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L-ORTHOGONAL SIGNAL TRANSMISSION AND DETECTION 

By W. C. LINDSEY and M. K. SIMON 

Summary. Thi s paper investigates the detailed capabilities and pe r 

formance characterization of systems that employ L-o rthogonal signalin g 

t echniques . L-orthogonal s ignals r epr esent a unified set of sign als wherein 
the polyphase and orthogon al (bi-orthogon a l) s i gn a l sets are included as 

special cases. This fact i s impo rtant s ince o rthogonal (bi-orthogonal) and 
polyphase sign aling sets r e present oppos ing forc es as f ar as tradeoffs 
between error probability, energy - to-no i se ratio, a nd bandwidth r equire 
ments are concerned. Bounds on the pe rformance of the optimum receive r 

and t h e performance of various suboptimum ( practical) receiv er structures 
a re gi ven. Coherent and differentially coh erent detection of differentially 

encoded signals a r e a lso pu r sued . Various comparisons and tradeoffs a r e 
made by means of numerical evaluation of the e rror probability express ions . 

Introduction . With the high communicat ion traffic density predict ed 

fo r future data transmiss ion systems, it is important to invest igat e and 
compare all poss ible modulation techniques that a r e practical for such 

application s. In particular , on e is interested i n the tradeoff between the 
bandwidth r equired to transmit the g i ven s ignaling scheme and the error 

probability performance of the associated receiver us e d for data detection . 

Because of its desirable bandwi dth properties, conside r abl e attention 

has been focussed on multiple phase - s hift - keying (MPSK), i. e. , t h e use of 
polyphase signals for data transm iss ion, as a sui table modulation t echnique. 
In par t icular, quadri phase - s hift - keyin g (QPSK) a ppears to be attrac tive 
over binary PSK sin ce it offe r s a 3 - dB saving in bandwidth a t no loss 

in sys t em bit error probabilit y performan ce. High e r order phase - shift 

keyed modulation formats (Ref. 1) could be employe d to gi ve further r educ 
t ion in bandwidth occupancy; however , t he a ccom panying increase i n erro r 

probabi l i ty for a given sign al-to -noise ratio pe r bit now becomes signifi 
can t . Such a los s in performance woul d be incurred r e gard less of wh ether 

coherent or differentially coherent detection is employed at the receiver . 
The pe rformance of these types of receive r s using differential en codin g of 

the data for ambigui ty resolut ion i s given in Ref. 2. Also, the capabilities 

of combined phase - shift-keyed an d amplitude modulation h ave been investi

gated (Ref. 3 ). 
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Recognizing that polyphase s i gnaling is basically a n uncoded signal 
t r ansmission scheme , i. e. , multilevel digital phas e modulation of a known 

carrier, one naturally asks about the performance benefits gained through 

coding at the ex pen se, of cou r se , of an increase in bandwidth. In this con
nection, the error probability pe r fo r manc e of s i gnaling sets based upon 
orthogonal a nd bi-orthogonal codes has been ex tensively studied in the 

literature (Refs. 4 , 5 ) . 

Since o r thogonal (bi-orthogonal) and polyphase signalin g sets r e present 

opposing forces insofar as trad eoffs between pe r formance and bandwidth are 
concerned, one is motivated to study th e p erformance capability of L

orthogonal signals (Ref. 6) wh ose prope rties enable them to b r i dge t he 

merits of both of the former s i gn ali ng schemes . H ence , a study of L
orthogonal signal perfo r mance represents a unified a pproach wh e r ein the 
performance of polyphase a nd orthogonal (bi - o rthogon al) s igna l sets stand 

out as the ext r eme spec ial cases. After a br i ef di scussion of the L 
orthogonal signal model and its associated bandwi d th p r operties, we begin 
our discussion of system pe rformance by presenting tight upper and lower 
bounds on th e error probability performan ce of the maximum-likelih ood 

receiver of L-o rthogon al s i gnal s suggested by R eed and S cho ltz (Ref. 6 ) . 
Because i t is impractical to im plement the maximum -likelihood receive r, 
the pe r formance (assuming perfect reference signals ) of a practical sub

optimum receiver (Ref. 7 ) is p r esented n ext and compar ed with the bounds 

de r ived for the optimum receiver . Also included in our performance s tudy 
of the suboptimum receiver is its effectiveness in te r ms of coherent and 

differentially coh eren t det ection of d ifferentially encod ed signals. Finally, 
we conc lude with a study of the error proba bili ty perfo rmance of the sub 

optimum receive r in the presen ce of noisy r e feren ce s i gnals . T he results 
presented i n this paper are of interest to communication system e ngineers 

faced with the problems of system d esign , compari son, and planning of 

high capacity data transmission systems. 

Signal Representation and Bandwidth Con s iderations. An L -orthogonal 

signal set consists of N = M L equal ene r gy ( E = ST), equal duration (T) 
s i gn als {si(t) ; i = 1, 2, ... , N} that can be subdivided into M subsets of L 

signals each w ith the following prope rties : 

(I ) An y pair of s i gnals not in the same subset a r e orthogonal. 

( 2) The ith and /h sign als of the same subset have a n ormali zed 

correlation (inner product). 

I 1T >. .. = ST s .( t ) s .( t ) dt = cos 
lJ l J 

0 

[2rrli-j l/L]; i,j 1, 2, .. . , L ( 1) 

Thus, the N X N correlation matr i x t}L O for t h e entire set of N signals can 
be partitioned so that it contains M ( L X L ) submatrices a long its principal 

diagonal each corresponding to the corr e lati on matrix fo r L polyphase sig 
nals, and a ll other elements zero. 



The construction of sign al sets that possess th ese co rrelation pr ope rties 

has been suggested by several authors (Refs. 6 , 7). In all cases, the signals 

can be exp r essed in the form 

where e£ = 

and 

m = 1' 2, .... ' M 

£ = 1' 2, .. .. ' L 

i (m - l ) L + £ 

2(.€-l)rr/L, 

T T 

=t 4 f ~(t) xn(t) dt = 4 J yk(t) yn(t ) dt 

0 . 0 

T 

4 f ~(t) yn(t) dt = 0 

0 

all k a n d n 

( 2) 

k = n 

(3 ) 

k I n 

(4) 

In fo rming the c ross -corre l a tio n between si(t) and s/t) where i = (m 1 - 1) 

X L + £1, j =( m 2-l) L + £2 (m 1 I m 2). the coefficient of the c r oss-correlation 
between x (t) and y (t), or x (t ) and y (t) depends on sin (en - 0£ ) and 

m 1 m 2 m 2 m 1 J:'-1 2 

s in ( 0£ + 0 £ ). Fo r L = 1, o r L = 2 (correspondin g to the cases of orth ogonal 

1 2 
and bi - orth ogonal signals r espective 1 y ), 0 £ - 0 Q a n d e Q + e £ a r e eithe r 

1 2 1 2 

zero or an integer m ultiple of TT . H ence, regardles s of th e value of the 
c r oss -correlation between x (t) and y (t), or x (t) and y (t), the 

ml m 2 m2 ml 

orthogonality of si( t ) and Sj(t ) i s sati s fied s ince sin (e
2 

- 0£ ) and 
1 2 

sin (6 £ + e £ ) a re both e qual to ze ro. Thus, we conclude that the orthogo.-

1 2 
n alit y relationship of (4 ) fork In is requi r e d on ly for L > 2. 

In the lit e ratur e , o n e can find many practical methods for gen erating 

the o r thogonal sign a l sets { xm(t)} and {ym(t)}. In terms of demonstrating 

how th e bandwidth of the L - o rthogonal signal set changes as L a n d M are 
vari ed at fixed N , it is convenient to use the r e p resentation of {~(t)} and 

{ym(t)} corresponding to a set of M s inusoidal ton es typic a l of th ose used 

i n MFSK sign aling systems, i. e . , 

X (t) = Ji s in [rr(k;,m)t] L = 1' 2 
m 

m = 1' 2, .... ' M 

y ( t ) = jz COS [ TT (k;m)tj 
m 



and 

X (t) 
m 

L > 2 

m=l,2, .. . . ,M 
( 5) 

where k is an a r bitrary integer. Notice that for L = l, 2, the signal fre -
quencies are separated by l/2T Hz whereas for L > 2, they must be sepa
rated by 1/T Hz to insure the mutual orthogonality as required by (4). Sub
stituting ( 5) into ( 2), we get 

-- 1/zs sin [ rr(k;m)t + e2] L = l, 2 

s .( t) 
l 

Jis sin [ rr(k~m)t + e.e]; L > 2 

m 1, 2, . . . . , M 

R = l, 2, .... , L 
(6) 

i = (m -1) L + 1! 

0 5 t 5 T 

When M = N (L = 1), we transmit in each T - second inte rval a sine wave 

having one of N frequencies and zero phase. This signaling scheme cor
r esponds to the well-known case of phase - coherent orthogonal (MFSK) sig

naling and has a n effective bandwidth We = N/2T. When M = N/2 ( L = 2), 
we transmit in e ach T-second interval one of N/2 frequencies at a phase of 
e ither zero or TT radians. The effective bandwidth for this bi-orthogonal 

signaling techniqu e is We = N/4T, which is one half of the bandwidth of th e 
orthogonal signaling case. If Mis now reduced by another factor of 2, we 

have a situation wherein one of N/4 fr equencies at a phase of zero, TT/2, rr, 

or 3TT/2 radians is transmitted in each T-second interval. Since the fre 
quency separation has now increas ed by a factor of 2 [ see ( 6)], the effective 

bandwidth is We = N/4T and is thus the same as for L = 2. This is not sur
prising when we realize that a quadriphase-modulated sinusoid can be repre

sented as two orthogonal bi phase-modulated sinusoids, and hence the signal 

r epresentations for L = 2 and L = 4 are equivalent and as we shall see later 
yield identical performance . From this point , further reduction in M results 

in further reduction in We and, in general (for L > 2), We = M/T. When 
M = 1 (L = N), we have the case of polyphase signaling that occupies the 
least bandwidth. 

Error Probabilit Bounds for the Maximum-Likelihood Receiver. The 
opt imum maximum-likelihood receive r fo r transmission of L-orthogonal 
signals over an additive Gaussian noise channel is a bank of N matched 

filters matched to the possible transmitted signals. The error probability 

performance of this receiver has been studied by Reed and Scholtz (Ref. 6) . 
For L > 2, the probability o f correct detection is given by* 

-ffexp [-(xf + x~ )]{!!exp [-(Yi+ Yrn }M-l 
Pc(N)- . TT TT dyldy2 dxldx2 

B A(x
1

) 

(7) 

* For L = 1 and L = 2, we have the well known results for orthogonal and 
bi-orthogonal s ignaling r es pectively . 



where A(x1) and B are regions of integration (see Fig. I). In particular, 

if Rd~ ST/No, then Bis the set of points (x1, xz) in the wedge bounded by 

the straight lines 

x 2 = (x1 +J'Ra)tanr, 

x
2 

= (- x
1 

+ JR:;) tan I, 
( 8) 

and A(x
1

) is the set of points within an L-sided regular polygon circum

scribed on a circle of radius x1 + v'Rd. Substituting (8) in ( 1) and making 

the change of variables u1 = x1 + v'Rd, we have: 

(9) 

Since an y L-s ide d regular polygon can be subdivided into L equal area 
triangles, then from the symmetry of the double integral on A( u 1), we get ':' 

*we define the e rror function e rf(x) and complementary error function 

erfc(x) by 

zlx 2 erf(x) = jrr exp ( -y ) dy 

0 

erfc(x) = 1 - erf(x) 

( 1 O) 



The signal set for L = 4 is equival en t to a bi-orthogonal signal set and 
hence (1 0) reduces to 

When M = l, we merely have a single set of polyphase signals and by 
inspection (10) reduces to 

( 11) 

( 12) 

For other combinati ons of M and L, the integral s in ( 1 O) must be evaluated 

by numerical integration on a gene r al purpose digital computer. 

For L > 2, upper and lower bounds on the probability of word error 

PE(N) = 1 - Pc(N) may be readily calculated by circular approximation to 
the area of integration A(u1), In particular, an upper bound on PE(N) 

[lower bound on Pc(N)) is obtained by approxim ating A(u1) by its inscribed 

circle of r a d ius u1. Simi larly, a lower bound on PE(N) may be calculated 
by a pproximating A(u 1> by its circumscribed circle of radius u1 sec (rr/L). 
The results a re 

PE(N) !'i PE (N) = PE(L)l 
u MPSK 

.L=.lt. kR d ~ .!. _:!.. . M~l ( )[ (M ) 
- t1 ( l +k)M - lck exp - l+k TT + 2 erf l+k sm e 

+ 

_l JJRd/(l+k) 

Jrr 
0 

exp( - /) erf ( y cot ,6) dy 
,m • ] 

(13) 

[ . J e 
_

1 
tanL 

= t a n Jl+k 



sin 91 l 
exp ( -y

2
) e r f ( y cot 8 1

) dyJ ( 14) 

_1 [tan r:J 
8 I = tan """"i'+'k""" 

whe re 

.t.. (M-1 ) ! 
M-lCk =- k!(M-1-k)! 

and 

PE(L)I ~ 1-P (L)I 
MPSK c MPSK 

w ith P ( L) I obtained from ( 1 2) with N r eplaced by L . 
c MPSK 

W e not e from (13 ) and (1 4 ) that for M = 1, the two bounds become equal 

and give the exact p e rformance; that is, P E (L )I . Also, for l arge L 
IMPSK 

(small M) , the bounds are v ery t ight since both the inscribed and circum-

scribed circles are good approximations to the L-sided polygon. Fig. 2 

illustrates the upper and lowe r bounds of (13) and (14) r e spe ctively as 

functi ons of Rb = Rd/ log2 N in db for N = 64 and various combinations of 

Mand L . 

Ideal Wo rd Error Probability Performance of a Suboptimum Receiver. 

A s a lready d iscusse d, optimum det ection of th e s e t of signal s in (2 ) 

requires a correlation receiv e r with N correlators and yield s the per

forman c e as g iv en by (7). When N become s lar ge, the number of corre

lators r e qui re d to i mpl e ment thi s receiver become s prohibitive . Hence , 

w e inv e stigate a suboptimum receiv e r that requires only 2M correlators 

a n d whos e erro r probability pe rformance is quite close t o that of the 

optimum receiver . 

The suboptimum receiver illus trated in Fig. 3 uses a n oncoherent 

d e t ector to d e t ermin e the mos t probable index m characterizing the 

r eceived sign a l [see (2)) and a coher ent or differentially cohe r ent detector 

to measure the phas e e
1

, or e quival e ntly determine th e index £. The 

p r obability, Pc ( M)I , of correctly determining the index m from a total 
N ON 

of M choices is giv en by (R ef: 8) 

p (M)I 
C NON 

= 

M -1 
~ (- l)k ( k Rd) 
L, """T+k M-lck exp - l+ k 

k=O 

(15 ) 



The cond i tiona l probability, P c(L) le , of correc tly determining the phase 9,e 

from a total of L choic e s, giv e n that m has been correctly chosen, depends 
on the structure of the phase estimator in Fig. 3. Before examining spe
cific phas e e stimator configurations, w e continue with our characte rization 

of th e general form of th e suboptimum receiver as giv e n in Fig. 3. Since 
the index i [ s ee (2)] will b e corre ct only if m and 2 are correctly chosen, 

th e n from Baye s ' rule, the probability of correct word d'etection for this 
receive r is 

or e quival e ntly , the probability of wo rd error is given by 

PE(N) = PE(M)INoN + PE(L)l e - [PE(M)INoN] [PE(L)le] (17) 

Figure 4 illustrate s th ree possible phase e stimator configurations 
corre spondi ng resp ectiv e ly to the cases of (1) MPSK (maximum 

likelihood detection of 9.e), (2) coherent MPSK with differential encoding 
of e2 , and (3) differentially cohe rent MPSK (MDPSK) with diffe rential 

e ncoding of e2 . The conditional e rror probability p e rformance of each of 
thes e configurations i s inve stigated in Refs. 1, 2 , and 9 respectively, and 

is summarize d b e low. 

(l) M PSK (maximum-likelihood d etection of Se) 

P E(L )I = l - p (L)I 
9 c MPSK 

(18) 

whe r e P (L)I is obtained from ( 12) with N replac e d by L . 
c MPSK 

(2) Coherent MPSK with differential encoding of 9£ 

[ ]

2 L - 1 

PE(L)I = l - P/L)I - L PE 
2 

( L ) 
e MPSK k =l k 

() 9) 

whe re 

• f f(xp [+ -Fa)']{ tan(~:~:) , expl-v2) dv}du 
O { u tan --L-rr 

1 1 [ 1nR . (2k+l) J 1 [~R· . (2k-1) J = L+ 4 erf '1L'.dS1n L rr - 4 erf '1.c\.dS1n--L-rr 



+ _l_ 

2..frr 

(o . (2k+l) 
Ia..J " d sm --L--rr 

e -/ erf[y cot (
2'r1

)rr J dy 

l 

2.fn 

sin (2k- l) 

--L-n e - / erf[y cot (2t 1)n]dy 

(20) 

(3) Differentially cohere nt MPSK (MDPSK) with differential encoding 

of e
2 

( 21) 

wh e r e 

n/2 

P,iVi = 
2

1
,r 1 (sina )[l + Rd(l + cos ljJ sin a)] 

X e xp [-Ri 1 - cos tj.i sin a) J da (22) 

Substituting (18), (19), or (21) in (17), w e h a v e the e rror probability 

p erformance of th e subop timum r e c e iver whos e phase e stimator in the 
mth branch m = 1, 2, .... , Mis r e s pectively that of Fig . 4a, 4b, and 4c. 

The corresponding e rror p r obability performanc e s are illus t r ated in 
Figs. 2 , 5 , and 6 for N = 64 and various combinations of M and L whos e 

v a lue s are powers of 2. 

Error Probability P erformance of a Suboptimum Receiver w ith Noisy 
R efe r e nce Signals . As in any practical r e c e iver employing carrier track
ing loops for e stablishing coherent refe r e nce signa ls, the phase jitte r 
associated with the s e r e ference signals c a used by the additive Gaussian 

noise perturbing the loop produc e s a degradation of e rror probability per 
fo rmanc e . A s a lway s, the fi r st step in solving the so- call e d " noisy refer 
e n ce problem" is to e stablish an e xp re ssion for th e probability of error 

conditioned on a give n noisy refe r e nc e phase e rror. For th e suboptimum 
re c e iver of Fig. 3, w e n eed only b e concerne d with e sta blishing the con

ditional p robability of error associated with the phase e stimat ion since the 

magni tud e e stimat ion is noncoherent a nd h ence i ndependent of the noisy 

ref e r e nc e ph a s e e rror. 

A g e n e r alizat ion of ( 17) yields 

as the conditional word e rror probability of the suboptimum rec e iver with 

PE( L ; <j>) , the conditional probability of e rror for the phas e es timation. 



The quantity PE(:L; cl>) is of course dependent upon the configuration of the 
phase estimator itself. The noisy reference problem has been studied in 

Refs. 1 and 2 for the phase estimators of Figs. 4a and 4b. The corre
sponding exp r essions for PE(L; cl>) are respectively given by Eqs. (40) and 
(19) of the cited references. Assuming that the M carrier tracking loops 

are of the Lth power loop or L-phase Costas loop types (Ref. 1) and all 
have identical loop parameters, then the average word er r or probability 
of the suboptimum receiver is g iven by 

rr/L 

= [ PE(cl>) Lp(Lcl>) dcl> 
. -rr/L 

( 24) 

In th e above, <I.> ~ Lei> and p(Lcl>) is the p. d. f. of the loop phase error L<j>(t) 
that can be approximate d by 

p(L<j>) -
exp ( f3L<!> + a cos L<!>) 

2 2 
4rr exp ( - rr~ )l!. (a) I 

J~ 

1
Lqi+2rr 

exp 
Lqi 

[-~x -a cos x Jdx; I Lcj>l s rr 

wh e r e a and~ are defined in terms of the loop parameters [Eq. (16) of 

(25) 

Ref. 1] and Ij~(a) is the imaginary Bessel function of imaginary order~ and 
argument a. As an example , consider the case where N = 64 with M = 32, 

L = 2, and coherent detection of differentially encoded phase symbols 

(i.e., th e phase detector of Fig. 4b). For this case, 

PE(,j,) = ecfc (F,, co, ,j,) ~ - } erfc (JR;, co,•)] (26) 

Using (26) as P£(2; qi) in (24), the performance of an L - orthogonal system 
that e mploys a Costas loop for tracking and differentially encoded PSK 

signaling for ambiguity r e solution is illustra ted in Fig. 7. In this figure, 
we have assumed a Costas loop filter of the form 

F(p) (27) 

and the parameters '( and pare defined by 

'( 

( 28) 



where WL is th e two-sid e d loop bandwidth and W. /2 is the two-sid e d band
width of t he RC low-pass filters in the in-phase Jnd quadrature arms of the 
Costas loop. Other parameters assumed for the Costas loop ar e 
Tz/T 1 = 0. 002 and 0. 707 damping. The curve marke d 6 = co corresponds 

to the case o f perfect reference signals. 

Conclusions. In conclusion, we have demonstrate d s everal suboptimum 

receiver structures whos e e rror p robability performance is n egligibly 
different from that of the optimum receiv er (as predicted by tight upper 

and lower bounds). For each of these suboptimum receiver structures, 
we have ass e ssed the tradeoffs between word error performance and band

width occupancy as the composition of the signal is varied between the 
extreme s of one frequency with N phases (polyphase) and one phase with 
N frequencies (orthogonal). 

In vie w of th e wo rk of Cahn (Re f. 3) and others on the problem o.f com
bined digital phase and amplitude modulation, it would b e interesting to 
extend the L -orthogonal signaling technique to the consideration of a com
bined digital phase, frequency, and amplitude modulation system. The 
p e rformance tradeoffs obtained would b e studie d as a function of three 

degrees of freedom, namely phase, frequency, and amplitude. 
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REGULAl l -SIDED POLYGON 

Fig. I - Areas of Integration for Equation (11) 
(Example Drawn for L = 6) 
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Fig. 2 - Error Probability Performance of L-Orthogonal Signals 
(Ideal MPSK) 
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Fig. 4 - The mth P hase Estimator Element of the Suboptimal Receiver 
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Fig. 5 - Error Probability Performance of L-Orthogonal Signals 
(Coherent Detection of Differentially Encoded MPSK) 

Fig. 6 - Error Probability Performance of L-Orthogonal Signals 
( Differentially Coherent Detection of 

Differentially Encoded MPSK) 
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Fig. 7 - Error Probability Performance of L-Orthogonal Signal s Where 
the Noisy Reference Signal s are Provided by a Costas Loop 
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