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L?-behaviour of the integral means of analytic functions

by
M. MATELJEVIC and M. PAVLOVIC (Beograd)

Abstract. Various results on LP-behaviour of power series with positive coeffi-
cients are extended to Lipschitz spaces. For example, we have. a characterization
(decomposition) of these spaces, which enables us to describe an isomorphism of
a Lipschitz space onto a solid sequence space and to establish new connections between
some clagsical inequalifies concerning Hardy spaces.

1. Introduction. In [15] we have considered some theorems on L?-be-
haviour of power series with positive coefficients and their applications
to H? spaces. In this paper we continue the investigation in this direction.
First we introduce some notations and then we list some known results
from this area.

Throughout the paper let f(z) = 2 a,?" be an analytic function

- in the open unit dise. Unless specified othermse, the letters p, ¢, r, a denote
numbers satisfying 0 < p,¢<< 00,0 <r <1, 0 < a << oco. The letter ¢ al-
ways denotes a non-negative increasing function defined on (0, 1] for
which

(1.1) p(r) < Ctp(r), 0<i<1,
and
{1.2) p(r)=0""e(r), 0<t<l,

where € and p are positive real numbers. Note that f = a > 0.
We use the usual notations for the integral means of f:

1 .
My, f) =5 f FadyPat, p< oo,

M (r, f) — sup|f(re™),
. t
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and we Wi‘ite
1 fllp = sup My(r, f).

For our purposes it is convenient to introduce the class X = H(p, q, ¢)
of functions f for which ¥ e L0, 1), where

F(r) = 1) ML) My(r,f)
and L9(0, 1) is the usual Lebesgue space. The norm in X is given by

Iflx = [FlLa-

If ¢ (#) = #°, we write H(p, ¢, a) instead of H(p, q, ¢). An account of the
properties of H(p, q, «) may be found in [5].

Since Mj(r,f) = D |a,|?*, various results on LP-behaviour of
power series with positive coefficients may be expressed in terms of the
spaces H (2, q, a). We begin with a result of Hardy and Littlewood [7],
Theorem 3.

THEOREM (HL TI). Let ¢ < 2. Then f € H(2, q, a) implies
(1.3) {(n 1)~ F12"ag 1o e,

If ¢= 2, then (1.3) implies f € H(2, q, a).

Agkey and Boas [1], Theorem 2, have proved the following stronger
result.

THEOREM (AB). The function f is in H(2, q, ) if and only if

{n+1)"" " s, |}, €12,
where |

n

k=0

In [15] another characterization of H (2, q, a) is given.
THEOREM (MP). Let I, = {0}, I, = {k: 2" '<k<2"} (n =1,2,...)
and

A7) = 4,f() = Y a2".

kel,,

Then f € H(2, q, o) if and only if
27 N Al € 10



LP-behaviour of the inlegral means 221

The first implication in Theorem (HL I)is an immediate consequence
of the inequality

(X oarf = @—ry=? Y w, i, 0<p<1,
n=0 n=0

and may be used (cf. [6]) to prove the following result of Hardy and
Littlewood [4], Theorem 6.2.

ToeorEM (HL II). If fe H?, p <2, then
N (417 ja,” < .

Indeed, this theorem follows from Theorem (HIL I)and the inclusion
H? <« H(2,p,1[/p—1/2), p < 2, which is a special case of another theorem
of Hardy and Littlewood [4], Theorem 5.11.

THEorEM (HL IIT). Let p < ¢ << oo, s = p. Then
H” < H(q,s,1/p—1[q).

It is the aim of this paper to extend Theorems (AB) and (MP). The
main results are Theorems 2.1 and 2.2. Using some elementary inequali-
ties, we prove that

(1.4) @4l e

is a sufficient condition for f to belong to H(p, g, ¢) (see Theorem 2.1 (a)
below). Applying the Riesz projection theorem, we prove that condition
(1.4) is also necessary in the case 1 < p < oo (Theorem 2.1 (b)). The counter-
examples given in Section 4 show that this equivalence does not hold
for the extreme values of p (p =1 or p = o). However, Theorem 2.2
gives a characterization of H (p, ¢, ¢) for 1 < p < oo in terms of the (C.1}
means of Ya,z*. From Theorem 2.2 we derive a generalization of Theorem
(AB) (Theorem 2.3). An easy consequence of Theorem 2.1(a) is Theorem
(HL IIT) (see Corollary 2.1).

We briefly discuss some applications of Theorem 2.1 to multiplier prob-
lems. (A more complete discussion will appear in [16].) Using only The-
orem 2.1(a) and Khintchine’s inequality, we show that the smallest solid
superspace containing H (p, q, ¢), for 2 < p < oo, is H(2, q, ¢). A profound
result of Kisliakov [12] and Theorem 2.1(a) show that this is also valid
for p = oo.

Theorem 2.1(b) and a classical result on interpolating polynomials
enable us to describe an isomorphism of H(p,q,¢),1 < p < oo, onto
a solid sequence space (Theorem 2.6). As a corcllary we have (for 1 < p
< oo) Lindenstrauss—Pelezyiniski’s result [13] that H(p,p,1l/p) is iso=
morphic to 7.
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In Section 3 we give further consequences of the main results, Theorem
3.1 generalizes Theorem 2.1 to the fractional derivatives of f and as a
special case includes a stronger version of a theorem of Sledd [18], The-
orem 3.2. Section 4 is devoted to the proofs of Theorems 2.1 and 2.2. .

2. Main results. For a positive funection y defined on (0, 1] we denote
by HA(p, q, ) the space of those functions f for which

A= {p@ ") dullp}n=0o € 1"

We define the norm in ¥ = HA(p, q, y) by

Iflly = lIAfe.

In the case o(r) =" for a real number B we write HA(p,q,f)

= HA (p7 q, 1/))'

THEOREM 2.1. (a) HA(p, q,¢) = H(p, q, ¢).

(b) H(p,q,9) = HA(p,q,9), 1 <p < oo.

(¢) H1,q,9) =« HA(p,4q,9), p < 1.

(d) If p <L or p = oo, then inclusion (a) is proper.

An inspection of the proof, which is postponed to Section 4, shows
that all the inclusion mappings in (a), (b), (¢) are continuous. This means, .

for example, that for X = H(p,q,¢), Y = HA(p,q,¢)and 1 <p <
we have

O fllx< Ifly < Clfllx.

Here and elsewhere the letter ¢ denotes a positive constant which de-
Ppends only on p, ¢, a, 8, ¢, p and need not be the same on each oceurrence.

CorOLLARY 2.1. Theorem (HL III).

Proof. In the usual way (cf. [4], p. 87) the theorem reduces to the
case p =2. Let fe H*, 2 < qg< o0,8>2 and a = 1/2 —1/q. Then

14ulg < 1AM AL < (272 4, 01) 72| 4,057 = 2714,

Hence

t\ds

I
<

27" [ A,lls < D) 14,05 < oo
n=0

n

Thus f e HA(q, s, o) and, by Theorem 2.1 (a), f e H(q, s, a).
In Section 4 we shall prove the following characterization of H (p, ¢, ¢).
(See also Theorem 5.1.)
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THEOREM 2.2. Let 1 <<p < co. Then fe H(p,q,¢) if and only if
(2.1) {p(L/(n+1))(n+1)"1 o, llp} w0 € 1,

where
n

0n(®) = 0 f(@) = D) (L~h/(n-+1))m2".

k=0
As an application of Theorem 2.2 we prove the following general-
ization of Theorem (AB). |
TaEOREM 2.3. Let 1 <p < oo. Then feH(p,q,¢) if and only if

(2.2) lp(1/(n+1))(n+1) s Il b2, e 19,

Proof. The implication (2.2)=f e H(p, q, ¢) follows from Theorem
2.2 and the inequality |o,ll, < [Is,l,, » = 1, [19], Ch. IV, p. 145.

Let feH(p,q,¢),1 <p< oco. By the Riesz projection theorem
[19], Ch. VII, Theorem 6.4, |loy,ll, = Clls,0,,ll,. Hence

!

! 2 ,
“GZan = 0] Sp— ) +i_sn »
. 1 ,
= C (llsn”p_ ontl ”San)
‘ n
>0 (”Sn”p— il Hsnnp) = Cls,llpy

where we have used Bernstein’s inequality [19], Ch. X, Theorem 3.15,
in the form s, |, < n|s,l,, » > 1. Now the desired result follows from
Theorem 2.2 and inequality (1.2). -

A further consequence of Theorem 2.1 is

THEOREM 2.4. If fe H(2, q, ¢), then for almost every choice of signs
{e,}, the function g(z) = De,a,2" belongs to H(p, q, ¢) for all p < oco.
Proof. Let fe H(2, q, ¢). We have to prove that mes(7) = 1, where

T = {t: JieH(p, q,9) for all P < oo},
fi2) = D) a, R, (1)2"

and R, are the Rademacher functions on [0,1]. To prove this we use
the inequality

(2.3) J 14, flpdt < C@)Idals,  p < oo,
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which is an immediate consequence of Khintchine’s inequality. We assume
that C(p) > 1. Put

Tep = {tr 14, folp < O (P I4,l}, @ >0,

Since feH(2,q,9) =HAZ2,q,qp), 1t follows from the definition of
T,, and Theorem 2.1 (a) that
(2.4) I'>N\T,, foralls>0.

pP<oo

On the other hand, using inequality (2.3), it may easily be seen that
mes(T, ,)=1—C(p)™% x>0.

Applying this to relation (2.4), we conclude that

mes(T) > 1— C(m)=™® for all x>0

'343

l
—

m

and consequently mes(T) > 1. This conecludes the proof.

A sequence space A is called solid if {a,} € A and |b,] < |a,| for all

> 0 imply {b,} € A. Regarding H(p, g, ¢) as being a sequence space,
we have

COROLLARY 2.2. The smallest solid space contammg H(p,q,q¢) for
2<p< o is H(Z,q,9q).

In fact, a much stronger result is valid.

THEOREM 2.5. The smallest solid space containing H (bo y 4y @) is
H(2, q,¢). Moreover, if fe H(2,q, ¢), then there is a sequence {b,} such
that > b,2" € H(oo0, q, ) and |b,| > la,| for all n >0

This is an easy consequence of Theorem 2.1 and the following pro-
found result of Kisliakov [12].

THEOREM( ). For any sequence {a,}i_,, (0 <m < n) there is a poly-
<

nomial h(z) = 2 b,2* satisfying |b,| = |a,| for m < k< n and

k=m
il <0 (3 la .

We finish this section by showing that the space H(p, ¢, ¢) for 1 < p
< oo ig isomorphic to the space I(p, q) of those sequences {b,};_, for which

(S per) e

kely,

The norm in I(p, ¢q) is defined in an obvious way (cf. [11]). We point out
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that I(p, p) = 1. We shall generalize the case 1 < p < oo of the following
result of Lindenstrauss and Pelezynski [13]. _

THEOREM (LPe). The space H(p,p,1/p), L <p < oo, 18 isomorphic
to 17, :

Although our method does not work in the cases p = 1 and p = oo
we can explicitly describe an isomorphism of H(p, q,¢) onto I(p, q).
We need _

LEMMA 2.1([19], Ch. X, Theorem  7.10). Let e, = exp(2wi/2""),
n>=>0 and 1 <p << co. Then

O Al < 27" ( D) 14, (D)) < Clld, -

kel

THEOREM 2.6. Let 1 < p < oo and U(f) = {b,}neo, where
b = @272 A, (ep), kel

Then U is an isomorphism of H(p, q, ) onto I(p, q).

Proof. Let X = H(p, q,9) and Z = I(p, g). Theorem 2.L(b) and
Lemma 2.1 show that U(X) < Z and, moreover,

CHIflx < NU(DNz < Clflx-
It remains to be shown that Z = U(X). Let {¢,};_, € Z. Since
card{ek: kel,} = 2“‘1, n>=1,

there is a sequence {h,}2_; of polynomials such that &, is of degree 2"~ ' —1
and h,(e¥) = ¢, for k e I,,n > 1. Then {¢,} = U(g), where

2’”/——1

9(2) = o+ D (2772l (2).

This completes the proof.

3. Some applications to H” spaces. Theorem 2.1 enables us to establish
‘a connection between some classical inequalities concerning H” spaces.
The following result is due to Hardy and Littlewood and may be found
in [8]. '

TurorEM (HL IV). Let p <2 << g < oo and f(0) = 0. Then

[ Q=05 (e, far < CIfI,

IFIE<C [ (L—r)ME(r, f)ar.
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A consequence of the well-known theorem of Littlewood and Paley
[19], Ch. XV, p. 233, is

THEOREM (LP). Let 1 <p <2< qg< oo, Then

DA <CIfly  and IR0 D14,
n=g n=0

It has been shown by Sledd [18], Theorem 3.2, that Theorem (LP}
may be sharpened in the following way.

THEOREM (S). Let 1 <p <2< q < oo. Then

(<=1 1
(3.1) D4 <O [ Q—nM(r, f)ar
=1 0
and
1 oo
(3.2) [ad=nr, yar<c ) 14,02

We shall prove that the conditions p < 2 and ¢ > 2 are superfluous.
More precisely, we have

PRrOPOSITION 3.1. The inequalities (3.1) and (3.2) are valid for 1 < p
< oo and 0 < g << oo, respectively. If p < 1, then

o

Dl <c f A—7) M (r, f*)dr.

n=1

Combining this with Theorem (HL IV) we obtain the inequality

M4 <COIfE, p<1.
n=0

Proposition 3.1 is a consequence of the following more general faect.
Here f¥! is the fractional derivative of f, i.e.

\ﬁfﬁ%ﬂ_—{_—l) nzn’ ‘320.

Jc[ﬂ] (z)
n=0
THEOREM 3.1. Let X= H(p,q,¢), Y= HA(p,q,v) Z = H(1, q, ¢),
where y(r) = @(r)r~’. Then ||fP)x < Cliflly for all p; lIflly < CIf"7lix
Jor 1< p < 005 |Iflly < CUfP N5 for p<1.
For the proof we need the following lemma.
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LeMMA 3.1. Let h(2) = > a;2", 0 <m < n. Then

Rl r" < Mp(r, B) < [Bllpr™.
Proof. It is easily seen that
My(ry h) = My(L/r, g)r",

where

g(z) = Z a@," ",
k=m
Since ¢ is'a polynomial and 1 /r > 1, we have
M,(L/r, g9) = M,(1, g) = |hll,.

This proves the left-hand side inequality. The rest of the proof is similar.
Proof of Theorem 3.1. Let

K, (B) = sup(1—2)"* "M, (r, 4), n>=0,8>0.

r

Then, by a result of Hardy and Littlewood [9],
On the other hand, using Lemma 3.1, it is easily proved that

07K, (B) < 27041, < OK,, ().
Thus '
(3.4) 2" | Al < 1A, < 0274,
Now the desired result follows from Theorem 2.1.
We remark that, for p > 1, inequality (3.4) is of an elementary char-
acter and can easily be proved by standard arguments (without appealing

to (3.3)). Namely, if p >1 and g > 0, we apply Minkowski’s inequality
(in eontinuous form) to the relations

T(B)A,(e%) = [ (L —r)~* 4P (re")ar,

2
2m AP (re") = D(B+1) [ A,( )1 —re™*)~" ' ds
0



228 M. Mateljevié and M. Pavlovié
and obtain
1
14l < O [ (="M (r, AP dr,
‘ 0

M, (r, AP < €1 —1)"P||4,],.

These estimates together with Lemma 3.1 give inequality (3.4).
Combining Theorems 2.1 (b) and 2.3 with Theorem (HL III), we
obtain
THEOREM 3.2. Let p < oo and ¢ > max {1, p}. Then

(3.5) D24, < S
n=>90
and
(3.6) D) (n+1)722 s, 12 < Ol 11,
n=0

In the case p =2 inequality (3.5) is weaker than the inequality

N4 <oifiz, 2<p< o

n=0

This is a known result of Littlewood and Paley [19], Cl. XV, Theorem
4.22, and can be derived from the inequality

1
[@—ryp My, fYar < CIf 1B, 2<p< oo,
i) . )
by use of Theorem 3.1. The last inequality is also a result of Littlewood
and Paley [19], Ch. XTIV, Theorem 3.24.
It may easily be proved that the dual of HA(p, q, §),forl < p, g < oo,

is HA(p', ¢’y —pB), where p’ and ¢’ are the conjugate indices of p and gq.
- The pairing is given by

q%
(fs9) = D, @b
n=0
Using this duality and inequality (3.5), one can prove that
(3.7) - Ifip<0 Y 2mPladig, i, 1< g<p < oo.
n=0 .

An immediate consequence of (3.7) and Theorem 3.1 is the following
result of Flett [6], Theorem 1.
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COROLLARY 3.1. Let 1 << q < p < oo. Then

i
IfIE<C Jf (1 —9)™ 222 372 (5 f13) gy

0

Now from Theorem 2.3 and Corollary 3.1 it follows that

(3.8) Il < Z (n+1)Pa P2 sllje, 1< g<p< oo.

From these various inequalities one can deduce some extensions of
Theorem (HL II). For example, taking ¢ = 2 in (3.6) and (3.8), we obtain
the following result of Holland and Twomey [10]. : ,

n

COROLLARY 3.2. Let A, = 3 (k-+1)|a,l2. Then

k=0
N1 TAEL O i p<e,

7=0

and
IfIE<0 D (+1)72 42" if 2<p < oo,
n=0
Finally, we remark that a number of inequalities, including the (C.1)

means, can be proved if we use Theorem 2.2 and Hardy-Littlewood’s and
Littlewood—Paley’s results. An example is the inequality

T 1P e, R < ONFIE, P <1,

[\A 8

1l
(=1

V(2

which ig a consequence of Theorem (HL 1II) and Theorem 2.2.

4. Proofs of the main results. The proof of Theorem 2.1 is based on
L%-behaviour of the functions

Fi(r) = (L—r)"Y o1 —r)sup {A,r*": .n > 0}

and
Fo(r) = (1—7) (1 1) 2,1 ",

where {1,} is a sequence of non-negative real numbers.
ProPOSITION 4.1. Let F' = F, or F = F,. Then
C P ze < (27" A} lhe < 1P e

For the proof we need some lemmas.

3 — Studia Mathematica 77.3
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LeMMA 4.1, Let y(r) = ()™ where q < oo, qa—e > —1 and
a satisfies condition (1.1). Then

1
C a7 y(1fw) < f p(1—r)r*tdr < Co'p(l/w), . x>1.
0
Proof. We have
L - x
I(@):= [ p(—r)r7ar = 2™ [ p(tfa) (1 —/z)*db.
0 0 ,

Since ¢ satisfies the conditions (1.1) and (1.2) we have
ptfn) SO +¥)p(Lfr), 0<t<az (B> a),

and consequently
x
I(a) < Co~'p(1z) [ (1°+ 1) ~" (1 —t/z)" " @t
0 i

< OCx~'y(l/z).

This proves the right-hand side inequality. The left-hand side in-
equality is easy and does not depend on the conditions (1.1} and (1.2).

LEMMA 4.2. Let w(r) =@(r)r %ye<a and a satisfies (1.1). Then
Clyp(lj) < supyp(lL—r)r" < Cyp(ljw), @>1.

The proof is similar to that of Lemma 4.1.
Besides these lemmas we shall use the familiar estimate

(4.1) Dot < or(L—r)*, B> 0.
n=0

Proof of the proposition. We shall consider onlyA the ease ¢ << oo.
In the case ¢ = oo the proof is similar and is based on Lemma 4.2.
Let ¢ < co. Then

F(r)t= Fy(r)?> (1—r) " p(1 —r)2A%* ¢ for all &
and, by (4.1),

P> 0 lp(L—r)t N om™ 2,02,
n=0
Henece

(4.2) F(r)?=C 1l —r) Zznlﬁ.z"(ﬁg)f'

N==0
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On the other hand, from Lemma 4.1 and hypothesis (1.2) it follows that
1
[ oL =)@ D@y > 0712 "p(27").
0 .

Coinbining this with (4.2), we obtain the right-hand side inequality in
Proposition 4.1.
To prove the left-hand side inequality, let

-1 - -1
77@ — 2%67.2” , en — 9 "alnﬂ"zn
where 6 = a/2 and « satisfies (1.1). Then

(ng=<

SN

M

N O’

AL

<01 —r)y® 2’ g-na? 02" e

n=0

i
=

LMS

. where we have used inequality (4.1). Hence

F(r)i< Fy(r)? < Op(l —7) Z g—nat 42,2

n=0

where y(r) = ¢(r)%~%"'. Now the desired result follows from Lemma 4.1.
. The assertions (a), (b) and (c) of Theorem 2.1 are a simple conse-
quence of Proposition 4.1 and the following three lemmas.

LEMMA 4.3. Let s = min{p,1}. Then

My(ry f) < lal*+ ZuAn.;_lnS

Proof. By the triangle inequality and Lemma 3.1,

My (ry ) < lal® -+ ZMS Api)

< lag|*+ 2 14y allpr™™.
n==0

LeMMA 4.4, Let 1 < p < oo. Then
14,07 < CMy(r,f), n>0.
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Proof. By the Riesz projection theorem and Lemma 3.1, we have
I4,1,72" < My (r, 4,) < OMp(r, f).
LEmMA 4.5. If p <1, then
14,17 < CMy(r, f).
Proof, This follows from the inequality
My(r, 4,) <K COM(r,f), p<1,

[19], Ch. VII, Theorem 6.8. ‘
Proof of Theorem 2.1 (d). We shall consider only the case p <
In the case p = oo the agsertion is proved in a gimilar way by use of
[3], Lemma 1.14.
Using the inequality M, (r, 4,) < C(L —r)'"""2 4,1, » <1, [4], The-
orem 5.9, and Lemma 3.1, it may easily be seen that

Cl4,ll, = 2" 4,0,  p<1.
Hence _
HA(Z’)Q:‘P)CHA(Z”°°7¢)CHA(17 o, p), p<1,

where yp(r) = o (r)r'?~1, Thus Theorem 2.1 (d) is a consequence of the
following stronger result.
PRrOPOSITION 4.2. Let p<1 and w(r) = @(r)r'®~1 Then

H(p,q,9) ¢ HA(1, oo, v).

Proof. Let X =H(p,q,¢) and Y = HA(1, oo, p) and suppose
that X < Y. Then, by the closed graph theorem (X and Y are complete),
there is a positive constant ¢ such that

43) p(@ )4l < Olflle, n=0,feX.

To obtain a contradiction we use a generalization of an example due to
F. Riesz [2], p. 599.

Let
f@) = 2" (L —2)P (1 —2"")"?
= 2" (L—2*" )P Z 2",
IGT——O
where
I'(k 12
0 = __(cj;_@;)_/ ¢~ (k41)¥P-1,

k(2 /p)
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Hence

o1

Aaf @) =" () 0]y w0,

k=0

‘Using the inequality

o) S
k=0
(2], p. 476, we obtain
Ol dyyrflh = (n4-1)2nC0=0,

= Y1) 0y
k=0

This is a contradiction of (4.3) because, as is easily verified,
Iflx < 02" (277).

We pass now to the proof of Theorem 2.2. The following lemmas
will be needed.
LEMMA 4.6, Let 1<p < o and £k =0,1,... Then

lollp?™ < My(r, ) < @ —2)2 X llo,ll, (n-+1)r™
=0

Proof. The first inequality follows from the inequality M ,(r,f)

= M,(r, 0,) and Lemma 3.1; the second follows from the formula

o0

flre"y = L= Y o, (¢")(n+1)r".

=0

LEMMA 4.7. Let 1<p<< 00,0k <<n. Then
(n —k-+1)llogll, < (n+1)llonl,-

Proof. We have

-
”675”92 HCT Gn” = Oy — O_’
A | RGPS N
= ”O'lc”pw 7 __}_i‘ ”0'12”1) = Ho'lc”p“ M%—{—f IIG']il’p.’

where Bernstein’s inequality has been used.

LEMMA 4.8. Let F(r) = (L—r)*" "M o1 —r) > x,r", where {r,} is
n=0 ]
a monotone seqience of non-negative real numbers. Then F belongs to L(0, 1)
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if and only if

[+

) (n +1)“3‘1/qwn} eld.

n=0

{(P(nj—l

This is obtained from Proposition 4.1 by a Cauchy condensation test
type argument.

Proof of Theorem 2.2. Consider first the case ¢ < oc. Let fe H(p, ¢q, ¢),
1< p< oo. Then

1 —r) (L —r)IME(r, ) = p(L—7)2 > ME(r, )"

n=0

=L —1)2 D [0, gy,
n=0

by Lemma 4.6. Now integration yields
1 | (<]
0o > [[(L—r) oL —r)tME(r, flar = 07 Y p(Lf(n+1)2n+1)" 0,2,
n=0

0

where Lemma 4.1 and condition (1.2) have been used.
Conversely, suppose that (2.1) holds. Let

@y = D (b+1)(n—Fk+1) oy,
k= :
Then

(4.4) Z [ollp(n +1)9™ = (1 —7)2 Zw ",

On the other hand, using Lemma 4.7, we see that

0, < O (1 +1)3 0yl

and therefore
o (Lin+1))2n 1) g < co.
n=0

Now we use Lemma 4.8, equality (4.4) and the right-hand side inequality
in Lemma 4.6 to conclude that fe H(p, q, ¢).

Finally, suppose that ¢ = oo. The implication f e H (oo, p, ¢)=-(2.1)
is a direct consequence of Lemmas 4.2 and 4.6. To prove the converse,
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observe that, by Lemma 4.6,

M, (% ) < 41 —1) D lloyll,(n+1)r",
n=/0

. Hence

(45) Mp(ﬂ,f) < 4sup Ho'n”;ﬂ'n’ p=1,

because

A= Yot =1

Now the result follows from (4.5), by Lemma 4.2.

5. Remarks. Let y be a positive increasing function defined on
(0,1] and let ¢ > 0. Then there is a positive function K (b), b > 0, such
that |

(5.1) K(b)¢-°¢(b/x)<fzp(i-r)(l—w)e—’lw-"ldr, z>=b,
and | |
(5.2) K (b)y(blr) < supzp(l r)r* L &= b.

On the other hand, condition (1.2) is equivalent to

(5.3) P27 < Op2™Y), n>0.

Using these estimates, one can prove that condition (1.2) is necessary
for the validity of Theorem 2.1 (a). However, Theorem 2.1 (c¢) is valid
for any increasing function ¢. This may be seen from Lemma 4.5 and the
proof of Proposition 4.1 if the inequalities (5.1) and (5.2) are used.

We also remark that if ¢ > 1, the proof of Theorem 2.2 can be sim-
plified by using the inequality

G4 MR, < A—m Yo din1),  1<g< oo
n=>0

which is an immediate consequence of Lemma 4.6 and Jensen’s inequality.

In fact, we can do somewhat more. Using (4.5), (5.4) and the fact that
the results of Lemmas 4.1 and 4.2 remain true for a = 0, we obtain the
following partial generalization of Theorem 2.2.

THEOREM 5.1. Let 1 < ¢ << o and let ¢ satisfies (5.3). Then f belongs
o H(p, q, ¢) if and only if condition (2.1) is satisfied.
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The special case p = g = oo is obtained by Bennett, Stegenga and
Timoney [3], Theorem 1.4.
ExavmpLr. The function

¢(r) = (1+ |logr|)™

satisfies (1.2) (or, equivalently, (5.3)) but not (1.1). Theorem 5.1 shows
that, if 1 < ¢ < oo, then fe H(p, q,¢) (p = 1) if and only if (2.1) holds.
- Let us observe that the space H(p, ¢, ¢) is infinite-dimensional because
1

f(l—?)"1¢(1~7")qd7”< 0o, 1<<g< oo,

: : _

Consider the funection

It is easily verified that
M (r,9) = C ()

and, consequently, g ¢ H (oo, 2, ¢). On the other hand, g e HA(o0, 2, ¢).
ThlS shows that condition (2. 1) in Theorem 5.1 cannot be replaced by
(1.4).

In conclusion we mentlon a problem concerning., Theorems (LPe)
and 2.6.

ProBrEM. If ¢ satisfies the conditions (1.1) and (1.2), is the space
H(1, q, ¢) isomorphic to I(1, ¢)?

We remark that some properties of H(1, ¢, a) and I(1, ¢) are similar.
For example, if 1 < g < oo, then these spaces are reflexive. The reflexivity
of H(1,q, o) follows from a very general result of Muramatu [17], The-
orem 1.4. In particular, Muramatu’s theorem asserts that the dual of
H(p,q, o) is isomorphic to H(p', ¢, a), where p € {1, oo} and p’, ¢’ are
the conjugate indices: 1/p-+1/p’ =1, 1/q-+F1/¢" = 1. See also [5].

After completing this paper we knew that if ¢(r) = * and ¢>1,

then Theorem 2.1 (b) can be derived from a result of Lizorkin [14], The-
orem 3.
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