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Abstract

In Lyons, Pemantle and Peres (1995), a martingale change of measure method was
developed in order to give an alternative proof of the Kesten–Stigum L logL theorem for
single-type branching processes. Later, this method was extended to prove the L logL
theorem for multiple- and general multiple-type branching processes in Biggins and
Kyprianou (2004), Kurtz et al. (1997), and Lyons (1997). In this paper we extend this
method to a class of superdiffusions and establish a Kesten–StigumL logL type theorem
for superdiffusions. One of our main tools is a spine decomposition of superdiffusions,
which is a modification of the one in Englander and Kyprianou (2004).
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1. Introduction and main result

Suppose that {Zn, n ≥ 1} is a Galton–Watson branching process with each particle having
probabilitypn of giving birth to n children. LetL stand for a random variable with this offspring
distribution. Let m := ∑∞

n=1 npn be the mean number of children per particle. Then Zn/mn

is a nonnegative martingale. Let W be the limit of Zn/mn as n → ∞. Kesten and Stigum [8]
proved that if 1 < m < ∞ (that is, in the supercritical case) then W is nondegenerate (i.e. not
almost surely zero) if and only if

E(L log+ L) =
∞∑
n=1

pnn log n < ∞.

This result is usually referred to as the Kesten–Stigum L logL theorem. In [1], Asmussen and
Hering generalized this result to the case of branching Markov processes under some conditions.

Lyons et al. [14] developed a martingale change of measure method in order to give an
alternative proof of the Kesten–Stigum L logL theorem for single-type branching processes.

Received 18 January 2009; revision received 11 May 2009.
∗ Postal address: LMAM School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China.
∗∗ Email address: lrl@math.pku.edu.cn
Research supported by the CSC.
∗∗∗ Email address: yxren@math.pku.edu.cn
Research supported by the NSFC (grant numbers 10471003 and 10871103).
∗∗∗∗ Postal address: Department of Mathematics, University of Illinois, Urbana, IL 61801, USA.
Email address: rsong@math.uiuc.edu

479

http://www.appliedprobability.org
mailto:lrl@math.pku.edu.cn?subject=J. Appl. Prob.%20paper%2012960
mailto:yxren@math.pku.edu.cn?subject=J. Appl. Prob.%20paper%2012960
mailto:rsong@math.uiuc.edu?subject=J. Appl. Prob.%20paper%2012960


480 R.-L. LIU ET AL.

Later, this method was extended to prove theL logL theorem for multiple- and general multiple-
type branching processes in [2], [12], and [13].

In this paper we will extend this method to a class of superdiffusions and establish anL logL
criterion for superdiffusions. To state our main result, we need to introduce the setup we are
going to work with first.

Let aij , i, j = 1, . . . , d, be bounded functions in C1(Rd) such that all their first partial
derivatives are bounded. We assume that the matrix (aij ) is symmetric and satisfies

0 < a|υ|2 ≤
∑
i,j

aij υiυj for all x ∈ R
d and υ ∈ R

d

for some positive constant a. Let bi, i = 1, . . . , d, be bounded Borel functions on R
d .

We will use (Y,�x, x ∈ R
d) to denote a diffusion process on R

d corresponding to the
operator

L = 1
2∇ · a∇ + b · ∇.

In this paper we will always assume that β is a bounded Borel function on R
d and that D

is a bounded domain in R
d . We will use (YD,�x, x ∈ D) to denote the process obtained by

killing Y upon exiting from D, that is,

YDt =
{
Yt if t < τ,

∂ if t ≥ τ,

where τ = inf{t ≥ 0 : Yt /∈ D} is the first exit time of D and ∂ is a cemetery point. Any
function f on D is automatically extended to D ∪ {∂} by setting f (∂) = 0. For convenience,
we use the following convention throughout this paper. For any probability measure P, we also
use P to denote the expectation with respect to P. When there is only one probability measure
involved, we sometimes also use E to denote the expectation with respect to that measure.

We will use {Pt }t≥0 to denote the following Feynman–Kac semigroup:

Ptf (x) = �x

(
exp

{∫ t

0
β(YDs ) ds

}
f (YDt )

)
, x ∈ D.

It is well known that the semigroup {Pt }t≥0 is strongly continuous inL2(D) and, for any t > 0,
Pt has a bounded, continuous, and strictly positive density p(t, x, y).

Let {P̂t }t≥0 be the dual semigroup of {Pt }t≥0 defined by

P̂tf (x) =
∫
D

p(t, y, x)f (y) dy, x ∈ D.

It is well known that {P̂t }t≥0 is also strongly continuous on L2(D).
LetA and Â be the generators of the semigroups {Pt }t≥0 and {P̂t }t≥0 onL2(D), respectively.

We can formally write A as L|D + β, where L|D is the restriction of L to D with Dirichlet
boundary condition. Letσ(A) andσ(Â) respectively denote the spectrum ofA and Â. It follows
from Jentzsch’s theorem [16, Theorem V.6.6, p. 337] and the strong continuity of {Pt }t≥0 and
{P̂t }t≥0 that the common value λ1 := sup Re(σ (A)) = sup Re(σ (Â)) is an eigenvalue of
multiplicity 1 for both A and Â, and that an eigenfunction φ of A associated with λ1 can be
chosen to be strictly positive almost everywhere (a.e.) on D and an eigenfunction φ̃ of Â
associated with λ1 can be chosen to be strictly positive a.e. on D. We assume that φ and φ̃
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are strictly positive a.e. on D. By [9, Proposition 2.3] we know that φ and φ̃ are bounded and
continuous on D, and they are in fact strictly positive everywhere on D. We choose φ and φ̃
so that

∫
D
φ(x)φ̃(x) dx = 1.

Throughout this paper, we make the following assumptions.

Assumption 1.1. λ1 > 0.

Assumption 1.2. The semigroups {Pt }t≥0 and {P̂t }t≥0 are intrinsic ultracontractive, that is,
for any t > 0, there exists a constant ct > 0 such that

p(t, x, y) ≤ ctφ(x)φ̃(y) for all (x, y) ∈ D ×D.

Assumption 1.2 is a very weak regularity assumption onD. It follows from [9] and [10] that
Assumption 1.2 is satisfied when D is a bounded Lipshitz domain. For other, more general,
examples of domain D for which Assumption 1.2 is satisfied, we refer the reader to [10] and
the references therein.

Let E t = σ(YDs , s ≤ t). For any x ∈ D, we define a probability measure �φx by the
martingale change of measure:

d�φx
d�x

∣∣∣∣
Et

= φ(YDt )

φ(x)
exp

{
−

∫ t∧τ

0
(λ1 − β(Ys)) ds

}
.

The process (YD,�φx ) is an ergodic Markov process and its transition density is given by

pφ(t, x, y) = exp{−λ1t}
φ(x)

p(t, x, y)φ(y).

The function φφ̃ is the unique invariant density for the process (YD,�φx ).
By our choices for φ and φ̃,

∫
D
φ(x)φ̃(x) dx = 1. Thus, it follows from [9, Theorem 2.8]

that ∣∣∣∣exp{−λ1t}p(t, x, y)
φ(x)φ̃(y)

− 1

∣∣∣∣ ≤ ce−νt , x ∈ D,
for some positive constants c and ν, which is equivalent to

sup
x∈D

∣∣∣∣pφ(t, x, y)φ(y)φ̃(y)
− 1

∣∣∣∣ ≤ ce−νt .

Thus, for any f ∈ L∞+ (D), we have

sup
x∈D

∣∣∣∣∫
D

pφ(t, x, y)f (y) dy −
∫
D

φ(y)φ̃(y)f (y) dy

∣∣∣∣ ≤ ce−νt
∫
D

φ(y)φ̃(y)f (y) dy.

Consequently, we have

lim
t→∞ sup

x∈D
sup

f∈L∞+ (D)

(∫
D

φ(y)φ̃(y)f (y) dy

)−1

×
∣∣∣∣∫
D

pφ(t, x, y)f (y) dy −
∫
D

φ(y)φ̃(y)f (y) dy

∣∣∣∣
= 0,
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which is equivalent to

lim
t→∞

∫
D
pφ(t, x, y)f (y) dy∫

D
φ(y)φ̃(y)f (y) dy

= 1 uniformly for f ∈ L∞(D)+ and x ∈ D. (1.1)

For any finite Borel measure µ on D, we define a probability measure �φφµ as follows:

�
φ
φµ =

∫
D

µ(dx)
φ(x)

〈φ,µ〉�
φ
x .

Note that, for any A ∈ Et ,

�
φ
φµ(A) = 1

〈φ,µ〉�µ
(
φ(YDt ) exp

{
−

∫ t∧τ

0
(λ1 − β(Ys)) ds

}
1A

)
.

The superdiffusion X we are going to study is a (Y, ψ(λ) − βλ)-superprocess, which is
a measure-valued Markov process with underlying spatial motion Y , branching rate dt , and
branching mechanism ψ(λ)− βλ, where

ψ(x, λ) =
∫ ∞

0
(e−rλ − 1 + λr)n(x, dr)

for some σ -finite kernel n from (Rd ,B(Rd)) to (R+,B(R+)), that is, n(x, dr) is a σ -finite
measure on R+ for each fixed x, and n(·, A) is a measurable function for each Borel set
A ⊂ R+. In this paper we will always assume that supx∈D

∫ ∞
0 (r ∧ r2)n(x, dr) < ∞. Note

that this assumption implies that, for fixed λ > 0, ψ(·, λ) is bounded on D.
Let (Y,�r,x) denote a diffusion with generator L, birth time r , and starting point x. For any

µ ∈ MF(D), the family of all finite Borel measures on D, we will use (X,Pr,µ) to denote a
(Y, ψ(λ)−βλ)-superprocess with starting time r such that Pr,µ(Xr = µ) = 1. We will simply
denote (X,P0,µ) as (X,Pµ). LetXt,D be the exit measure from [0, t)×D, and let ∂t,D be the
union of (0, t)× ∂D and {t} ×D.

Define φt : [0, t] × D → [0, ∞) for each fixed t ≥ 0, such that φt (u, x) = φ(x) for
(u, x) ∈ [0, t] ×D and φt (u, x) = 0 for (u, x) ∈ [0, t] × ∂D. In particular, we extend φ to D
by setting it to be 0 on the boundary. Then

{Mt(φ) := exp{−λ1t}〈φt ,Xt,D〉, t ≥ 0} (1.2)

is a Pµ-martingale with respect to Ft := σ(Xs,D, s ≤ t) (see Lemma 2.1, below) and
Pµ(Mt(φ)) = 〈φ,µ〉, t ≥ 0. It is easy to check that {Mt(φ), t ≥ 0} is a multiplicative
functional of Xt,D .

To state our main result, we first define a new kernel nφ(x, dr) from (D,B(D)) to
(R+,B(R+)) such that, for any nonnegative measurable function f on R+,∫ ∞

0
f (r)nφ(x, dr) =

∫ ∞

0
f (rφ(x))n(x, dr), x ∈ D.

The following theorem is the main result of the paper.

Theorem 1.1. Suppose that (Xt ) is a (Y, ψ(λ)− βλ)-superdiffusion starting from time 0 and
with initial value µ. Set

l(y) :=
∫ ∞

1
r log rnφ(y, dr).
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1. If
∫
D
φ̃(y)l(y) dy < ∞ then M∞(φ) is nondegenerate under Pµ for any µ ∈ MF(D).

2. If
∫
D
φ̃(y)l(y) dy = ∞ then M∞(φ) is degenerate for any µ ∈ MF(D).

The proof of this theorem is accomplished by combining the ideas from [14] with the
‘spine decomposition’ of [5]. The new feature here is that we consider a different branching
mechanism. The new branching mechanism considered here is essential. With this branching
mechanism, we can establish a strong (that is, almost-sure) version of the spine decomposition,
as opposed to the weak (that is, in distribution) version in [5]. The reason is that the branching
mechanism we consider here results in discrete immigration points, as opposed to the quadratic
branching case where immigration is continuous in time.

In the next section we first give a spine decomposition of the superdiffusion X under a
martingale change of measure with the help of Poisson point processes. Then, in Section 3 we
use this decomposition to give a proof of Theorem 1.1.

2. Decomposition of superdiffusions under the martingale change of measure

Let Ft = σ(Xs,D, s ≤ t). We define a probability measure P̃µ by the martingale change of
measure:

dP̃µ
dPµ

∣∣∣∣
Ft

= 1

〈φ,µ〉Mt(φ).

The purpose of this section is to give a spine decomposition of X under P̃µ.
The most important step in proving Theorem 1.1 is a decomposition of X under P̃µ. We

could decompose X under P̃µ as the sum of two independent measure-valued processes. The
first process is a copy of X under Pµ. The second process is, roughly speaking, obtained by
taking an ‘immortal particle’ that moves according to the law of Y under �φφµ and spins off
pieces of mass that continue to evolve according to the dynamics of X.

To give a rigorous description of this decomposition of X under P̃µ, let us first recall some
results on Poisson point processes. Let (S,S) be a measurable space. We will use M to denote
the family of σ -finite counting measures on (S,S) and B(M) to denote the smallest σ -field on
M with respect to which all ν ∈ M → ν(B) ∈ Z

+ ∪ {∞}, B ∈ S, are measurable. For any
σ -finite measure N̂ on S, we call an (M,B(M))-valued random variable ξ a Poisson random
measure with intensity N̂ if

(a) for each B ∈ S with N̂(B) < ∞, ξ(B) has a Poisson distribution with parameter N̂(B);

(b) for B1, . . . , Bn ∈ S disjoint, the variables ξ(B1), . . . , ξ(Bn) are independent.

Suppose that N̂ is a σ -finite measure on (0,∞) × S, if e = (e(t), t ≥ 0) is a process
taking values in S ∪ {ϒ}, where ϒ is an isolated additional point and e(0) = ϒ , such that the
random counting measure ξ = ∑

t≥0 δ(t,e(t)) is a Poisson random measure on (0,∞)× S with
intensity N̂ , then e is called a Poisson point process with compensator N̂ . If, for every t > 0,
N̂((0, t] × S) < ∞ then e can also be expressed as e = (((σi, ei), i = 1, . . . , Nt ), t ≥ 0),
where ei = e(σi) and Nt is a Poisson process with instant intensity N̂(dt × S). The following
proposition follows easily from [15, Proposition 19.5].

Proposition 2.1. Suppose that e = (e(t), t ≥ 0) is a Poisson point process with compen-
sator N̂ . Let f be a nonnegative Borel function on (S ∪ {ϒ}) × [0,∞) with f (ϒ, t) = 0 for
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all t > 0. If
∫
(0,t]

∫
S

|1 − e−f (x,s)|N̂(ds, dx) < ∞ for all t > 0 then

E

(
exp

{
−

∑
0≤s≤t

f (e(s), s)

})
= exp

{
−

∫ t

0

∫
S

(1 − e−f (x,s))N̂(ds, dx)

}
.

Moreover, if
∫ ∞

0

∫
S
f (s, x)N̂(ds, dx) < ∞ then

E

(∫ ∞

0

∫
S

f (x, s)N(ds, dx)

)
=

∫ ∞

0

∫
S

f (x, s)N̂(ds, dx). (2.1)

To give a formula for the one-dimensional distribution of the exit measure process under P̃µ,
we recall some results from [4] first.

According to [4], for any nonnegative bounded continuous function f : ∂t,D → R, we have

Pr,µ(exp〈−f,Xt,D〉) = exp〈−Ut(f )(r, ·), µ〉, (2.2)

where Ut(f ) denotes the unique nonnegative solution to

−∂U(s, x)
∂s

= LU + βU(s, x)− ψ(U(s, x)), x ∈ D, s ∈ (0, t),
U = f on ∂t,D.

(2.3)

More precisely, Ut(f ) satisfies the following integral equation:

Ut(f )(r, x)+�r,x

∫ t∧τr

r

[ψ(Ut(f ))(s, Ys)− β(Ys)U
t (f )(s, Ys)] ds

= �r,xf (t ∧ τr , Yt∧τr ), r ≤ t, x ∈ D, (2.4)

where τr = inf{t ≥ r : Xt /∈ D}. Since Y is a time-homogeneous process, we find that Xt,D

under Pr,µ has the same distribution as Xt−r,D under Pµ. The first moment of 〈f,Xt,D〉 is
given by

Pr,x〈f,Xt,D〉 = �r,x

(
f (t ∧ τr , Yt∧τr ) exp

{∫ t∧τr

r

β(Ys) ds

})
. (2.5)

Lemma 2.1. {Mt(φ), t ≥ 0} is a Pµ-martingale with respect to Ft .

Proof. It follows from the first moment formula (2.5) that

Pr,x〈φt ,Xt,D〉 = �r,x

(
φ(Yt ) exp

{∫ t

r

β(Ys) ds

}
, t < τr

)
= Pt−r φ(x) for r ≤ t, x ∈ D.

It is obvious that Pr,x〈φt ,Xt,D〉 = 0 for x ∈ ∂D. By the special Markov property ofX and the
invariance of φ under exp{−λ1t}Pt ,

Pµ(Mt(φ) | Fs) = exp{−λ1s} PXs,D (exp{−λ1(t − s)}〈φt ,Xt,D〉)
= exp{−λ1s}〈exp{−λ1(t − s)} Pt−s φ,Xs,D|D〉
= exp{−λ1s}〈φs,Xs,D〉
= Ms(φ) for s ≤ t,

where Xs,D|D is the restriction of the measure Xs,D on {s} ×D.
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Now we give a formula for the one-dimensional distribution of X under P̃µ.

Theorem 2.1. Suppose that µ is a finite measure on D and that g ∈ C+
b (∂

t,D). Then

P̃µ(exp〈−g,Xt,D〉) = Pµ(exp〈−g,Xt,D〉)
×�

φ
φµ

(
exp

{
−

∫ t∧τ

0
ψ ′(Ys, Ut (g)(s, Ys)) ds

})
, (2.6)

where Ut(g) is the unique solution of (2.3) or, equivalently, (2.4) with f replaced by g.

Proof. This theorem can be proved using the same argument as that given in [5] to obtain
Theorem 5 therein, with some obvious modifications. We omit the details.

From (2.6) we can see that the superprocess (Xt,D, P̃µ) can be decomposed into two inde-
pendent parts in the sense of distributions. The first part is a copy of the original superprocess
and the second part is an immigration process. To explain the second part more precisely, we
need to introduce another measure-valued process (X̂t ). Now we construct the measure-valued
process (X̂t ) as follows.

(a) Suppose that Ỹ = (Ỹt , t ≥ 0) is defined on some probability space (�,Pµ,φ) and that
Ỹ = (Ỹt , t ≥ 0) has the same law as (Y,�φφµ). Here Ỹ serves as the spine or the immortal
particle, which visits every part of D for large times since it is an ergodic diffusion.

(b) Suppose thatm = {mt, t ≥ 0} is a point process taking values in (0,∞)∪{ϒ} such that,
conditional on σ(Ỹt , t ≥ 0),m is a Poisson point process with intensity rn(Ỹt , dr). Now
(0,∞) is the ‘space of mass’ andmt = ϒ simply means that there is no immigration at t .
We suppose that {mt, t ≥ 0} is also defined on (�,Pµ,φ). Set Dm = {t : mt(ω) �= ϒ}.
Note that Dm is almost surely (a.s.) countable. The processm describes the immigration
mechanism: along the path of Ỹ , at the moment t ∈ Dm, a particle with mass mt is
immigrated into the system at the position Ỹt .

(c) Once the particles are in the system, they begin to move and branch according to a
(Y, ψ(λ)− βλ)-superprocess independently.

We use (Xσt , t ≥ σ) to denote the measure-valued process generated by the mass immigrated
at time σ and position Ỹσ . Conditional on {Ỹt , mt , t ≥ 0}, {Xσ , σ ∈ Dm} are independent
(Y, ψ−βλ)-superprocesses. The birth time ofXσ is σ and the initial value ofXσ ismσδỸσ . Set

X̂t,D =
∑

σ∈(0,t]∩Dm

Xσ,(t,D),

where, for each σ ∈ Dm, Xσ,(t,D) is the exit measure of the superprocess Xσ from [0, t)×D.
The Laplace functional of X̂t,D is described in the following proposition.

Proposition 2.2. The Laplace functional of X̂t,D under Pµ,φ is

�
φ
φµ

(
exp

{
−

∫ t

0
ψ ′(Ys, Ut (g)(Ys, s)) ds

})
.
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Proof. For any g ∈ C+
b (∂

t,D), using (2.2), we have

Pµ,φ(exp{−〈g, X̂t,D〉}) = Pµ,φ

(
Pµ,φ

(
exp

{
−

∑
σ∈(0,t]∩Dm

〈g,Xσ,(t,D)〉
} ∣∣∣∣ Ỹ , σ,m))

= Pµ,φ

( ∏
σ∈(0,t]∩Dm

exp{−mσUt(g)(Ỹσ , σ )}
)

= Pµ,φ

(
Pµ,φ

(
exp

{
−

∑
σ∈[0,t]∩Dm

mσU
t (g)(Ỹσ , σ )

} ∣∣∣∣ Ỹ))
.

Using Proposition 2.1, we obtain

Pµ,φ(exp{−〈g, X̂t,D〉})
= �

φ
φµ exp

{
−

∫ t

0

∫ ∞

0
(1 − exp{−rUt (g)(Ys, s)})rn(Ys, dr) ds

}
= �

φ
φµ

(
exp

{
−

∫ t

0
ψ ′(Ys, Ut (g)(s, Ys)) ds

})
.

Without loss of generality, we suppose that (Xt , t ≥ 0; Pµ,φ) is a superdiffusion defined on
(�,Pµ,φ), equivalent to (Xt , t ≥ 0; Pµ) and independent of X̂. Proposition 2.2 says that we
have the following decomposition of Xt,D under P̃µ: for any t > 0,

(Xt,D, P̃µ) = (Xt,D + X̂t,D,Pµ,φ) in distribution, (2.7)

where Xt,D is the exit measure of X from [0, t) × D. Since (Xt , t ≥ 0; P̃µ) is generated
from the time-homogeneous Markov process (Xt , t ≥ 0; Pµ) via a nonnegative martingale
multiplicative functional, (Xt , t ≥ 0; P̃µ) is also a time-homogeneous Markov process (see [17,
Section 62]). From the construction of (X̂t,D, t ≥ 0; Pµ,φ) we see that (X̂t,D, t ≥ 0; Pµ,φ)
is a time-homogeneous Markov process. For a rigorous proof of (X̂t,D, t ≥ 0; Pµ,φ) being
a time-homogeneous Markov process, we refer the reader to [6]. Although [6] dealt with the
representation of the superprocess conditioned to stay alive forever, we can check that the
arguments there work in our case. Therefore, (2.7) implies that

(Xt,D, t ≥ 0; P̃µ) = (Xt,D + X̂t,D, t ≥ 0; Pµ,φ) in distribution.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need some preparations. The following elementary result is taken
from [3].

Lemma 3.1. ([3, Exercise 1.3.8].) Let Y ≥ 0 with E(Y ) < ∞, and let 0 ≤ a < E(Y ). Then

P(Y > a) ≥ (E(Y )− a)2

E(Y 2)
.

Proposition 3.1. Set h(x) = Pδx (M∞(φ))/φ(x).

1. h is nonnegative and invariant for the process (YD,�φx ).

2. Either M∞ is nondegenerate under Pµ for all µ ∈ MF(D) or M∞ is degenerate under
Pµ for all µ ∈ MF(D).
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Proof. 1. Since φt (·, u) = φ(·) for each u ∈ [0, t] and φ is identically 0 on ∂D, we have,
by the special Markov property of X,

h(x) = 1

φ(x)
Pδx

(
lim
s→∞〈exp{−λ1(t + s)}φt+s , Xt+s,D〉

)
= exp{−λ1t}

φ(x)
Pδx

(
PXt,D

(
lim
s→∞〈exp{−λ1s}φs,Xs,D〉

))
= exp{−λ1t}

φ(x)
Pδx (PXt,D (M∞))

= exp{−λ1t}
φ(x)

Pδx (〈(hφ)t , Xt,D〉)

= exp{−λ1t}
φ(x)

�x

(
exp

{∫ t

0
β(Ys) ds

}
(hφ)(Yt ), t < τ

)
= 1

φ(x)
�x

(
exp

{∫ t∧τ

0
(β − λ1)(Ys) ds

}
(hφ)(YDt )

)
, x ∈ D.

By the definition of �φx we obtain h(x) = �
φ
x (h(Y

D
t )). So, h is an invariant function of the

process (YD,�φx ). The nonnegativity of h is obvious.

2. Sinceh is nonnegative and invariant, if there exists an x0 ∈ D such thath(x0) = 0, thenh ≡ 0
on D. Since Pµ(M∞(φ)) = 〈hφ,µ〉, we then have Pµ(M∞(φ)) = 0 for any µ ∈ MF(D). If
h > 0 on D then Pµ(M∞(φ)) > 0 for any µ ∈ MF(D).

Using Proposition 3.1, we see that, to prove Theorem 1.1, we only need to consider the
case µ(dx) = φ̃(x) dx. So, in the remaining part of this paper we will always suppose that
µ(dx) = φ̃(x) dx.

Lemma 3.2. Let (mt , t ≥ 0) be the Poisson point process constructed in Section 2. Define

σ0 = 0, σi = inf{s ∈ Dm : s > σi−1, msφ(Ỹs) > 1}, ηi = mσi , i = 1, 2, . . . .

If
∫
D
φ̃(y)l(y) dy < ∞ then∑

s∈Dm

exp{−λ1s}msφ(Ỹs) < ∞ Pµ,φ -a.s.

If
∫
D
φ̃(y)l(y) dy = ∞ then

lim sup
i→∞

exp{−λ1σi}ηiφ(Ỹσi ) = ∞ Pµ,φ -a.s.

Proof. Since φ is bounded from above, σi is strictly increasing with respect to i. We first
prove that if

∫
D
φ̃(y)l(y) dy < ∞ then∑

s∈Dm

exp{−λ1s}msφ(Ỹs) < ∞ Pµ,φ -a.s.
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For any ε > 0, we write the sum above as∑
s∈Dm

exp{−λ1s}msφ(Ỹs)

=
∑
s∈Dm

exp{−λ1s}msφ(Ỹs) 1{φ(Ỹs )ms≤eεs } +
∑
s∈Dm

exp{−λ1s}msφ(Ỹs) 1{msφ(Ỹs )>eεs }

=
∑
s∈Dm

exp{−λ1s}msφ(Ỹs) 1{φ(Ỹs )ms≤eεs } +
∞∑
i=1

exp{−λ1σi}ηiφ(Ỹσi ) 1{ηiφ(Ỹσi )>exp{εσi }}

=: I + II. (3.1)

By (2.1) we have
∞∑
i=1

Pµ,φ(ηiφ(Ỹσi ) > exp{εσi}) =
∞∑
i=1

Pµ,φ(Pµ,φ(ηiφ(Ỹσi ) > exp{εσi} | σ(Ỹ )))

= Pµ,φ

(
Pµ,φ

( ∞∑
i=1

1{ηi>exp{εσi }φ(Ỹσi )−1}
∣∣∣∣ σ(Ỹ )))

= �
φ
φµ

(∫ ∞

0

(∫ ∞

φ(Ys)−1eεs
rn(Ys, dr)

)
ds

)
.

Recall that, under �φφµ, Y starts at the invariant measure φ(x)µ(dx) = φ(x)φ̃(x) dx. So we
have

∞∑
i=1

Pµ,φ(ηiφ(Ỹσi ) > exp{εσi}) =
∫ ∞

0
ds

∫
D

dyφ(y)φ̃(y)
∫ ∞

φ(y)−1eεs
rn(y, dr)

=
∫
D

φ(y)φ̃(y) dy
∫ ∞

φ(y)−1
rn(y, dr)

∫ ln(rφ(y))/ε

0
ds

= ε−1
∫
D

φ̃(y)l(y) dy.

By the assumption that
∫
D
φ̃(y)l(y) dy < ∞ and the Borel–Cantelli lemma, we obtain

Pµ,φ(ηiφ(Ỹσi ) > exp{εσi} infinitely often) = 0 for all ε > 0,

which implies that
II < ∞ Pµ,φ -a.s. (3.2)

Meanwhile, for ε < λ1,

Pµ,φ I = Pµ,φ

( ∑
s∈Dm

exp{−λ1s}msφ(Ỹs) 1{ms≤eεsφ(Ỹs )−1}
)

= �
φ
φµ

∫ ∞

0
dt exp{−λ1t}

∫ φ(Yt )
−1eεt

0
φ(Yt )r

2n(Yt , dr)

≤ ‖φ‖∞�φφµ
∫ ∞

0
dt exp{−λ1t}

∫ 1

0
r2n(Yt , dr)

+�
φ
φµ

∫ ∞

0
dt exp{−(λ1 − ε)t}

∫ ∞

1
rn(Yt , dr),
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where for the second term of the last inequality we used the fact that r ≤ φ(Yt )
−1eεt implies that

rφ(Yt ) ≤ eεt . By the assumption that supx∈D
∫ ∞

0 (r ∧ r2)n(x, dr) < ∞ we have Pµ,φ I < ∞,
which implies that

I < ∞ Pµ,φ -a.s. (3.3)

Combining (3.1), (3.2), and (3.3), we see that
∑
s∈Dm

exp{−λ1s}msφ(Ỹs) < ∞,Pµ,φ -a.s.
Next we prove that if

∫
D
φ̃(y)l(y) dy = ∞ then

lim sup
i→∞

exp{−λ1σi}ηiφ(Ỹσi ) = ∞ Pµ,φ -a.s.

It suffices to prove that, for any K > 0,

lim sup
i→∞

exp{−λ1σi}ηiφ(Ỹσi ) > K Pµ,φ -a.s. (3.4)

Set K0 := 1 ∨ (maxx∈D φ(x)). Then, for K ≥ K0,

K inf
x∈D φ(x)

−1 ≥ 1.

Note that, for any T ∈ (0,∞), conditional on σ(Ỹ ),

�{i : σi ∈ (0, T ]; ηi > Kφ(Ỹσi )
−1 exp{λ1σi}}

is a Poisson random variable with parameter
∫ T

0 dt
∫ ∞
Kφ(Ỹt )−1 exp{λ1t} rn(Ỹt , dr) a.s. Since

(Ỹ ,Pµ,φ) has the same distribution as (Y,�φµφ), we have

Pµ,φ

∫ T

0
dt

∫ ∞

Kφ(Ỹt )−1 exp{λ1t}
rn(Ỹt , dr)

=
∫ T

0
dt

∫
D

dyφ(y)φ̃(y)
∫ ∞

Kφ(y)−1 exp{λ1t}
rn(y, dr)

< ∞;
thus, ∫ T

0
dt

∫ ∞

Kφ(Ỹt )−1 exp{λ1t}
rn(Ỹt , dr) < ∞ Pµ,φ -a.s.

Consequently, we have

�{i : σi ∈ (0, T ]; ηi > Kφ(Ỹσi )
−1 exp{λ1σi}} < ∞ Pµ,φ -a.s.

So, to prove (3.4), we need to prove that∫ ∞

0
dt

∫ ∞

Kφ(Ỹt )−1 exp{λ1t}
rn(Ỹt , dr) = ∞ Pµ,φ -a.s.,

which is equivalent to∫ ∞

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr) = ∞ �

φ
φµ-a.s. (3.5)
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For this purpose, we first prove that

�
φ
φµ

(∫ ∞

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

)
= ∞. (3.6)

Applying Fubini’s theorem, we obtain

�
φ
φµ

(∫ ∞

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

)
=

∫
D

φ(y)φ̃(y) dy
∫ ∞

0
dt

∫ ∞

Kφ(y)−1 exp{λ1t}
rn(y, dr)

=
∫
D

φ(y)φ̃(y) dy
∫ ∞

Kφ(y)−1
rn(y, dr)

∫ (1/λ1) ln(rφ(y)/K)

0
dt

= 1

λ1

∫
D

φ(y)φ̃(y) dy
∫ ∞

Kφ(y)−1
(ln[rφ(y)] − lnK)rn(y, dr)

≥ 1

λ1

∫
D

φ(y)φ̃(y) dy

(∫ ∞

Kφ(y)−1
r ln[rφ(y)]n(y, dr)− A

)
= 1

λ1

∫
D

φ̃(y) dy
∫ ∞

K

r ln rnφ(y, dr)− A

λ1

∫
D

φ̃(y)φ(y) dy

for some positive constant A, where in the inequality we used the facts that Kφ(y)−1 > 1 for
any y ∈ D and supy∈D

∫ ∞
1 rn(y, dr) < ∞. Since∫

D

φ̃(y) dy
∫ ∞

1
r ln r nφ(y, dr) = ∞

and ∫
D

φ̃(y) dy
∫ K

1
r ln rnφ(y, dr) ≤ K logK

∫
D

φ̃(y)n(y, [‖φ‖−1∞ ,∞)) dy < ∞,

we obtain ∫
D

φ̃(y) dy
∫ ∞

K

r ln rnφ(y, dr) = ∞,

and, therefore, (3.6) holds.
By (1.1), there exists a constant c > 0 such that, for any t > c and any f ∈ L∞+ (D),

1

2

∫
D

φ(y)φ̃(y)f (y) dy ≤
∫
D

pφ(t, x, y)f (y) dy ≤ 2
∫
D

φ(y)φ̃(y)f (y) dy, x ∈ D.
(3.7)

For T > c, we define

ξT =
∫ T

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr), AT =

∫ T

c

dt
∫
D

φ̃(y) dy
∫ ∞

K exp{λ1t}
rnφ(y, dr).

Our goal is to prove (3.5), which is equivalent to

ξ∞ :=
∫ ∞

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr) = ∞ �

φ
φµ-a.s.
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Since {ξ∞ = ∞} is an invariant event, by the ergodic property of Y under�φφµ, it is enough to
prove that

�
φ
φµ(ξ∞ = ∞) > 0. (3.8)

Note that

�
φ
φµξT =

∫ T

0
dt

∫
D

φ̃(y) dy
∫ ∞

K exp{λ1t}
rnφ(y, dr) ≥ AT (3.9)

and
lim
T→∞�

φ
φµξT ≥ A∞

=
∫ ∞

c

dt
∫
D

φ̃(y) dy
∫ ∞

K exp{λ1t}
rnφ(y, dr)

=
∫
D

φ̃(y) dy
∫ ∞

K exp{λ1c}

(
1

λ1
(log r − logK)− c

)
rnφ(y, dr)

≥ C

∫
D

φ̃(y)l(y) dy

= ∞, (3.10)

where C is a positive constant. By Lemma 3.1,

�
φ
φµ

(
ξT ≥ 1

2
�
φ
φµξT

)
≥ (�

φ
φµξT )

2

4�φφµ(ξ
2
T )
. (3.11)

If we can prove that there exists a constant Ĉ > 0 such that, for all T > c,

(�
φ
φµξT )

2

4�φφµ(ξ
2
T )

≥ Ĉ, (3.12)

then by (3.11) we would obtain

�
φ
φµ

(
ξT ≥ 1

2�
φ
φµξT

) ≥ Ĉ,

and, therefore,

�
φ
φµ

(
ξ∞ ≥ 1

2�
φ
φµξT

) ≥ �
φ
φµ

(
ξT ≥ 1

2�
φ
φµξT

) ≥ Ĉ > 0.

Since limT→∞�
φ
φµξT = ∞ (see (3.10)), the above inequality implies (3.8). Now we only

need to prove (3.12). For this purpose, we first estimate �φφµ(ξ
2
T ):

�
φ
φµξ

2
T = �

φ
φµ

∫ T

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

∫ T

0
ds

∫ ∞

Kφ(Ys)−1 exp{λ1s}
un(Ys, du)

= 2�φφµ

∫ T

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

∫ T

t

ds
∫ ∞

Kφ(Ys)−1 exp{λ1s}
un(Ys, du)

= 2�φφµ

∫ T

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

∫ (t+c)∧T

t

ds
∫ ∞

Kφ(Ys)−1 exp{λ1s}
un(Ys, du)

+ 2�φφµ

∫ T

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

∫ T

(t+c)∧T
ds

∫ ∞

Kφ(Ys)−1 exp{λ1s}
un(Ys, du)

= III + IV ,
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where

III = 2�φφµ

∫ T

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

∫ (t+c)∧T

t

ds
∫ ∞

Kφ(Ys)−1 exp{λ1s}
un(Ys, du)

and

IV = 2�φφµ

∫ T

0
dt

∫ ∞

Kφ(Yt )−1 exp{λ1t}
rn(Yt , dr)

∫ T

(t+c)∧T
ds

∫ ∞

Kφ(Ys)−1 exp{λ1s}
un(Ys, du)

= 2
∫ T

0
dt

∫
D

φ(y)φ̃(y) dy
∫ ∞

Kφ(y)−1 exp{λ1t}
rn(y, dr)

×
∫ T

(t+c)∧T
ds

∫
D

pφ(s − t, y, z) dz
∫ ∞

Kφ(z)−1 exp{λ1s}
un(z, du).

By our assumption on the kernel nwe have ‖ ∫ ∞
1 rn(·, dr)‖∞ < ∞. SinceK infx∈B φ(x)−1 ≥

1, we have
III ≤ C1�

φ
φµξT

for some positive constant C1 which does not depend on T . Using (3.7) and the definition of
nφ , we obtain∫ T

(t+c)∧T
ds

∫
D

pφ(s − t, y, z) dz
∫ ∞

Kφ(z)−1 exp{λ1s}
un(z, du)

≤ 2
∫ T

(t+c)∧T
ds

∫
D

φ(z)φ̃(z) dz
∫ ∞

Kφ(z)−1 exp{λ1s}
un(z, du)

≤ 2
∫ T

c

ds
∫
D

φ̃(z) dz
∫ ∞

0
(φ(z)u) 1{φ(z)u>k exp{λ1s}} n(z, du)

= 2
∫ T

c

ds
∫
D

φ̃(z) dz
∫ ∞

k exp{λ1s}
rnφ(z, dr)

= 2AT .

Then, using (3.9), we have

IV ≤ 4AT�
φ
φµξT ≤ 4(�φφµξT )

2.

Combining the above estimates for III and IV , we find that there exists a C2 > 0 independent
of T such that, for T > c,

�
φ
φµ(ξ

2
T ) ≤ 4(�φφµξT )

2 + C1�
φ
φµξT ≤ C2(�

φ
φµξT )

2.

Then we have (3.12) with Ĉ = 1/C2, and the proof of the theorem is now complete.

Definition 3.1. Suppose that (�,F ,P) is a probability space, that {Ft , t ≥ 0} is a filtration
on (�,F ), and that G is a sub-σ -field of F . A real-valued process Ut on (�,F ,P) is called
a P(· | G)-martingale with respect to {Ft , t ≥ 0} if

(i) it is adapted to {Ft ∨ G, t ≥ 0};
(ii) for any t ≥ 0,E(|Ut | | G) < ∞; and
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(iii) for any t > s,

E(Ut | Fs ∨ G) = Us a.s.

We say that Ut on (�,F ,P) is a P(· | G)-submartingale or a P(· | G)-supermartingale with
respect to {Ft , t ≥ 0} if, in addition to (i) and (ii), for any t > s,

E(Ut | Fs ∨ G) ≥ Us a.s.

or, respectively,
E(Ut | Fs ∨ G) ≤ Us a.s.

The following result is a folklore. Since we could not find a reference for this result, we
provide a proof for completeness.

Lemma 3.3. Suppose that (�,F ,P) is a probability space, that {Ft , t ≥ 0} is a filtration
on (�,F ), and that G is a σ -field of F . If Ut is a P(· | G)-submartingale with respect to
{Ft , t ≥ 0} satisfying

sup
t≥0

E(|Ut | | G) < ∞ a.s., (3.13)

then there exists a finite random variable U∞ such that Ut converges a.s. to U∞.

Proof. By Definition 3.1, Ut is a submartingale with respect to {Ft ∨ G, t ≥ 0}. Let
�n = {supt≥0 E(|Ut | | G) ≤ n}. Assumption (3.13) implies that P(�n) ↑ 1. Note that, for
each fixed n, 1�n Ut is a submartingale with respect to {Ft ∨ G, t ≥ 0} with

sup
t≥0

E(1�n |Ut |) = sup
t≥0

E(E(1�n |Ut | | G))

= sup
t≥0

E(1�n E(|Ut | | G))

≤ E
(

sup
t≥0

E(|Ut | | G);�n
)

< ∞.

The martingale convergence theorem says that there exists a finite random variableU∞ defined
on �n such that Ut converges to U∞ on �n as t → ∞. Therefore, there exists a finite U∞ on
the whole space � such that Ut converges to U∞ a.s.

The next result is basically [3, Theorem 4.3.3].

Lemma 3.4. Suppose that (�,F ) is a measurable space and that (Ft )t≥0 is a filtration on
(�,F ) with Ft ↑ F . If P and Q are two probability measures on (�,F ) such that, for some
nonnegative P-martingale Zt with respect to (Ft )t≥0,

dQ

dP

∣∣∣∣
Ft

= Zt .

Then the limit Z∞ := lim supt→∞ Zt exists and is finite a.s. under P. Furthermore, for any
F ∈ F ,

Q(F ) =
∫
F

Z∞ dP + Q(F ∩ {Z∞ = ∞}),
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and, consequently,
P(Z∞ = 0) = 1 ⇐⇒ Q(Z∞ = ∞) = 1,∫

�

Z∞ dP =
∫
�

Z0 dP ⇐⇒ Q(Z∞ < ∞) = 1.

Proof of Theorem 1.1. We first prove that if
∫
D
φ̃(y)l(y) dy < ∞ thenM∞ is nondegenerate

under Pµ. Since M−1
t (φ) is a positive supermartingale under P̃µ, Mt(φ) converges to some

nonnegative random variable M∞(φ) ∈ (0, ∞] under P̃µ. By Lemma 3.4, we only need to
prove that

P̃µ(M∞(φ) < ∞) = 1. (3.14)

By (2.7), (Xt,D, P̃µ) has the same law as (Xt,D + X̂t,D,Pµ,φ), where Xt,D is the first exit
measure of the superprocess X from (0, t)×D and X̂t,D = ∑

σ∈(0,t]∩Dm
Xσ,(t,D). Define

Wt(φ) :=
∑

σ∈(0,t]∩Dm

〈φt ,Xσ,(t,D)〉 exp{−λ1t}.

Then,

(Mt(φ), t ≥ 0; P̃µ) = (Mt(φ)+Wt(φ), t ≥ 0; Pµ,φ) in distribution, (3.15)

where {Mt(φ), t ≥ 0} is copy of the martingale defined in (1.2) and is independent of Wt(φ).
Let G be the σ -field generated by {Ỹt , mt , t ≥ 0}. Then, conditional on G, (Xσt , t ≥ σ ; Pµ,φ)
has the same distribution as (Xt−σ , t ≥ σ ; Pmσ δỸσ ) and the (Xσt , t ≥ σ ; Pµ,φ) are independent
for σ ∈ Dm. Then we have

Wt(φ)
d=

∑
σ∈(0,t]∩Dm

exp{−λ1σ }Mσ
t−σ (φ), (3.16)

where, for each σ ∈ Dm, Mσ
t (φ) is a copy of the martingale defined by (1.2) with µ = mσδỸσ

and, conditional on G, the {Mσ
t (φ), σ ∈ Dm} are independent. Here ‘

d=’ denotes equality in
distribution. To prove (3.14), by (3.15), it suffices to show that

Pµ,φ
(

lim
t→∞[Mt(φ)+Wt(φ)] < ∞

)
= 1.

Since (Mt(φ), t ≥ 0) is a nonnegative martingale under the probability Pµ,φ , it converges
Pµ,φ-a.s. to a finite random variable M∞(φ) as t → ∞. So we only need to prove that

Pµ,φ
(

lim
t→∞Wt(φ) < ∞

)
= 1. (3.17)

Define Ht := G ∨ σ(Xσ,(s−σ,B); σ ∈ [0, t] ∩ Dm, s ∈ [σ, t]). Then (Wt (φ)) is a Pµ,φ(· | G)-
nonnegative submartingale with respect to (Ht ). By (3.16) and Lemma 3.2,

sup
t≥0

Pµ,φ(Wt(φ) | G) = sup
t≥0

∑
s∈[0, t]∩Dm

exp{−λ1s}msφ(Ỹs)

≤
∑
s∈Dm

exp{−λ1s}msφ(Ỹs)

< ∞ Pµ,φ -a.s.
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Then, by Lemma 3.3, Wt(φ) converges Pµ,φ-a.s. to W∞(φ) as t → ∞ and Pµ,φ(W∞(φ) <
∞) = 1; therefore, (3.17) holds.

Now we turn to the proof of the second part of the theorem. Assume that
∫
D
φ̃(y)l(y) dy =

∞. We are going to prove that M∞(φ) := limt→∞Mt(φ) is degenerate with respect to Pµ.
By [7, Proposition 2], 1/Mt(φ) is a supermartingale under P̃µ, and, thus, 1/(Mt(φ)+Wt(φ))

is a nonnegative supermartingale under Pµ,φ . Recall that Mt(φ) is a nonnegative martingale
under Pµ,φ . Then the limits limt→∞Mt(φ) and 1/ limt→∞(Mt(φ)+Wt(φ)) exist and are
finite Pµ,φ-a.s. Therefore, limt→∞Wt(φ) exists in [0,∞] Pµ,φ-a.s. Recall the definition of
(ηi, σi, i = 1, 2, . . .) in Lemma 3.2, and note that limi→∞ σi = ∞. By Lemma 3.2,

lim sup
t→∞

Wt(φ) ≥ lim sup
i→∞

Wσi (φ) ≥ lim sup
i→∞

exp{−λ1σi}ηiφ(Ỹσi ) = ∞ Pµ,φ -a.s.

So we have
lim
t→∞Wt(φ) = ∞ Pµ,φ -a.s.

By (3.15),
P̃µ(M∞(φ) = ∞) = 1.

It follows from Lemma 3.4 that Pµ(M∞ = 0) = 1.

Remark 3.1. The argument of this paper actually works for general superprocesses. Our main
result remains valid for any general (Y, ψ(λ) − βλ)-superprocess with Y being a reasonable
Markov process such that Assumptions 1.1 and 1.2 are satisfied. For examples of discontinuous
Markov processes satisfying Assumption 1.2, we refer the reader to [11] and the references
therein.
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