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R AIR O Analyse Numérique/Numerical Analysis
(vol 11, 1n°2, 1977, p 209 a 216)

L ,-CONVERGENCE
OF SADDLE-POINT APPROXIMATIONS
FOR SECOND ORDER PROBLEMS (1)

par Reinhard ScroLz (?)

Communique par P -A RAVIART

Abstract — Lct ug be the solution of the second second oider boundary ralue pioblem
—Au + qu=fmQ u = 0ondQ, with Q bounded in R* (ugy, grad uy) 1s characterized as the
saddle-pont of a quadratic functional and approximated by finite elements

1. INTRODUCTION

Let Q = R? be a bounded domain and g = 0 be a bounded and measurable
function. We consider the second order model problem
—Au+qu=7f in Q
u=20 on 0Q,

f € L,(Q); the solution will be denoted by u,.

The basic idea of the mixed method is to characterize (4, vy), vo : = grad u,,
as the saddle-point of a quadratic functional and to approximate (u,, vy) by
elements of suitably chosen finite dimensional subspaces.

The construction of approximating finite element spaces and the L,-error
analysis for this problem was given by P. A. Raviart-J. M. Thomas [5]. Using
the same subspaces our goal is to derive L -error estimates. The method of
proof is based on weighted L,-norms, similarly to the work of
J. Nitsche [3], [4], and F. Natterer [2].

)

2. NOTATIONS, STATEMENT OF THE PROBLEM
If we define the operator

Tu := grad u

(!) Manuscnt regu le 12 mars 1976
(*} Institut fur Angewandte Mathematik, Albert-Ludwigs-Universitat, Freiburg
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210 R. SCHOLZ

with T:D(T) = I/(I)/é € L, > L, x L,, then the dual operator is

T*v = —divo
with T*: D(T*) = W3 x W} < L, x L, -» L,. (We omit the specification
of the domain, if no confusion is possible.)

Later on we need the following assertions : T is a closed operator and R(T)
is closed in L, x L,. Therefore by the Closed Range Theorem L, x L, is
the orthogonal sum of R(T) and N(T*). (See, for instance, K. Yosida [7],
p. 205.)

Further we define the operator Q:L, » L, by Qu := qu, ue L,. Then
equation (1) is equivalent to the system
T*v + Qu = f

2
Tu —v =20 @

with the solution (u,, vy), vy : = grad u,.

For convenience we assume that Q is a bounded polygon. Suppose T',
is a k-regular triangulation of Q, 0 < 4, i. e. for any A e T, there are two

circles X and K with radii p and p such that K = A = K and
Kk 'h<p<p<xh

In the following let r > 1 be a fixed integer.

By (W, x Wiy = (W, x W,)(I,), 2 %‘p < oo, we denote those ele-
ments of L, x L,, which fulfill the following conditions :

GY pe WrIAY x W' (AYforall AcT. -

B Y= rrop\) o T p\)

AVL Qaa T A g,

(ii) for all u e W} (Q) we have

Jv.graduds+judivvds
" " 6

=J‘ uv.vdo.
£l

(vis the exterior unit normal to 0Q.)

Equation (3) holds if and only if for any pairs of adjacent triangles A,, A, T,
we have

v|A; vy +0|A, v, =0 on A NnA,,

where v; is the outward unit normal to the boundary of A;, i = 1,2. (See
P. A. Raviart-J. M. Thomas [5].)

R.A.I.R.O. Analyse Numérique/Numerical Analysis



L _-CONVERGENCE OF SADDLE-POINT APPROXIMATION 211
We denote by (., .) the scalar product in L, as wellas in L, x L,. We also

write [o]y: instead of [[vf|yr vy for ve W7, x W7, Finally we introduce
in (W7, x W) the norm

vl

1/p
wi=d ¥ llvli’v;m} rep<a
Aely

with the usual modification for p = 0.
Let us define the quadratic functional I: L, x (W3 x W3) — Rby

1 1
I(u,v) := a(u,v) — E(U’ v) — (fiu) + E(Qu, u)

with

a(u,v) := — Judiv v ds.

o
The equation
1 1
1) = I 00) = = 5 (0 = 00,0 = v0) + 2 (@ = o) — )

+ au — uy, v — vy)

implies
I(ug, v) < I(ugy, vy) < Iy, vy) (4)

for all ueL,, ve(Wj x W), i. e. (ug,v,) is a saddle-point of the
functional 1.

Given finite dimensional subspaces U, < L, and V, < (W} x W1Y, we
approximate (u,, v,) by a saddle-point (u,, v,) of I restricted to U, x ¥,. From
the condition

Iy, M) = I (uy, v) S (8, v)
for all £ € Uy, n € V}, we get

a(€ vy) + (€ Qu) = (£.8)

alt ) = () = 0 ®
for all £ e U,, n € V,. (5) has a unique solution if U, < div ¥ holds.
Then the equation (5) can be written in the form
a,vg —v)+ (€ Quy —u,)) =0  forall §eU,
aliy — M) = (05 — vy M) forall ne. (5

Thus, the mapping (1, v9) = (44, v,) may be considered as a projection
operator from L, x (W} x W) onto U, x V.
For the sake of simplicity in the following we only regard the case Q = 0.
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212 R. SCHOLZ

3. CONSTRUCTION OF APPROXIMATING SUBSPACES, L,-ERROR ESTIMATES

Given a x-regular triangulation I', and an integer r = 1, P. A. Raviart-
J. M. Thomas [5] construct a linear subspace ¥, of (W7,*! x W,"1y (T}) in
the following way :

n = (M., N,) belongs to ¥, if in each triangle AT, the functions m,
and mn, are special polynomials of degree r 4 1, determined by the values of

chn.vdc , O<j<r , i=123
K.

and

js’{sénds , O0<kl , k+l<r—1,
A

where K; denotes the sides of A. Furthermore in each triangle divn is a
polynomial of degree r.

Let U, be the space of finite elements of degree r for the same triangu-
lation T, (without any boundary or continuity conditions), and denote
by P,: L, — U, the orthogonal projection from L, onto U,.

Then div ¥, = U, and the following assertion holds. (See [5], compare also
P. G. Ciarlet-P. A. Raviart [1].)

LemMma 1 : There exists a linear projection operator IL, : (W) x W}Y - ¥,
2 < p < o0, with the following properties :
(i) for allve (W, x W) the relation
divIL,v = P,divv (6)
is valid;
(i) for allve (W;+ 1y x W:,“)’ the estimate
o = Melps < CA M elyyen 0k Lk<I+1=<r+1 (7)
holds.

The following Lemma shows U, < div ¥;; therefore the equation (5) has
a unique solution.

LEMMA 2: For each & € U, there is an element m € V, with divn = &.

Proof : For an arbitrary element & € U, let w be the element of W1 ~ W2
with Aw = &. Defining n : = II, grad w, relation (6) shows

divn = P, div grad w
= Ph& = &

R.A.I.R.O. Analyse Numérique/Numerical Analysis



L _-CONVERGENCE OF SADDLE-POINT APPROXIMATION 213

Now let (u, v;) € U, x ¥, be the saddle-point approximation of (u,, v,)
defined by (5). The following approximation theorem was obtained by
P. A. Raviart-J. M. Thomas [5, Theorem 5]:

o
Ifuge Wi n W52 and Au, € W5, then

||u0 - “han + “”o - Uhan + ||div (vo — Uh)”Lz
< CH ™ (luollwe+2 + |Augllws+)-

For our purpose we need an “uncoupled” estimate.

LEMMA 3 : Suppose ug € Wi ~ W42, Then
v = vallws < CH* % lug|l ez, 0=k <r+1, (8)

where C is independent of u, and h.

Proof : Define &, := P,u, and n, := Il,v,. Using (5') we find
low = MallZ, = @n = Mo 05 = M) — @y — &g 0 — M) + @y — &40 — M)
= (Vo = Mo Uy — M) — @(thg — &, v — M) + @y, — &y, v — My)-
From div ¥, = U, and relation (6) we obtain

aluo — &, vy —My) = — (4o — &, div (v, — M)
=90

and

a(u, — &, v9 — M) = — (w, — &, divo, — P, div v,)
= 0.

Therefore we get
low = mallZ, = oo = Malle, low = Mallzas
with the help of (7) the estimate (8) follows for the case k = 0.

For 1 <k <r + 1, (8) is obtained by inverse inequalities, obviously valid
for the elements of ¥;.

REMARK : If only u, € I/I°/§ A W%t is presumed for the solution of (1), with
the same proof and by application of duality arguments (see R. Scholz [6])
we can show the error estimate

”“o - “han + h “”0 - ”h”Lz < Ch*! Huollw;“ >

C independent of u, and h.

vol. 11, n°® 2, 1977



214 R. SCHOLZ
4. L -ERROR ESTIMATES

Our main result is the following theorem.

THEOREM : Assume the solution u, of problem (1) fulfills the regularity
condition uge Wi-n Wyt2 n W', and let (u,, v,) € U, x V, be the saddle-
point approximation of (ug,v,) defined by (5). Then the following error
estimate holds :

g — uh”Lco + hljve — l"h”Lac < ChrH ”uo”W;“ + H”o'?w;“}’ ©)
where the constant C is independent of u, and h.
In order to prove (9) we use “weighted” L,-norms.

Let s, be any point of Q. For p > O we definewith p: = p(s) : = |s — 5o|> + p®
for each a € R

—af2

lula:= 00, weL,

(|s — so| d.10tes the Euclidean distance between the points s and s, € R?.)
Between L - and weighted L,-norms we have the following relations :

() ifue L, and a > 1, then
lule < Co™** ful 5 (10)

(ii) for & € U, and the special choice of s, € Q such that [ (s,)| = [&[|,_we
have

lel, < Cyemt gl B =1vp. (1)

The constants C in (10) and (11) do not depend on p respectively %z and the

special point 5, € Q. For a proof see I. Nitsche [37] [4]

The weighted norms in L, x L, are defined in an analogous manner.

Proof of the Theorem : For convenience we write u and v instead of u,
and v,. Since the operator (u, v) — (,, v,) is a projection, it suffices to prove

r+1
A (N T W R A

First we show the estimate for u,. Let s, € Q be chosen such that

|ty (50)| = ||u4]|,_. For & > 1 we have
lunlla = Gaps W™y — €) — (10, n ™"y — &) + (e, n ™) — (u — 4, 8)  (13)
with & := P,p"%u,. With the same arguments as in J. Nitsche [3] we find
for A = yp, y suitably chosen,
|l < Cul2 + [ — w, E)]). (14)

R.A.LLR.O. Analyse Numérique/Numerical Analysis



L_-CONVERGENCE OF SADDLE-POINT APPROXIMATION 215

Now let we ﬁ’; N W3 be the solution of the auxiliary problem
—Aw=§ in Q
w=20 on 0Q,

and define ® : = grad w. An easy computation givesdiv [I,0 = — & = divo;
hence we have @ — IT,® € N(T*). With the help of (55) therefore
u—u,t)=au —u, o)
=a(u — u, I,0) (15)
= (v — v, [T,0)
From the Closed Range Theorem we get v — v, = v — D, — 0, with
v — € R(T)and — 9,e N(T*). Usingwe R(T), ® — IT,0e N(T*),and (5;),
we find
(v = 7, o)| = |(v — 7, ©)]
I(

(v — v, ©)]

= la(w,v — v,)|

|a w—Phw v — u)]

CR [wlwz |4V (o = ),
C

<
< Chp ™ uylla v = villwss
and
|- v,,,I'Im|=|v,,, I, 0)|
| -~ 0y © — Ty0)]
<C ”W”W% Hv - vh”L2
<

Chp™ funlls o — vl
Combining these inequalities with (13), (14), and (15) we get
lanlla < C(lulla + 27 o = vallz, + A207 o = v4fli2).

Hence, the estimate (12) for u, follows by (10) and (11).
Next let s, € Q be such that

|”h.i(so)| = “Uh.i!gLac = !IuhilLoc’
i=1lori=2 Wefindfora > 1
HU - vh”: =@ -0, [T -TL)L v — 1)) + (v — v, ILr* (0 — v,)),

where [ denotes the identity. Using the approximation properties of the
space ¥, and

[DEp(s)] < Cp~*n~*(s), k=1,
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the first term can be estimated by
(v = vy (I — )™ (0 — o)l
CH* o = vlo, 1750 — v)llws1

r+1
CH ™ o =il X 077 7% o =yl (17)
=0

IA

IA

r+1

<Cpm=Y K o - vl

Further, because of (5;) we can write
@ = v ™0 — v)| = |a@ — w, Tp™* @ — v,))|
|4 — wuy, P, divp™*(v — v,))|
[(Py(u — w,), div p™% (v — v,))]
1P — wp)as 1 [div ™ (0 = v4)] -a-1
Cllu — w2y + [ldiv ™ — v3)]2e-s-

IA A

(Here we used the boundedness of P, in weighted norms; see J. Nitsche [3].)
An elementary computation gives

ldiv == = 0)|2a-s < Cp72@7 |ldiv (v — m)|, + P77 [0 — v,[IZ,).
Thus,

loalle < llolla + llo = il

r+1
sc@u—wmﬂ+wﬂ{+w“2th—mw3

Finally, using the relation (10) and (11) once more, we obtain the desired
estimate (12) for v,, and the proof is complete.
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