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L-HARMONIC FUNCTIONS
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CAROLINE SWEEZY

It is proved for a restricted class of second order linear differential
operators L if Lu = 0 in R%!, ulga = f then if the Lusin area
integral of u, Su € L*, f is in the exponential square class. This
extends the work of Chang, Wilson and Wolff who proved the same
result for harmonic » [3].

1. Introduction. Let

d+1
0 0
L=Y —(aj=—
Z ox; ( Y 3)(?]')
i,j=1
be a second order differential operator in divergence form whose coeffi-

cients a;; are bounded and measurable functions on Ri“ , Qij = Qji .
L is strictly elliptic, i.e., 34 > 0 such that

1 d+1
I|5|2 < Z &ia; & < AER.

iI,j=1

Then if u is a function where Lu =0 in Rf{+1 , Ulge = f, u is said
to be the L-harmonic extension of f. (Note: In what follows the
summation convention will be used. Sumsare i, j=1,2,...,d+1
unless otherwise indicated.)

As in the case L = A = the Laplacian there is a measure associated
with L, called L-harmonic measure, written dw.

There has been a considerable body of work in the last 30 years
on the extension of results for harmonic functions to L-harmonic
functions. The purpose of this paper is to extend a recent result of
Chang, Wilson, Wolff, to the L-harmonic case.

Let u be a harmonic (or L-harmonic) function; let

To(x) ={(y, ) eRI*||x = y| < ar}
be the cone in RY*! over x € R? of aperture ao;
u'(x)= sup )lu(y, )]

,ner (x
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be the non-tangential maximal function of f;

1/2
Saf(x) = (/ IVu(y, t)|*t'~? dy dt)
I, (x)
be the Lusin area integral of f.

In 1971 Burkholder and Gundy proved for harmonic ¥ and 0 <
p < 00

lu*llp ~ lISullp.  [1]

If p = oo, the correspondence is false so the question arose if
Su € L*® was there some class that f was in? Recently Chang, Wilson
and Wolff proved the following result. Let fp = @ fQ f(y)dy. Then

THEOREM 3.2 [3]. Suppose S,f € L. Then

1f = fol?
su €X C <c
Qcue IQI/ p[‘usyfnz ?

where ¢y > 0 and ¢, < oo depend on d and vy.

The purpose of the present paper is to prove the following extension
of their result:

THEOREM 1. If L is as above with a;.y q41 =1 and azyy ;=0
for j # d + 1 and surface measure is absolutely continuous with L-
harmonic measure and if Syu € L™ where ulga = f, f € L2(RY),
Lu =0 and |u(y, t)||Lz(dy) < c as t — oo, then there are constants
¢y and ¢y not a’epending on Q or f sothat

/ cilf(x) - fol
101 Y

dx < ¢
for all cubes Q.

Note. If the function f in Theorem 1 is smooth then the condition
that surface measure be absolutely continuous with L-harmonic mea-
sure is unnecessary since the identity in Lemma 1 will automatically
hold with respect to surface measure. However it does not seem trivial
to prove that one can find functions in Schwartz class with uniformly
bounded area integrals which converge to any L? function whose area
integral is bounded.

The proof of Theorem 1 follows the same general outline as the
Chang, Wilson, Wolff proof, but differs from it in detail and method—
necessarily since the kernel for general L is not translation invariant
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and several techniques which can be used with the Poisson kernel are
not applicable here. The idea is to get a decomposition for f(x) in
terms of integrals involving du/dy; over a cone in R‘j’_‘” , split each
of these into two parts, one close to the boundary A(x) — Ap and
one farther away Q(x) — Qo . For technical convenience we replace
fo by f5, Q =9Q. Then by Jensen’s inequality |f — fy| € exp L?
implies |f ~ fp| € exp L?. Also by the proof of Lemma 2 Ap=0so0
fQ~ = QQ. Then the following adaptation of Lemma 3.3 from Chang,
Wilson, Wolff can be used on A(x).

LeMMA 3.3' [3]. If A(x) has the decomposition

= > Ay

1(Q)<I(Q)
where the Ao satisfy
(a) Ag is supported on 30,
b) [4p=0,
¢) lIAgltipal*(Q) < CfT IVu(y, )|?t'=4dydt for some a, 0 <
a<l,

then |
€l
7] / ISyfIIZ F<a<w.

Q(x) — QQ is shown to be in exponential square class separately
(Lemma 3).

The proof of Lemma 3.3’ is identical for L-harmonic u as the
proof of Lemma 3.3 in [3] for harmonic u.

Sketch of proof of Lemma 3.3'. Property (a) allows one to write
>_4p as a finite sum of sums of the form ., A, where each of
these sums is such that the supports of A, are disjoint for cubes of
the same length. Then it suffices to show each EQ/ A 1s exponentially
square integrable, and writing ZQ/ Ao as a dyadic martingale, prop-
erties (b) and (c) imply the dyadic square function of the martingale is
bounded by Sf. The fundamental theorem of sequential analysis can
be applied to show that any dyadic martingale whose dyadic square
function is in L* is exponentially square integrable [3].

To be able to use Lemma 3.3’ one needs to get the identity for f(x)
in terms of integrals of du/Jy; over the upper half plane (Lemma 1),
then to divide each integral into two parts A(x) and Q(x) and show
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Lemma 3.3’ can be applied to A(x) (Lemma 2) and that Q(x) €
exp L?> (Lemma 3).

So the proof of Theorem 1 depends on the following three lemmas:
since f — fy = (f+¢)—(f+c)y in what follows it suffices to take

f5=0.

LEMMA 1. For f and u as in Theorem 1 and K(y) a smooth
function of compact support in R?, K,(y) =t"9K(y/t) then a.e. with
respect to L-harmonic measure dw,

ou(y, t) i 0Ki(x —y)
1.1 = 2 7 qH H—————"tdydt
(L) S0 = [ Zgpr, @, 0 0= —tdy
ou(y, 1) 0K (x —y)
T 57 tdydt
Bu(y t)
+ H (x - y)dydt,
R 0y ;éd+1
where

xXi—=yi [x-y
Hyi(x - y) = 2k 222
and the integrals on the right exist as L* functions (see proof of Lemma

1).

Note. Surface measure being absolutely continuous with L-har-
monic measure means the identity in Lemma 1 holds a.e. dx.
For future reference the integrals in (1.1) will be labeled:

ou GK,
I= al —ltdydt
R 6y,z J¢d+18yj Y
_ ou ok,
II= ” 37 91 —tdydt
11 = ou H/ dydt.

R 0Y) jd+1
Now write each integral I, IL, IIl as [, + e,z Where R is the
“rectangle” in R?*! with base 3Q in R? of height 5;-1 (Q). Take K
supported in |x| < 4. Subdivide R into smaller “rectangles” Té"n
where Qf," are the dyadic cubes in 3Q of side length 27"/(Q) and

T" —Qn 2n+ll(Q)y Zln (Q)i (see Figure 1).
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O T

FIGURE 1

Let I; be the integrand in I, II, III for J =1, II, III respectively.
Then

LEMMA 2. For J =1, 11, III,
(e 0]
JL=X[ =" £ i
R n=0 i, TQﬂ O dyadic subdivisions of Q
where the Ay’ have the following properties:
(a) support A, C 30

(b) fridp=0
(@|MﬂﬁmWQWasCLHVM%tWﬂ”dwhﬁﬁO<a<L

And finally to deal with fR.iH\ R:

LEMMA 3. There are constants b, and b, depending only on y, L
and d so that if Q(x) = me\R I; then for J =1, II, 1II

1 /eprumx)—ngv
Q1 /o 1571

Then Lemmas 2 and 3 imply the theorem.

dx < b,.

Proof of Lemma 3. It suffices to show for any cube Q, fixed, with
X, Xo € Q, 3¢ not depending on Q or Q(x) such that
1Q(x) — Q(x0)| < IS fNlco-

Then, since exp [Q(x) — Qq|? < exp 2[|Q(x) — Q(x0)* +]Q(x0) — Q]
and [Q(xo) — Qp| < c[|Sf]lo , Lemma 3 is true.
In the notation for I; as defined above, let

ity inl, j#d+1,
Giv)=| &(/Ky)t inll, j#d+1,
viK(©») inlll, j#d+1
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(see (1.3) in the proof of Lemma 2 for why (8/0y;)(»'K(y)) ap-
pears in II). Then G;(y) is smooth since K is smooth and ||Gjl|«,
[VGillo < 00.

Also let G, ,(y) =t79G;(y/t).

Then
| au(ya t)
Q;(x =/ G; (x—-p)ai(y,t dydt
7(x) R\ R 5,(x =)y, )—g = dy
where iy, 1) inl
i _l|a y,t i,
4, 1) = [5,7 in II and TIL

So for J =1, II, III
1Q(x) = Q(x0)]

Sc/d |G ((x =y) = Gj 1(x0 = p)I
R++1\R

R'\R

|
RE\RN{(y , t):ly—x,|<ct}

1/2
<clx-xol | [ Vu(y, 0P~ dy dt
RY\RN{(v, t):ly—x,|<ct}

o 12
x [ / nvc;nioz*}
Q)

< cllSflloot ™ I @)X = Xol < cllSflleo

since |x — xp| < /(Q) for x, xo € Q. The last constant ¢ depends
onlyon K, d, |ajlle and 7.

Proof of Lemma 2. Wlog Ag = 0. To prove: each of A}, J =
I, II, III has properties (a), (b) and (c):

Property (a): K has compact support in R? = support in y vari-
able of K,(x—y) lies inside a cone of aperature 4 (since supp K(y) C
{lyl < 4}), so support in x variable for G; ,(x —y) lies inside 3Q,
if (y,t) € T, . Thus support (in x variable) for Aé C 3Q for
J =1, II, III (see Figures 2 and 3).

Property (b): J =1, then

o[ 9% o 9K
‘o= T, Vi D jtds BJ’jtdydt'

ou(y, t)'
— 2 2l dydt
ayj Y

6, |22 - 6, [ 22| wuty. pidya

X — Xp

; |Vu(y, t)|dy dt

4|V Gl y
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supp Az (x—y)

xe3Q,
= R?
FIGURE 2
supp K, (y—x;)
Xo =R’
FIGURE 3
So
ou(y, t) 0K, (x —-y)
ihdx = / / aii (y, n2EKX V)0 s ax
R’ 8yz i ]¢d+1(y ) a(yj) Y
8u(y, T / OKi(x —y)
= —— q , t -1 —"——Ldxtdydt
T, Oyi i,jaéd+1(y ) R"( )3(Xj -¥j) Y
by Fubini, and for j #d + 1
R 0 J’j R’ (xj )
since K is of compact support.
J=1I:
Ag = %Mzdy dt.

r, 0t 0t
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But
OKi(x-y) _ 0 [ 4 [x—yH
(1.3) 57 "~ 3; {t K ;
. ged-1g | XY —40K[x —y/1]
= —dt K[ ; }+t ——at

—d-1p | X =Y —d-1 Xj—yj0
—dt K[ ]t Z . 81;])

o} 0
—p—d-1_Z_(4J —_—d-1_Y_gj
t 8vj(v K (v)) t ijH (v)

where v; = (x; —y;)/t and H;(v) = v;jK(v). Then H; is of compact
support so

0 s,
/R___H]( v)dx =/R“ a—v-J-Hf( v)dv =0

4 QU
ou 0
It _ —d — _H/ =
= Rd/lex / 8t( —t )/Rda -H’(v)dxdydt
again using Fubini.
J=1II:
g = / — H/ (x-y)dydt
ay]];éd+1
and

H; t(x_y)=t‘dxj_yjK[x—y] =>/ xj—yjK[x—y] dx=0
’ t t It t

since K isradial = H; ;(x —y) is an odd function in the x variable
for y and ¢ fixed. The proof of (c) is a straightforward computation
of the Lipschitz norm.

Proof of Lemma 1. Wlog fQ = (0. On a domain  whose boundary
is given by a C* function if

0 [ ii 0 ]
L=—"—|a/—
dyi | 0y;
where a;; ; are smooth, then the following form of Green’s theorem
holds:

ou ov
1.4 /Luv—/uLv:/v —/ U—
(14) Q( ) Q 0@ Ong  Joq Ong
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|
|
|
Q. ! %
I
|
i
* :} © RY
X
FIGURE 4
when u and v are C? functions on Q. Here
o [,0 0 ;o0 .
n, [ 15y, azayj e ad“a_yj n

where 7 is the normal vector to dQ. 8/8n, is the co-normal deriva-
tive associated to L.
So taking

=2 [a;‘j _‘9_]
0yi 0y;
where a;; ; are smooth approximations to the coefficients a;; of L
in Theorem 1 and u, = u * h, smooth approximations to the solution

u,then (f—e) and K;(x—y) being smooth in RE{“ , Green’s formula
(2.7) gives that

(1.5) /Q (LGt KDt — €) — /Q w,K,L(t - €)

o(u,K;) / o(t—¢)
= —(t—8) — u-K
aQ, Ong ( ) 29, T ong

where € is taken to be a smooth approximation to the rectangle
in RZ*! of height 1, centered at (x, & + 4), which is wide enough
(width ~ % ) so the cone I'(x) intersects the flat part of the boundary
of Q. (see Figure 4).

Using integration by parts, the fact that the boundary terms in the
y; variables j # d + 1 (horizontal variables) vanish since K;(x — )
has compact support in y for x and ¢ fixed (see Figure 5), and

aKt(x_y) ouy j
1.6 /————u ) =— H (x -
(1.6) o 57 Py, 1) o 3yj#d,+1( ¥)

where H; (x —y) = t‘dxj;yjK [x;y] .
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supp K[ (X—)’)

One obtains
Our ijOlKi(t=¢)] [ Our ;0K

1.7 ay —(t—¢
(1.7) Q 0yj * 0y;j Q, 9y : 3yj( )
aur ]

+ H/ (x-y)

Q, ayjj;édt-l-l
_ a(t—e)
= /avge uth ana

Letting a;; s — a;; and u, — u (1.7) holds with a;; ; replaced by a;;
and u, replaced by u. Now let ¢ — 0. The 2nd and 3rd integrals in
the left in (1.7) converge in the sense of L?(Q) since by the argument
in the proof of Lemma 2,

au ik ]
—a'*Gl(x -y
/Rn{t>e} dyi ! )

can be written as a dyadic martingale whose dyadic square function is
bounded independent of ¢. This implies these integrals converge as
¢ — 0 in the sense of L?(Q). The upper part, fR,m\ g » Was shown in

the proof of Lemma 3 to be bounded by c¢||S f||oo -
Now wherever lim,_,o exists it equals lim, _,o for any subsequence
{€x}. To handle the 1st term on the left in (1.7) we need

SUBLEMMA. (1) For a.a. €,

Ou 01Kt~ ¢)]
Q 0y oy

<),
0Q,
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FIGURE 6
(i1) e — 0 such that
. ou
lim =0.
& -0 ank a na )

Proof. (i) Multiply K;(x —y)(t—¢&) by a smooth bump function ¢,
of compact support in . such that ¢, =1 on the region interior to
Q. of distance n away from 0Q;, ¢, =0 on (intQ;)° and
Bw,, 1 ¢
—n il X =0 K, n

Bt | =7’ By, s on supp K; N supp——
(the shaded region in Figure 6).

Then by definition of Lu = 0 on R%*!, for any smooth ¥ of

compact support in R%+!

09y
ot

8uau oY —0.
R4 0y 9y

So taking ¥ = ¢, K;(t —¢), then

0= /ay, ”——[Kt( &)py]

ou ,B[K,( e)] ou O¢n
= [ ZEGullRlZ O, & aK,(t .
Q, 9y oy; "7 Jo, 3w (t-e) 8y,
Then
6u ijOLK (1 —¢€)] / ‘ ou ; 99y
1.8) |- ————=¢,| < a'K,(t—¢ .
( ) l Qe ayl 8yj ¢7I - Qz a t( ) 6yj




198 CAROLINE SWEEZY
Now take the limit as 7 — 0. Since

Eg"'I é¢’7._ ;
<
l 97 C’7 and aJ—O fOf}#d-l*l

on supp K; the integral on the right approaches the boundary integral
a.e. (this means for a.a. 8) One can see this since

// la”HK t—o)||221| dydi < oo
[supp%’L
= as a function of ¢ the inner integral
ou|, ;
a’||K(t—¢ R
[ |5 la11ute = o) | 52| dy € LR

so by the Lebesgue Differentiation Theorem

lim — / /
n—01n t,—n R’

exists a.e. ¢, , and equals

J.l2

Bu ijOLK:(t — ¢&)] </ ou|, ;
—_— = —|ay| |K;(t — &
0 8vi" 0y ag,ayi'd” (t~e)

is obtained by putting the above into (1.8) and taking lim, ., since
Oy — XQ, -

|a"] |Ki(t ~ &) dy dt

dy;

Ia”l |K:(t —¢)|dy.
For a.a. ¢

(1.9)

Proof of (i1). On the upper part of 9Q; t = 8+% and for each region
w,

1 3
W—F(x)ﬂ[ESIS‘zg—k] )

there exists a set of values for ¢ (¢, ~ 1/¢; +¢;) of non-zero measure

such that
3/2e,
Kie—eal< [ [ |5

1
8k 0Q, N{t=t,} 1/2€,

12 1/2
<c [/ |Vul2:| |:/ t2—2d]
% w
1/2
<ec [ak/ |u|2] (ed=3)112
e

)

ana
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where the third inequality is by an inequality due to Di Giorgi, Nash,
and Moser which states for any ball B of radius ¢, B* concentric
with B of radius (1 + &)z, then

2 « 2
(A) o fivur st [P o,

And because |W|~ [1/e]9t! and (y,t) e W =t~ 1/g.
Then

1/2
: [si INGRCEG
w

1/2
<c[ak sup [/ ju(y, t>|2dy]} gl

1/2
sup [/ |u|2] =
EQ R* Q, n{t=t,}

where ¢ depends onlyon L, d, K and the constant in (A). So since
cs,‘f/ 250 as g, — 0, the boundary integral on {¢t = ¢;,} — 0 as
lp — 00.

One can easily pick a sequence of €2; such that (i) holds on the
boundary and (ii) holds as ¢, — O by the above estimate on the upper

boundary. On the lower boundary ¢ = ¢; so the factor t — ¢ =0

(d/2)-1
= Cé

ou
2 - )

< cez/ 2

which means the integral over the lower boundary disappears. o
So (1.7) becomes
. ou 8Kt u -
1.10) lim | —d' t—¢)+lim | — H} (x-—
( ) e—0 QE ay ay]( ) 0 Qe ayjj;édg_l( y)
T o(t—¢) _
B %1_{% B aQ, Kt 8na B f(X)
As can be easily seen
. o(t—e) _
lim b0, u(y, e)Ke(x —y) on = f(x).

Finally writing the first integral in (1.10) as the sum of two inte-
grals (to distinguish 0K,/0y;, j#d + 1, from 0K,/d¢t) and writing
lim,_, fQ as fpan (1.10) becomes (1.1). |
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(2]
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(31
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