + 852
+(y? + ) (52 — 312 + 302)]

]l(yv S, f) =

[(s+y) +1s =yl

+

32851203 (42 + £2)

s+yy il
Z) arctan< 7 )]

(C12b)

X [arctan(

and
(1> —9s*> —50?)
2052y (y? +£2)
+3384 —17y* +10920% + 1504 485 (y* + 50?)
40532 (y?> +£2)
[(s+y)—Is—yll
(&= g*+ )35 +3(y* + )’ +25* (4 +36)]

Jo(y;8,0) = [(s+y)+]s—yl]

83y2L(y? +£2)
s+yy |s—yl
7 ) arctan( 7 >} (C12¢)

To obtain the exact correlation function, the remain-
ing one-dimensional y-integrals (C12a) can be
computed numerically; for special limit cases, however,
one can expand the integrands j; /o(4;5,f) and evaluate
the resulting integrals analytically.

X [arctan (

J. R. Soc. Interface (2011)

Short-time expansion t — 0. Expanding the integrands
J172(;8,) at short times s < ¢, we find

~ yrey 1 252 1765 665>
Cs(t)_QD(KV) (A> 210{ 1+€2+(52_~_£2)3 (82-’-62)2
52 (4894 1088¢% +423¢) 489 237
_ s 207220
2(1+2)° 72 242

3(163s% — 84¢%)[arctan(¢) — arctan(¢/s
L3 ) 63() (/)]}’

(C13)
where £ = A/A and s: = tV/A.

Large-time (small £) approzimation and thermo-
dynamic limit. To obtain an analytically tractable
approximation of the autocorrelation function that
can be used to determine the thermodynamic limit,
we note that, at large times, we can approximate £ >~ 0
in the denominators of the integrals equations (C11b)
and (C1lc). With this simplification, the zintegral can
be computed more easily yielding for 0 < s <1

csty=Sowr(5) [ o[- oy
+ 78(9;52;73’2)} @(y—S)},

(C14)

where O(z) is the unit step function, defined by 6(z) := 0,
z<0 and O(z):=1,2> 0. In principle, the remaining y
integral can readily be evaluated to obtain the long-time
behaviour of Cs(t). However, the resulting expression
diverges at short times, since we let the cut-off £ — 0.
To avoid this divergence and mimic the effect of the
short-distance cut-off ¢, we may replace the lower integral
boundary in equation (C14) by a regularization
parameter’ £, i.e. we compute

3

Cs(t) ~ §¢(KV)2(%) Ll dy{ {_ W]

<=+ [ oy - o)

(C15)
which gives
Cs(t) = ¢(kV)?

R
7 76‘27 * 9y

L,
X(%)% 30 2 3¢

-]l =+, {,<s<].
7s5+33+7’ s

(C16a)

The regularization parameter ¢, can be determined
from the condition Cs(0)=(|v|*), by using the exact

'For numerical simulations, it is usually more convenient to regularize
divergent flow fields. For analytical calculations, it is often advisable
to consider the corresponding non-regularized flow fields and to
regularize divergences by adapting the integral boundaries.
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result (C 6a) for the second moment, yielding

4
>~ —V4.
o

(C 16b)

The result (C 16) becomes exact at sufficiently large
times s — 1; it does, however, also provide a useful
approximate description at intermediate and small
times. In particular, the second line in equation
(C 164) implies that, for a finite system, the autocorre-
lation function becomes negative after a certain time %,
which can be estimated as

r<1 (40P A
o= \—7 v )

Physically, this is due to the dipolar flow-field
structure: if a dipolar swimmer passes a fixed point
in the fluid, the flow at this point will reverse its
sign (direction) after certain time. However, as evi-
dent from equation (C17), the negative correlation
region vanishes for A — oo, as the zero #, of cg(t)
moves to oo in this limit. More precisely, by taking
the thermodynamic limit of equation (C16), we
find that

(C17)

Cs(t) =~ @(kV)?
3t? Lo 4 A
r A
<e>37-r = = v’
A 5 ﬁ 37‘/5\ t T
BT T

(C18)

Thus, the velocity field autocorrelation function in a
dipolar swimmer suspension decays asymptotically as
™3, which is different from the ¢ '- decay found earlier
for the power-law model with n = 2, see equation (B 29¢).

C.3. Spatial mean square displacement
of a tracer particle

The approximate result for the velocity autocorrelation
can be used to obtain an upper bound for the swimmer
contribution to the MSD of the tracer particles. Consid-
ering an initial tracer position 2(0) = 0 and noting that
(up(7,0)up(7, 0)) = C(|7 — 7]), we find

t t

(z() = | a7 Odfr<uN(7j,m(7j))uN(T, z(7)))

0
t

[

¢
d7 | dr{un(7,0)uy(7,0))
0 0

¢

= a4

0

t drC(|7 — 1) (C19)
0

The second line reflects, roughly speaking, the
assumption that correlations are spatially homogeneous
and decaying with distance, i.e.

(un (7, 2 uy (7, ) < (un(7, 2)uy(T, x))

= (un(7,0)un(7,0)). (C20)
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Changing integration variables, 7+— 6:= 7 — 7, and,

subsequently, 7+—v:=7 —1t we may rewrite
equation (C19) as
0 v+1
(O] ~ J va a0 c(|0)). (C21)
—t v

Inserting the approximate result (C 18) for the fluid
autocorrelation function in the thermodynamic limit,
we find

ﬁ — _t3 t<r) =44
) , 517 358 P
([2(t)]") ~ 6¢k” Vet
L 27’2 le\
L=t g g 127
(C22)

Thus, tracer diffusion in a dilute suspension of
dipolar swimmer is ballistic at short times ¢ < 7, and
normal at large times ¢>> 7).

APPENDIX D. NUMERICAL METHODS

In our computer simulations, we directly integrate the
Langevin equations

(1) = un(t, (1)) + v 2Do (1), (D1a)
N
tm:;umw (D 1b)
X 7(t) = (X7(t), V(1))
and
X'(t)=X5+tVy, o=1,...,N, (D1c)

where &(t) is Gaussian white noise, to obtain the vel-
ocity distribution at a given point in the fluid and
velocity autocorrelaton functions (for Dy = 0), and the
tracer position PDF (D, > 0). The initial positions
and velocities I'7(0) = (X§, V0) of the swimmers were
sampled from the distribution (A 3).

Particle deletion and insertion. Using the FEuler
method, we simulate an ‘ideal gas’ of active particles
(swimmers), which move according to equation (D 1¢)
through sphere of radius A. This sphere is always rela-
tive to the passive tracer, whose position evolves
according to equation (D 1la). If an active particle
leaves the sphere, we immediately delete it. To restore
detailed balance, we continually insert new active
particles at the boundary of the sphere. The number
of insertions per time step is drawn from a Poisson
distribution f(j)=7v’ e /4, where v is the mean
number of insertions during At. We obtain equilibrium
by setting v equal to the mean number of deletions
during At, which may be estimated from the kinetic
theory of gases [42] as v = (3NV/4A)At. For each inser-
tion, it is necessary to bias the orientation of an active
partlcle 5o that 1ts probability distribution satisfies

(0 |R ) o< 0’ R’ normalized over the solid angle of
a hemisphere with inward surface normal R, We
achieve that by uniformly choosing a position R at
a distance A relative to the tracer, then choosing an
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orientation from p(ﬁg\ﬁg). Generally, our procedure
achieves numerical accuracy if A is large, and ensures
that a suspension of ballistic particles remains homo-
geneous and isotropic with mean population N. A
comparison with the exact results for time-dependent
velocity correlations verifies the wvalidity of this
approach.

Graphics processing unit implementation. Resolving the
tail of a probability distribution can be a computation-
ally expensive task, even for stochastic processes that
are relatively simple. In our numerical calculations,
further difficulties arise from having to create and main-
tain an active suspension unique to each tracer. This
process would not be possible in a reasonable amount
of time on a traditional computer. We therefore
implemented parallelized simulations on a GPU using
NVIDIA’s Compute Unified Device Architecture
(CUDA). Compared with a single-core machine, GPU
code yields substantial speed-ups (up to a factor of a
few hundreds). However, our longest simulation of
4194304 trajectories still took 14 days on a GPU.
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