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L-ORTHOGONAL SIGNAL TRANSMISSION AND DETECTION

By W. C. LINDSEY and M. K. SIMON

Summary. This paper investigates the detailed capabilities and per-
formance characterization of systems that employ L-orthogonal signaling
techniques. L-orthogonal signals represent a unified set of signals wherein
the polyphase and orthogonal (bi-orthogonal) signal sets are included as
special cases. This fact is important since orthogonal (bi-orthogonal) and
polyphase signaling sets represent opposing forces as far as tradeoffs
between error probability, energy-to-noise ratio, and bandwidth require-
ments are concerned. Bounds on the performance of the optimum receiver
and the performance of various suboptimum (practical) receiver structures
are given. Coherent and differentially coherent detection of differentially
encoded signals are also pursued. Various comparisons and tradeoffs are
made by means of numerical evaluation of the error probability expressions.

Introduction. With the high communication traffic density predicted
for future data transmission systems, it is important to investigate and
compare all possible modulation techniques that are practical for such
applications. In particular, one is interested in the tradeoff between the
bandwidth required to transmit the given signaling scheme and the error
probability performance of the associated receiver used for data detection.

Because of its desirable bandwidth properties, considerable attention
has been focussed on multiple phase-shift-keying (MPSK), i.e., the use of
polyphase signals for data transmission, as a suitable modulation technique.
In particular, quadriphase-shift-keying (QPSK) appears to be attractive
over binary PSK since it offers a 3-dB saving in bandwidth at no loss
in system bit error probability performance. Higher order phase-shift-
keyed modulation formats (Ref. 1) could be employed to give further reduc-
tion in bandwidth occupancy; however, the accompanying increase in error
probability for a given signal-to-noise ratio per bit now becomes signifi-
cant. Such a loss in performance would be incurred regardless of whether
coherent or differentially coherent detection is employed at the receiver.
The performance of these types of receivers using differential encoding of
the data for ambiguity resolution is given in Ref. 2. Also, the capabilities
of combined phase-shift-keyed and amplitude modulation have been investi-
gated (Ref. 3).
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Recognizing that polyphase signaling is basically an uncoded signal
transmission scheme, i.e., multilevel digital phase modulation of a known
carrier, one naturally asks about the performance benefits gained through
coding at the expense, of course, of an increase in bandwidth. In this con-
nection, the error probability performance of signaling sets based upon
orthogonal and bi-orthogonal codes has been extensively studied in the
literature (Refs. 4, 5).

Since orthogonal (bi-orthogonal) and polyphase signaling sets represent
opposing forces insofar as tradeoffs between performance and bandwidthare
concerned, one is motivated to study the performance capability of L-
orthogonal signals (Ref. 6) whose properties enable them to bridge the
merits of both of the former signaling schemes. Hence, a study of L-
orthogonal signal performance represents a unified approach wherein the
performance of polyphase and orthogonal (bi-orthogonal) signal sets stand
out as the extreme special cases. After a brief discussion of the L-
orthogonal signal model and its associated bandwidth properties, we begin
our discussion of system performance by presenting tight upper and lower
bounds on the error probability performance of the maximum-likelihood
receiver of L-orthogonal signals suggested by Reed and Scholtz (Ref. 6).
Because it is impractical to implement the maximum-likelihood receiver,
the performance (assuming perfect reference signals) of a practical sub-
optimum receiver (Ref. 7) is presented next and compared with the bounds
derived for the optimum receiver. Also included in our performance study
of the suboptimum receiver is its effectiveness in terms of coherent and
differentially coherent detection of differentially encoded signals. Finally,
we conclude with a study of the error probability performance of the sub-
optimum receiver in the presence of noisy reference signals. The results
presented in this paper are of interest to communication system engineers
faced with the problems of system design, comparison, and planning of
high capacity data transmission systems.

Signal Representation and Bandwidth Considerations. An L-orthogonal
signal set consists of N = ML equal energy (E = ST), equal duration (T)
signals {sj(t); i =1, 2,..., N} that can be subdivided into M subsets of L
signals each with the following properties:

(1) Any pair of signals not in the same subset are orthogonal.

(2) The B and jth signals of the same subset have a normalized
correlation (inner product).

T

}\..=1

i3 ST si(t} sj(t) dt = cos [2nli-jl/L]);i,j=1, 2,..., L (1)

0

Thus, the N X N correlation matrix Ay o for the entire set of N signals can
be partitioned so that it contains M (L X L) submatrices along its principal
diagonal each corresponding to the correlation matrix for L polyphase sig-
nals, and all other elements zero.



The construction of signal sets that possess these correlation properties
has been suggested by several authors (Refs. 6, 7). In all cases, the signals
can be expressed in the form

si(t) = \/g[xm(t) cos BE +ym(t} sinGE]; 0<ts=sT (2)
m=1, 2,...., M
= Ly ey La
i=(m-1)L+2¢
where Bﬂ = 2(0-1)n/L,
T T 1 k =n
%[ xk{t} xn{t] dt = %[ yk{t) yn(t} dt = (3)
8 0 0 k ;! n
and
T
L j x(t) y () dt = 0 allk andn (4)
0

In forming the cross-correlation between s;(t) and s;(t) where i = (m; - 1)
X L+£), j=(m2-1) L + £2 (m] # mp), the coefficient of the cross-correlation
between xml(t and ymz(t), or xmz(t) and le{t) depends on sin (BEI = BEZ) and
sin {BE +8f ). For L =1, or LL = 2 (corresponding to the cases of orthogonal
1 2
and bi-orthogonal signals respectively), 8 -B, and 6, + 6, are either
S SR>
zero or an integer multiple of w. Hence, regardless of the value of the
cross-correlation between x__ (t) and y__ (t), or x__ (t) and y__ (t), the
ey e e |

orthogonality of s;(t) and Sj{t) is satisfied since sin {BE - OE ) and
1 Z
sin {BE + B ) are both equal to zero. Thus, we conclude that the orthogo-
1 2
nality relationship of (4) for k ;( n is required only for L > 2.

In the literature, one can find many practical methods for generating
the orthogonal signal sets {xm(t)} and {y(t)}. In terms of demonstrating
how the bandwidth of the L-orthogonal signal set changes as L and M are
varied at fixed N, it is convenient to use the representation of {xl.n(t)} and
{ym(t)} corresponding to a set of M sinusoidal tones typical of those used
in MFSK signaling systems, i.e.,

xm(t} = \/Z_sin [ﬂi}@_ﬂ L=1,2
m: = Ly T



and

T

\/Z_cos [n’( k;Zm)t:’

xm(t} = \/Z_Sin [M] L > 2

M 5 L Blwcawny M (5)

]

ym{t)

where k is an arbitrary integer. Notice that for L = 1, 2, the signal fre-
quencies are separated by 1/2T Hz whereas for L > 2, they must be sepa-
rated by 1/T Hz to insure the mutual orthogonality as required by (4). Sub-
stituting (5) into (2), we get

\,/ZSsin[—n{k;m)ti-eﬂ] vz, 2 =L &ikoa M
_ V= 1y 2osnews L
s.(t) = (6)
! = (m-1)L + ¢

T 0 =t=T

2S sin[-rr(k+—m+eﬂ_]: L > 2
When M = N (L = 1), we transmit in each T-second interval a sine wave
having one of N frequencies and zero phase. This signaling scheme cor-
responds to the well-known case of phase-coherent orthogonal (MFSK) sig-
naling and has an effective bandwidth W, = N/2T. When M = N/Z e g
we transmit in each T-second interval one of N/2 frequencies at a phase of
either zero or m radians. The effective bandwidth for this bi-orthogonal
signaling technique is W = N/4T, which is one half of the bandwidth of the
orthogonal signaling case. If M is now reduced by another factor of 2, we
have a situation wherein one of N/4 frequencies at a phase of zero, n/2, T,
or 37/2 radians is transmitted in each T-second interval. Since the fre-
quency separation has now increased by a factor of 2 [see (6)], the effective
bandwidth is W, = N/4T and is thus the same as for L = 2. This is not sur-
prising when we realize that a quadriphase-modulated sinusoid can be repre-
sented as two orthogonal biphase-modulated sinusoids, and hence the signal
representations for L, = 2 and L. = 4 are equivalent and as we shall see later
yield identical performance. From this point, further reduction in M results
in further reduction in W, and, in general (for L > 2), W, = M/T. When
M =1 (L =N), we have the case of polyphase signaling that occupies the
least bandwidth.

Error Probability Bounds for the Maximum -Likelihood Receiver. The
optimum (maximum-likelihood) receiver for transmission of L-orthogonal
signals over an additive Gaussian noise channel is a bank of N matched
filters matched to the possible transmitted signals. The error probability
performance of this receiver has been studied by Reed and Scholtz (Ref. 6).
For L > 2, the probability of correct detection is given by

M-1

2 2 s 2 2
PC(N) :ffexp [A(xwl + x5 ):l‘[ /eXP ['(i] + Yz):lle dyz A 7
5 i

172
A(xl)

For L = 1 and L = 2, we have the well known results for orthogonal and
bi-orthogonal signaling respectively.



where A(x]) and B are regions of integration (see Fig. 1). In particular,

if Rq 2 ST/Np, then B is the set of points (x], x3) in the wedge bounded by
the straight lines

"
1

- / LI
2 (x1+ Rd)tanL

i
x5 (— Xy + \;‘Rd)tan T

and A(x) is the set of points within an L-sided regular polygon circum-
scribed on a circle of radius x] + VRg. Substituting (8) in (7) and making
the change of variables u; = x; + VRg, we have:

o
2 2
PC(N) 5 ?f exp [-(u] = Rd)]
0
-u, tan /L 5 Sk I:_ (Y?“'Yg)] M-1
X exp [-x; )dx dy,dy du
o G - - Y19Y2

0 A{ul)

(8)

i

(9)

Since any L-sided regular polygon can be subdivided into L equal area .
triangles, then from the symmetry of the double integral on A(ull, we get™

u, tan w/L

o (ol ng e

0 0
lM—l
du

u; -y, tanw/Lexp [_ (Y§+Y§)]
X{L = :
Yo -

'dyldyzs 1

¥4 tan Tr/L

@
1 2 m

= 71?-—[ exp [— (ul - Rd) ]erf (u1 tan E)

0

u M-1

L : 2 T 0
X F exp (—yl).:-:rf(y1 tan i)dyl du (10)
0

*
We define the error function erf(x) and complementary error function
erfc(x) by

erf(x)

1]

2 x
Jﬁ:f exp (-y°) dy

0

erfe(x) = 1 - erf(x)



The signal set for L. = 4 is equivalent to a bi-orthogonal signal set and
hence (10) reduces to

P (N) [“’ xs (-Xi)l} f ( +R N/Z_ld (11)
c B Y G b d) *1
-~ -ﬁd J—

When M = 1, we merely have a single set of polyphase signals and by
inspection (10) reduces to

-0

P (N) = \/—%j exp [- (u] - Rd)z:l erf (u1 tan %) du, (12)
0

For other combinations of M and L, the integrals in (10) must be evaluated
by numerical integration on a general purpose digital computer.

For L. > 2, upper and lower bounds on the probability of word error
PR(N) = 1 - Po(N) may be readily calculated by circular approximation to
the area of integration A(u)). In particular, an upper bound on Pr(N)
[lower bound on P.(N)] is obtained by approximating A(u]) by its inscribed
circle of radius uy. Similarly, a lower bound on PRr(N) may be calculated
by approximating A(u) by its circumscribed circle of radius uj sec (v/L).
The results are

P_(N) =P P_(L)
E Hlg E IMPSK

(1+k)M-1"k 1+k

M-1
k kR
CS o (__3)
k=1

R
E+]— rf \f__@_ sin ©
~all T+k

F  —

{Rd/(1+k) sin @
1]
\/T? 0

exp {-yz) erf (y cot 8) dy (13)

™
-1 tan T,

6 = tan ‘/ﬁk—




P . (N)=2P_(N) = P_(L)
B Ey IMPSK

M i
Z ( ])k X E g +l rf Rd sin ©'
oM e el Yee T+k

d/{ 1+k') sin ©'

f exp (»yz) erf (y cot 6') dy (14)
m
o =t 43 tan i
= tan T+k’
where
c. & _(M-1)
M-1"k ~ klI(M-1-Kk)!
and
PL(L) 4 1-P_(L)
MPSK MPSK

with P _(L) obtained from (12) with N replaced by L.
¢ MPSK

We note from (13) and (14) that for M = 1, the two bounds become equal
and give the exact performance; that is, PE(L}IMPSK. Also, for large L

(small M), the bounds are very tight since both the inscribed and circum-
scribed circles are good approximations to the L-sided polygon., Fig. 2
illustrates the upper and lower bounds of (13) and (14) respectively as
functions of Ry, = Rd/10g2 Nin db for N = 64 and various combinations of
M and L.

Ideal Word Error Probability Performance of a Suboptimum Receiver,
As already discussed, optimum detection of the set of signals in (2)
requires a correlation receiver with N correlators and yields the per-
formance as given by (7). When N becomes large, the number of corre-
lators required to implement this receiver becomes prohibitive. Hence,
we investigate a suboptimum receiver that requires only 2M correlators
and whose error probability performance is quite close to that of the
optimum receiver.

The suboptimum receiver illustrated in Fig. 3 uses a noncoherent
detector to determine the most probable index m characterizing the
received signal [see (2)] and a coherent or differentially coherent detector
to measure the phase 6,, or equivalently determine the index £. The
probability, P (M}l N’ of correctly determining the index m from a total

of M choices is given by (Ref. 8)
M-1

P (M = E (1) C —de) 15
b )| = Tk 1%k =P T3k (15)
NON



The conditional probability, P.(L)| , of correctly determining the phase 8
(L)]g y g the p )

from a total of L. choices, given that m has been correctly chosen, depends
on the structure of the phase estimator in Fig. 3. Before examining spe-
cific phase estimator configurations, we continue with our characterization
of the general form of the suboptimum receiver as given in Fig. 3. Since
the index i [see (2)] will be correct only if m and £ are correctly chosen,
then from Bayes' rule, the probability of correct word detection for this
receiver is

P _(N) = ]iP (M)| [P (L) ji (16)
€ ¢ InonJL ¢ e
or equivalently, the probability of word error is given by
P_(N) = P (M)‘ +P (L}I -|P (M)I P (L}I (17)
E Exnon B e [ B nvon] [ B e

Figure 4 illustrates three possible phase estimator configurations
corresponding respectively to the cases of (1) MPSK (maximum-
likelihood detection of Bg), (2) coherent MPSK with differential encoding
of BE’ and (3) differentially coherent MPSK (MDPSK) with differential
encoding of 8y . The conditional error probability performance of each of
these configurations is investigated in Refs., 1, 2, and 9 respectively, and
is summarized below.

(1) MPSK (maximum-likelihood detection of 6;)

P(L) =1-P(L) (18)
E™e < mpsk

where P (L) is obtained from (12) with N replaced by L.
¢ [MPSK

(2) Coherent MPSK with differential encoding of )

2 L-1
PE(L)le < i PC(L)IMPSK} 3 gl pEi (L) (19)
where
e . u tan (2‘:1% )
PEk{L) = ;jo exp [(u . Jﬁd) ]fu - (21;:1)“ exp (-v°) dv % du




(2k+1)

[Esin T

2
v —L eV erf [y cot —(ZTI)TT] dy
2NT Y0
,Rd sin (Zk_l)rr
L 2
1 y (2k-1)
-— & erf|y cot i dy
2w Jo
(20)
(3) Differentially coherent MPSK (MDPSK) with differential encoding
of GE
/L
P_(L)| = 1-f p_(y) dd (21)
E ‘8 T
where
/2
p\y(u} = %/{; (sina)[1+Rd(1+coqu sina)}
X exp [_Rd(l - cos { sin a]} do (22)

Substituting (18), (19), or (21) in (17), we have the error probability
performance of the suboptimum receiver whose phase estimator in the
1'1r1th branchm =1, 2,...., M is respectively that of Fig. 4a, 4b, and 4c.
The corresponding error probability performances are illustrated in
Figs. 2, 5, and 6 for N = 64 and various combinations of M and L. whose
values are powers of 2,

Error Probability Performance of a Suboptimum Receiver with Noisy
Reference Signals. As in any practical receiver employing carrier track-
ing loops for establishing coherent reference signals, the phase jitter
associated with these reference signals caused by the additive Gaussian
noise perturbing the loop produces a degradation of error probability per-
formance. As always, the first step in solving the so-called "noisy refer-
ence problem' is to establish an expression for the probability of error
conditioned on a given noisy reference phase error., For the suboptimum
receiver of Fig. 3, we need only be concerned with establishing the con-
ditional probability of error associated with the phase estimation since the
magnitude estimation is noncoherent and hence independent of the noisy
reference phase error.

A generalization of (17) yields

P.(¢) = P.(M) + P.(L; ¢) - [P (M) P_(L; 23
E E"1non E E |NDN]': E ¢)J )

as the conditional word error probability of the suboptimum receiver with
Pr(L; ¢), the conditional probability of error for the phase estimation.



The quantity Pg(L; ¢) is of course dependent upon the configuration of the
phase estimator itself. The noisy reference problem has been studied in
Refs., 1 and 2 for the phase estimators of Figs. 4a and 4b. The corre-
sponding expressions for Pgr(L; ¢) are respectively given by Egs. (40) and
(19) of the cited references. Assuming that the M carrier tracking loops
are of the Lth power loop or L-phase Costas loop types (Ref. 1) and all
have identical loop parameters, then the average word error probability
of the suboptimum receiver is given by

w/L

P_(¢) Lp(L¢) do
E _[_W,L E P

[n P (-“E) p(®) de
A

In the above, ¢ = L¢ and p(L¢) is the p. d.f. of the loop phase error Lg(t)
that can be approximated by

o
1

(24)

1

Lo+2m
p(Lé) = =X (BLé+ e cos Lg) f
L

4n® exp(-wmizjgmnz 6

exp !:.]Bx - @ cos x]dx: |Lol=n

(25)

where @ and P are defined in terms of the loop parameters [Eq. (16) of

Ref. 1] and I;g(a) is the imaginary Bessel function of imaginary order B and
argument . ~ As an example, consider the case where N = 64 with M = 32,
L. = 2, and coherent detection of differentially encoded phase symbols

(i. e., the phase detector of Fig. 4b). For this case,

PE(¢} = erfe (‘,'r?b cos da) E = %er{c (\/R_b cos 4:) (26)

Using (26) as Pg(2; ¢) in (24), the performance of an L-orthogonal system
that employs a Costas loop for tracking and differentially encoded PSK
signaling for ambiguity resolution is illustrated in Fig. 7. In this figure,
we have assumed a Costas loop filter of the form

1+ sz
F(p) = T+rp (27)
and the parameters Y and p are defined by
s My,
¥z W,
(28)
_ 2
e W T



where Wi, is the two-sided loop bandwidth and Wi,fZ is the two-sided band-
width of the RC low-pass filters in the in-phase and quadrature arms of the
Costas loop. Other parameters assumed for the Costas loop are

T2/T] = 0.002 and 0.707 damping. The curve marked § = ® corresponds
to the case of perfect reference signals.

Conclusions. In conclusion, we have demonstrated several suboptimum
receiver structures whose error probability performance is negligibly
different from that of the optimum receiver (as predicted by tight upper
and lower bounds). For each of these suboptimum receiver structures,
we have assessed the tradeoffs between word error performance and band-
width occupancy as the composition of the signal is varied between the
extremes of one frequency with N phases (polyphase) and one phase with
N frequencies (orthogonal).

In view of the work of Cahn (Ref. 3) and others on the problem of com-
bined digital phase and amplitude modulation, it would be interesting to
extend the L-orthogonal signaling technique to the consideration of a com-
bined digital phase, frequency, and amplitude modulation system. The
performance tradeoffs obtained would be studied as a function of three
degrees of freedom, namely phase, frequency, and amplitude.
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