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Abstract

Theory of the L-nmode confinement in tokamaks is developed
based on the microscopic ballooning instability which is destabi-
lized by the plasma transport below the critical pressure gra-
dient against the ideal MHD instability. The destabilization by
the current-diffusivity and the stabilization by the thernmal
transport and ion viscosity, are analyzed. The least stable mode
determines the anomalous transport coefficients. The formula of
the thermal transport coefficient is derived, which explains

pajor experimental observations on the L-mode confinement.
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The transport of the plasma across the magnetic field in
tokamaks is much faster than that by the Coulomb collision., It
has been known as the anomalous transportl). The L-mode confine-
ment, in which the energy confinement time Ty decreases as the
heating power P is increased, is observed in all tokamak52’3}.
The L-mode confinement is a generic nature of tokamak plasmas.
The database has been made on how 7y depends on the externally
controllable parameters, such as P and the plasma current Ips).
The radial profile of the effective thermal conductivity % (the
ratio of the energy flux per particle to the temperature gradient
V1) has been studied?). It has been confirmed that the micro-
scopic fluctuations play important roles for the anomalous trans-
port4), The ion viscosity is alsc enhanced and of the same
order of the electron and ion thermal conductivitiesS). Ohkawa’s
model, based on the fluctuations of the scale length of the col-
lisioniess skin depth 56)’ 1s one of the few which could explain
the large %-value near edge and at high temperature, but does not
fully explain the dependences of Tp. Theoretical development has
been made based on the mixing length estimateT), scale invariance
nethod?) or one/two point renormalization methodsg). These gave
identical results from the view point of the physics argumenth).
No theory has succeeded in explaining the radial shape of x and
the scaling tE[P,Ip,--°] simultaneouslyli). The understanding of
the L-mode confinement is far from satisfactory.

Hicroscopic modes grow in tokamaks extracting the free

energy source of the pressure gradient. The shear-stabilized

plasma can become unstable due to the fluctuation-driven trans-



port, and the analysis on the self-sustaining turbulence has been

412-18)

develope 4 podel of the subecritical turbulence of the

interchange mode was proposed to explain the anomalous transport

in helical plasmas15).

We apply this method to tokamaks. DBelow
the beta-limit of the ideal magnetohydrodynamic (¥HD) mode, the
nicroscopic ballooning mode can be unstable if there is the
plasma transport such as the current-diffusivity a. We find that
A destabilizes the mode while other transport coefficients, % and
the ion viscosity p, stabilize it. The unstable microscopic bal-
looning mode enhances the fransport coefficients A, % and p. If
the anomalous transport is enhanced much, then 1 and u stabilize
the mode. The transport coefficients are determined by the
parginal stability condition for the least stable mode. The
result on ¥ is compared to the experimental observations and
shows agreements.

We study the circular tokamak with the toroidal coordinates

(r,8,7). The reduced set o¢f equationsle)

is employed, The
current diffusivity is due to the electron viscosity and 1s kept
in the Ohm's law asl?) E+va=J/6-VEAJ (6 is the conductivity).
The equation of motion is given as nimi{dCV3¢)/dt-an¢}=BV%Jﬂ
+¥pxV(2rcos8/R) and the energy balance equation dp/dt=x?ﬁp is
employed, where my is the ion mass, n; 1is the ion density, ¢ is
the stream function, B is the main magaetic field, p is the
plasma pressure, and ] is the current.

The ballooning transformation is employed ag!®) $(r, 8, 8)=
Eexp(-ime+int)I¢(n)exp{imn—inqn}dn, (q is the safety factor)

since we are interested in the microscopic modes. The linearized



equaticn is reduced to the ordinary differential equation aslg)

d F dé¢ alxtcosmt(sn-asinn)sinnle
- - (T+MF)Fe = 0 (1)
dn T+IF+AF® d7 T+iF

#e use the normalizations r/a-r, t/pr#t. xrAp/azat, utAp/azﬁﬂ,
rAp/uodazai/G, ArAp/u0a4ex, prEa/HEHEEI/Bp' TtApaT. Notations:
§=n2q2/6, A-antqt, X=2n2q2, H=nu2q2, v is the growth rate,
s=r(dq/dr)/g, F=1+(s7-asinm?, k=-(r/R)(1-1/4%) (average well),
Bp=Br/qR, a=q23'/e, e=r/R, a and R are the major and minor radii,

8 is the pressure divided by the magnetic pressure, and

-

g’ =da/d(r/a). If we neglect %, % and 8, Eq.(1) is reduced to the
resistive ballooning equation. The ideal MHD mode equation is
recovered by further taking 1/8=0.

Since k is small but negative, the interchange mode is
stable and the ballooning mode is the most unstable. Egquation
(1) predicts that the current-diffusive ballooning mode has a
large growth rate. TWe take 1/6=0 for simplicity. (This is
appropriate as is shown at the end of this article.) The growth
rate of the short wave length mode, driven by the & term, is
first estimated by the Wentzel-Kramers-Brillouin (¥WKB) method by

neglecting ¢ and # terms. We have

dn / ————— /&{cosn-(sn-asinﬁ)sinn}-TZF (2)

J”c 1+AF2 /%
0 N F

where the kernel of the integral vanishes at =7, and the well




term k& is neglected. For the analytic insight, we take the short

wave length limit, A/®>>1, which yields /1/F+AF/¥=/AF/T. By
approxinating dF/dn=~2s/F, Bq.(2) is reduced to n/4=[/A/T/2s1Vof .
where F = F(%,). TWe also consider the case that the inertia term
determines 7m,, having the estimate F, =a/72. Using these
limiting approximations, the dispersion relation (2) is written

as n/4=[/h/?/281a3/2/72, or

Since the exponent to 7 is 1/5, even the very small current
diffusivity gives rise to the ballooning instability. The condi-
tion A/T>>] requires xtehed/ /s

This large growth rate is confirmed for a wide range of

parameters by the numerical calculationlg).

Figure 1 illustrates
o vs * and % vs T, keeping A/t and %/ constant. The analytic
estimation for small % is confirmed. As the tramsport coeffi-
cients are increased much, the stabilizing effects by © and &
overcome the destabilizing effect of Z.

The stability boundary is derived. Setting =0 in Eq. (1),
we have the eigenvalue eguation, which determines the relation
between ¢, % and . VWe here study the case that the ballooning
gode is destabilized by the normal curvature, not by the geodesic
curvature, i.e., 1/2te>s. For the strongly localized mode,

szn2<1 and n2<1, this eigenvalue equation is approximated by the

Veber type equation as



d?e/dn? +(arnle?/1)(1-(1/2+a-5)7%) atnlel(1+3s292)-0,  (4)

and we have the stability boundary as

«8/22273/20 12 | 201 §4y 21 01a-5)+35208)  (5)

where N is the normalized mode number N=nq(tﬂ/a)1/4. This result
is confirmed by the numerical computation as is shown in Fig. 2.
It is shown that, when (%, X, Q) increase, the mode is
stabilized by the enhanced transport coefficient. The stabili-
zation is possible when both ¢ and A are finite. The lower
boundary of o for the stability is calculated by obtaining the
pinimum of the RES of Eq.(5). When N 2 and the term in { ]
determines the minimum, it is estimated as /Bs (neglecting a-s
for the simplicity). 1In the limit s=0, the minimum is given as
25/5/82. V¥e have the stability limit of & for the least stable

mode as

a3/2 - tes)/med/es !, (6)

where f(s)~/fs or 1.7 (s20).

Based on the stability analysis, we can derive the formula
for the anomalous transport coefficient. W¥hen the mode amplitude
and the associated transport coefficients are small, Eq.(l) gives
the instability. In the self-sustained state, the enhanced
transport coefficients satisfy Eq, (6) for the given pressure

gradient « This state is thermodinamically stable: The excess



growth of the mode and enhanced transport coefficients lead to
the damping of the mode. When the mode amplitude and transport
coefficients are small, the mode continues to grow until Eq. (6)
is satisfied.

From Eq.(8) 7 is expressed in terms of the Prandtl numbers
i/t and x/2. (Note that the current-diffusivity X is originated

from the electron viscositle).) We have
t = o8/ 2(2/2)/270/ (). (7)

In enhancing (X, 8, %) by fluctuations, the ratio A/% and A/% are
given to be constant. The relations I/Rmﬁzlaz and /2% =1 hold
for electrostatic perturbationsl7’20). The formula of % is

obtained in an explicit form as
x = £(s) 1a2(rp' /r)%/ 252y, /R. (8)

We here note that the usual method for the estimation of % by
T/k2 for the most unstable mode gives the same results as 2~
a3/2(6/2)2,

This form of % is consistent with experimental results known
for the L-mode. In the following, we compare the theoretical
prediction to observations by choosing Ri=Dg and Ti=Te.

(i) The dimensional dependence of % is (11 -9/0270812. (ii)
Not the local beta value but the gradient of 8 generates % so

that the density and g profiles governs the radial profile of x.

Equation (8) indicates that x increases towards the edge for the



usual plasma profiles in the L-mode. Experiments on % is
reported that Xme‘ys'z with 1<y<2 and 0<z<121), which is consis-
tent with Eq. (6). {(1ii) The point model argument of the energy

balance, rE=a2/x and 232a28n8T=rEP, provides the scaling law
rE = C a04—RI2Ip08})'0.6A0.5f“0.4{neﬂp/ﬁ}0.6’ (g)

where C is a numerical coefficient, A is the ion mass number, and
L is the gradient scale length (nT)/|V(nT)|. This result is
consistent with the L-mode scaling law, including the dependences

on a, R, I P and favourable dependences on the ion mass and

p’
magnetic sheara'zz). Slight difference is seen in the the final
tern in the parenthesis { )}, which is discussed later. (iv) T (r)
profile is predicted from Eq.(6). The peaking parameter, T(at
g=1)/<T>, only weakly depends on the location of the peak of the
power deposition, but depends strongly on q(a)lg). This explains
the “profile resilience’. (v) Since x={V(nT)/n)!-®, the therpal
diffusion coefficient deduced from the pulse propagation, tpp, 1is
larger thamn that evaluated by the power balance z. If |Vn;/n; |
<<|V¥T/T| holds, for the simplicity, we have pyp=2.5%. (vi) The

typical perpendicular wave number of the most unstable mode

satisfies
k, 6 = 1//a (10D

It should be noticed that though the dimensional relation ko

[B1/[/T] holds, k, does not scale with the local gyroradius. The




collisionless skin depth is the more relevant length. The corre-
lation time 7, is estimated as 1/v~/Bs/ary,. (vii) The estigation
T/p ~ l/k_;_!lp shows that the mode amplitude is larger near edge

and larger for the high heating power.

In summary, we developed the stability theory of the micro-
scopic ballooning mode in tokamaks under the influence of the
anomalous transport coefficients %, A and w. It is found that
this mode is unstable when the transport is small and finite, but
can be stabilized by the thermal transport and ion viscosity.

The stability boundary is obtained, and the transport coeffi-
cients are derived. The important role of the collisionless skin
depth, pointed out in Ohkawa’s model, is confirmed: the consis-
tent calculation for stability gives the further explicit depen-
dence on 8 and the geometrical factor. The form of x is
compared with experiments. Major part of the observations on L-
node can be explained by this model simultaneously.

Since 1 is dimensionally independent of the demsity, 7
derived in Eq. (9) includes the density dependence (see, e.g.,
[23]). However, the density dependence is offset by the gradient
scale length. In L-mode plasmas, the density gradient profile is
often steeper than the temperature near edge, and L in Eq. (92
would be replaced by ln=|ni/Vni|. The high density plasma has
more steeper edge density profile; Tsuji found that n (0)/m -1 is
a decreasing fumction of n, and f,n, is an weak function of the

24)_ For some dataset of JT-60, Takizuka reportedZS) the

0.5
e

density
dependence as tE(thermal) ocht , suggesting that the classi-

fication of the dataset by the profile is necessary.



We here take various simplifications for the analytic
insight. The resistivity is neglected. The similar analysis can
be done for the resistive plasma to have the instability boundary
a=18/2. The resistive modes?8) give higher stability limit of &
than the current diffusive modes if &z!/3> (z/2)2/3 holds. This
condition is usually satisfied and supports the simplification.
Other extension is necessary for the case that the mode is driven
by the geodesic curvature. For such a case, the results in this
article are also confirmed, and will be reported elsewherelg).

The present result (9) is obtained except for the numerical
factor. Nonlinear simulation would give this coefficient and
examine the validity of the ansatz of % that the transport
coefficients affecting the microscopic mode is equated to that
for the global quantity. Also necessary is the study of the
effects such as the diamagnetic drift for kinetic corrections.

These research are open for future study.

Authors would like to acknowledge useful discussions with
Drs. T. Takizuka, S. Tsuji and K. Ida. This work is partly
supported by the Grant-in-Aid for Scientific Research of Ministry
of Education Japan and collaboration program between universities

and JAERI on fusion,.
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Figure Captions

Fig.1 (a) Growth rate of the current-diffusive ballooning mode
as a function of « for various values of X. Dashed line
shows the ideal MHD 1imit., (b) Growih rate as a function of
X for g=0.8%. Parameters are: s=0.4, £2/%=1000, a=%, g=3,
r/4,=0.6, &=1/8, 1=30, and 1/8=0,

Fig.?2 Stability boundary as a function of the mode number n.
Solid line indicates the analytic formula (5), and dashed
line is obtained by the numerical calculation. Parameters
are s-0.4, =1.7Tx10 °, £/A-1000, A=%, q=3, r/8,=0.8, e=1/8,
and 1/8=0.
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