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Lp BERNSTEIN ESTIMATES AND APPROXIMATION

BY SPHERICAL BASIS FUNCTIONS

H. N. MHASKAR, F. J. NARCOWICH, J. PRESTIN, AND J. D. WARD

Abstract. The purpose of this paper is to establish Lp error estimates, a
Bernstein inequality, and inverse theorems for approximation by a space com-
prising spherical basis functions located at scattered sites on the unit n-sphere.
In particular, the Bernstein inequality estimates Lp Bessel-potential Sobolev
norms of functions in this space in terms of the minimal separation and the Lp

norm of the function itself. An important step in its proof involves measuring
the Lp stability of functions in the approximating space in terms of the �p norm
of the coefficients involved. As an application of the Bernstein inequality, we
derive inverse theorems for SBF approximation in the LP norm. Finally, we
give a new characterization of Besov spaces on the n-sphere in terms of spaces
of SBFs.

1. Introduction

Various applications in meteorology, cosmology, and geophysics require a mod-
eling of functions based on scattered data collected on (or near) a sphere, i.e., when
one does not have any control on where the data sites are located [7, 5, 6]. On
Sn, the unit sphere in Rn+1, n ≥ 1, a popular method is to construct the required
approximation from spaces of spherical basis functions (SBFs), which are kernels
located at points in a discrete set X = {ξj}Nj=1 ∈ Sn, the set of centers or nodes.

A function φ : [−1, 1] → R is an SBF on Sn if, in its expansion in ultraspherical

polynomials P
(λn)
� , λn = n−1

2 , the Fourier-Legendre coefficients {φ̂(�)} of φ are all
positive; see section 3 for details. These φ are to be used as kernels of the form
φ(x · y), x, y ∈ Sn, x · y being the usual “dot” product. The approximation space
here is the span

Gφ,X := span{φ(x · ξ)}ξ∈X .

Following usage common in the neural network community, we will say that a
function g ∈ Gφ,X is an SBF network associated with φ. The SBF φ is sometimes
called an activation function or a neuron, but we will not use these terms here.

Received by the editor October 15, 2008 and, in revised form, July 8, 2009.
2000 Mathematics Subject Classification. Primary 41A17, 41A27, 41A63, 42C15.
Key words and phrases. Sphere, Bernstein estimates, approximation, spherical basis functions.
The research of the first author was supported by grant DMS-0605209 from the National

Science Foundation and grant W911NF-04-1-0339 from the U.S. Army Research Office.
The research of the second author was supported by grants DMS-0504353 and DMS-0807033

from the National Science Foundation.
The research of the fourth was supported by grants DMS-0504353 and DMS-0807033 from the

National Science Foundation.

c©2009 American Mathematical Society

1647

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1648 H. N. MHASKAR, F. J. NARCOWICH, J. PRESTIN, AND J. D. WARD

Such φmay have singular behavior. This is the case for certain thin-plate splines;
(1 − x · y)−1/2 is an SBF in Sn, n ≥ 2, for instance. However, when they are
continuous, they are positive definite in Schoenberg’s sense [30]. In that case the
interpolation matrix [φ(ξi · ξj)] is positive definite, and it is possible to use SBFs to
interpolate data given at the points in X.

The focus of this paper is approximation. To handle noisy data, both least
squares and quasi-interpolants have been used for many years. More recently, the
issue in many meshless numerical methods for solving PDEs is how well a network
approximates a solution to the PDE. Singular SBFs should prove useful in probing
for a corresponding singularity in the solutions.

To be effective, though, such methods require knowing the degree of approxima-
tion in various spaces, especially the Lp, 1 ≤ p ≤ ∞. The L2 case for SBFs φ with

φ̂(�) ∼ (� + 1)−β, β > n/2 was recently investigated in [23], with nearly optimal
rates being attained by interpolatory networks. The known estimates on the degree
of approximation in the case of Lp, p �= 2 provided by interpolatory networks are
not asymptotically optimal. This has led to the development of other approxima-
tion tools [15, 13, 21], involving SBFs or spherical harmonics, in Lp, 1 ≤ p ≤ ∞.
A central step in obtaining approximation rates in L2 was establishing a Bernstein
estimate, which was then used to get an inverse approximation theorem.

The paper has three main goals. The first is to derive an Lp Bernstein inequality,
for 1 ≤ p ≤ ∞; namely, ‖g‖Hp

γ
≤ Cq−γ‖g‖p, 0 < γ < cφ. Here Hp

γ is a Bessel-
potential Sobolev space [32, 34]; it measures derivatives of g (cf. section 2.3). The
quantity q is half of the minimal separation of points in X; q−1 plays the role of a
Nyquist frequency.

In establishing the Bernstein inequalities it is also necessary to measure the Lp

stability of the basis {φ(x · ξ)}ξ∈X for Gφ,X . We do this by introducing a new
quantity, the Lp stability ratio, rG, p, which is defined in equation (1.1) below. The
stability ratio is similar to the �p condition number for a matrix.

The second goal is to obtain Lp error estimates, 1 ≤ p ≤ ∞, for approximating
a function by networks in Gφ,X . To give a sample of these results, we need two
other quantities related to the geometry of X: the mesh norm h, which measures
how far points in Sn can be from those in X, and the mesh ratio ρ := h/q, which
measures the uniformity of the distribution of points in X. These are discussed in
section 2.1.

A typical estimate that applies to an SBF that has a Green’s function singularity
similar to a thin-plate spline restricted to Sn is distHp

γ
(f,Gφ,X) ≤ Chβ−γρn‖f‖Hp

β
,

where β is related to the singularity of the SBF.
We combine these direct (Favard-Jackson) estimates with the Bernstein in-

equalities to provide new characterizations of Besov spaces Br
τ,p on Sn, charac-

terizations that use rates of approximation from the Gφ,X . The Bernstein esti-
mates are then used to establish inverse theorems and obtain nearly optimal rates
of approximation. Under the restrictions in Theorem 6.14, if f ∈ Lp satisfies

distLp(Sn)(f,Gφ,X) ≤ cf
hμ
X

logt
2(h

−1
X )

for any τ > t−1 > 0, 0 < r ≤ μ, and in addition

for all X in a certain class, then f ∈ Br
τ,p.

The third goal is to show that the results obtained here will apply for nearly
all of the SBFs of interest. In particular, they apply to various RBFs restricted to
the sphere: the thin-plate splines and Wendland functions, whose Fourier-Legendre
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Lp BERNSTEIN ESTIMATES AND APPROXIMATION 1649

coefficients have algebraic decay, and also Gaussians and multiquadrics, whose co-
efficients decay faster than algebraically. SBFs in the latter class are well known to
be difficult to treat.

The paper is organized this way. Section 2 reviews various geometric quantities,
such as the set of centers, the mesh norm, and so on. It also discusses spherical
harmonics and the Bessel-potential Sobolev spaces. Section 3 discusses SBFs, their
Fourier-Legendre expansions, and deals in detail with the SBFs mentioned earlier,
along with ones corresponding to certain Green’s functions that play a significant
role in the paper. It is here that we will show that nearly all of the SBFs of interest
have the properties necessary for our results to hold. We also mention that we
obtain precise asymptotic expressions for the Fourier-Legendre coefficients in the
case of Wendland functions.

The strategy for establishing the Bernstein inequality, which will be detailed
below, consists of two key components: Lp approximation results for functions
in Gφ,X by means of spherical polynomials, and Lp stability estimates; these are
developed in sections 4 and 5, respectively. The approximation results are based
on Marcinkiewicz-Zygmund inequalities developed in [17, 16, 21], as well as frame
results from [21]. The stability results, which are of interest in their own right, are
for all Lp, not just for interpolation with continuous SBFs. To obtain them, we
introduce a stability ratio, which provides some measure of the extent to which a
finite set in Lp is linearly independent.

In section 6, the results of the previous two sections are combined to yield Lp

Bernstein inequalities (section 6.1), direct theorems for approximation by networks
in Gφ,X (section 6.2), characterizations of Besov spaces on Sn (section 6.3), and
inverse theorems for Lp functions approximated at given rates by SBF networks
(section 6.4).

Strategy. Let g be an SBF network in Gφ,X ⊂ Hp
γ (S

n), so that it has the form

g(x) =
∑
ξ∈X

aξφ(x · ξ).

One of our main goals is to obtain an Lp Bernstein inequality for such networks, that
is, a bound of the form ‖g‖Hp

γ
≤ Cq−γ‖g‖p, where the norms are those appropriate

for Sn and γ > 0 is bounded above by a constant depending on φ and p.
Our strategy involves approximating g by degree L spherical polynomials on

Sn, where L ∼ q−1. Now, for fixed L and any S, there is a Bernstein inequality,
‖S‖Hp

γ
≤ CLγ‖S‖p, which can be found in Theorem 4.10. Using it and manipula-

tions involving the triangle inequality, one has that

‖g‖Hp
γ
≤ ‖S‖Hp

γ
+ ‖g − S‖Hp

γ
≤ CLγ‖S‖p + ‖g − S‖Hp

γ
,

which holds for given L and any S.
Obtaining an appropriate polynomial S is crucial to the argument. To do that,

we will use the frame operators introduced in [21] and discussed in more detail in
section 4.3 below. In particular, we need reconstruction operators BJ , with J ∼
log2 L. These rotationally-invariant operators have other very useful approximation
properties, which are given in Proposition 4.9. They take Lp spaces and the space
of continuous functions boundedly into spherical polynomials having degree O(2J).
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Consequently, with S = BJg, we have ‖S‖p ≤ C‖g‖p, and also

‖g‖Hp
γ
≤ C2γJ‖g‖p + ‖g − BJg‖Hp

γ
= C2γJ‖g‖p +

|a|p
‖g‖p

·
‖g − BJg‖Hp

γ

|a|p
· ‖g‖p,

where |a|p =
(∑

ξ∈X |aξ|p
)1/p

is the p-norm of a = {aξ}ξ∈X .

The functions {φ((·) · ξ)}ξ∈X are linearly independent and form a basis for G,
and so the pairing a ↔ g is bijective. Since G has finite dimension |G|, the ratio

(1.1) rG, p := max
G�g �=0

|a|p
‖g‖p

is finite; it will be called the p-norm stability ratio of the network G = Gφ,X . This
ratio is similar to a condition number in interpolation, but for Lp. With it, the
inequality directly above becomes

(1.2) ‖g‖Hp
γ
≤

(
C2γJ + C ′rG,p

(‖(I − BJ)g‖Hp
γ

|a|p

))
‖g‖p.

To obtain the desired Bernstein inequality, we require two bounds: the first
on ‖(I − BJ )g‖Hp

γ
/|a|p and the second on rG,p. The first bound relies only on

approximation results; these we cover in section 4. The second is a bound on the
stability ratio. This bound requires a more detailed analysis involving both the
geometry of X and properties of φ. It is carried out in section 5.

An interesting point is that the two bounds make different demands on the prop-
erties required for φ. This makes the analysis of both bounds subtle. Fortunately,
the common demands are satisfied by large classes of SBBs, including restrictions to
Sn of the most common RBFs: the thin-plate splines, Wendland functions, Gaus-
sians, Hardy multiquadrics, and others.

2. Background

2.1. Background and notation for Sn.
Centers and decompositions of Sn. Let X be a finite set of distinct points in

Sn; we will call these the centers. For X, we define these quantities: mesh norm,
hX = supy∈Sn infξ∈X d(ξ, y), where d(·, ·) is the geodesic distance between points

on the sphere; the separation radius, qX = 1
2 minξ �=ξ′ d(ξ, ξ

′) ; and the mesh ratio,
ρX := hX/qX ≥ 1.

For ρ ≥ 1, define Fρ = Fρ(S
n) to be the family of all sets of centers X with

ρX ≤ ρ . We say that X is ρ-uniform if X ∈ Fρ. For every ρ ≥ 2, Fρ(S
n) is not

only nonempty, but it contains nested sequences of sets of centers for which hX

becomes arbitrarily small; precisely, the result is this:

Proposition 2.1 ([23, Proposition 2.1]). Let ρ ≥ 2 and let Fρ be the corresponding
ρ-uniform family. Then, there exists a sequence of sets Xk ∈ Fρ, k = 0, 1, . . ., such
that the sequence is nested, Xk ⊂ Xk+1, and such that at each step the mesh norms
satisfy 1

4hXk
< hXk+1

≤ 1
2hXk

.

We will need to consider a decomposition of Sn into a finite number of non-
overlapping, connected regions Rξ, each containing an interior point ξ that will
serve for function evaluations as well as labeling. For example, if X is the Voronoi
tessellation for a set of centers X, then we may take Rξ to be the region associated
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Lp BERNSTEIN ESTIMATES AND APPROXIMATION 1651

with ξ ∈ X. In any case, we will let X be the set of the ξ’s used for labels and
X = {Rξ ⊂ Sn | ξ ∈ X}. In addition, let ‖X‖ = maxξ∈X{diam(Rξ)}.

2.2. Spherical harmonics. Let n ≥ 2. Let dμ be the standard measure on the
n-sphere, and let the spaces Lp(Sn), 1 ≤ p ≤ ∞, have their usual meanings. In
addition, let ΔSn denote the Laplace-Beltrami operator on Sn. The eigenvalues of
ΔSn are −�(� + n − 1), � = 0, 1, . . .. For n ≥ 2 and � fixed, the dimension of the
eigenspace is

(2.1) dn� =
�+ λn

λn

(
�+ n− 2

�

)
�→∞∼ �n−1

λn(n− 2)!
, λn :=

n− 1

2
.

For n = 1, the case of the circle, d10 = 1 and d1� = 2, � ≥ 1.
A spherical harmonic Y�,m is an eigenfunction of ΔSn corresponding to the eigen-

value −�(�+n−1) [19, 31], where m = 1, . . . , dn� . The set {Y�,m : � = 0, 1, . . . ; m =
1, . . . , dn� } is orthonormal in L2(Sn). Denote by H� the span of the spherical har-

monics with fixed order �, and let ΠL =
⊕L

�=0 H� be the span of all spherical
harmonics of order at most L. The orthogonal projection P� onto H� is given by

(2.2) P�f =

dn
�∑

m=1

〈f, Y�,m〉Y�,m .

We regard the sphere Sn as being the unit sphere in Rn+1, and we let the
quantity ξ · η denote the usual “dot” product for Rn+1. Using the addition formula
for spherical harmonics, when n ≥ 2, one can write the kernel for this projection as

(2.3) P�(ξ · η) =
dn
�∑

m=1

Y�,m(ξ)Y�,m(η) =
�+ λn

λnωn
P

(λn)
� (ξ · η), λn :=

n− 1

2
,

where P
(λn)
� (·) is the ultraspherical polynomial of order λn and degree �. Also, we

have that ‖P (λn)
� ‖∞ ≤ P

(λn)
� (1) =

dn
� λn

�+λn
. We will briefly discuss these polynomials

in section 3, in connection with spherical basis functions. For n = 1, λ1 = 0. In
that case, the kernel for P� has the form

(2.4) P�(ξ · η) =
{

1
2π , � = 0,

1
πT�(ξ · η), � ≥ 1,

where T�(·) is the degree-� Chebyshev polynomial of the first kind, which is a
limiting case of the ultraspherical polynomials [33, Section 4.7].

We will also need to consider operators of the form
∑∞

�=0 c�P�. The kernels for
the projections P� then provide us with kernels

∑∞
�=0 c�P�(ξ · η), which may be

distributional.

2.3. Bessel-potential Sobolev spaces. The spherical harmonic Y�,m is an eigen-
function corresponding to the eigenvalue −�(� + n − 1) = λ2

n − (� + λn)
2 for the

Laplace-Beltrami operator ΔSn on Sn. It follows that � + λn is an eigenvalue cor-
responding to the eigenfunctions Y�,m ,m = 1, . . . , dn� , of the pseudo-differential
operator

(2.5) Ln :=
√
λ2
n −ΔSn =

∞∑
�=0

(�+ λn)P�.
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Let γ be real, 1 ≤ p ≤ ∞ and n ≥ 2. If f is a distribution on Sn, define the
Bessel-potential Sobolev spaces Hp

γ (S
n) [32, 34] to be all f such that

(2.6) ‖f‖Hp
γ
:=

∥∥∥ ∞∑
�=0

(�+ λn)
γP�f

∥∥∥
Lp

< ∞,

where P� is from (2.2). The notation we use here is that of Triebel [34]. Strichartz
[32] defined these spaces on a complete Riemannian manifold, using the equivalent
operator (1−ΔSn)

γ/2 to do so. One more thing:

Remark 2.2. The spaceH2
γ(S

n) is the domain of Lγn [32, Theorem 4.4], which implies

that H2
γ(S

n) is norm equivalent to the usual Sobolev space W γ
2 (S

n).

3. Spherical basis functions

For any real λ > 0, not just λn = n−1
2 , the ultraspherical polynomials satisfy

the orthogonality relation

(3.1)

∫ 1

−1

P
(λ)
� (x)P

(λ)
k (x)(1− x2)λ−

1
2 dx =

21−λπΓ(�+ 2λ)

(�+ λ)Γ2(λ)Γ(�+ 1)
δk,�.

For the circle, we have λ1 = 0. With � ≥ 1, as λ → 0, the ratio P
(λn)
� (·)/λ converges

to (2/�)T�(·), the degree-� Chebyshev polynomial of the first kind [33, Section 4.7].
Consider a function φ in Lp or C. We will assume that φ has the following

expansion in the orthogonal set of ultraspherical polynomials:

(3.2) φ(ξ · η︸︷︷︸
cos θ

) :=

{
1
2π φ̂(0) +

1
π

∑∞
�=1 φ̂(�) cos �θ, n = 1,∑∞

�=0 φ̂(�)
�+λn

λnωn
P

(λn)
� (cos θ), n ≥ 2,

where ωn := 2π
n+1
2

Γ(n+1
2 )

is the volume of Sn.

Functions of this form are called zonal. We will assume that the series converges
in at least a distributional sense. The coefficients in the expansion are obtained via
the orthogonality relations in (3.1). These are given below:

�+ λn

λnωn
φ̂(�) =

(�+ λn)Γ
2(λn)Γ(�+ 1)

21−λnπΓ(�+ 2λn)

∫ 1

−1

φ(x)P
(λn)
� (x)(1− x2)λn− 1

2 dx.

Using Rodrigues’ formula [33, Eqn. (4.7.12)] for P
(λn)
� (x) in the equation above and

employing the duplication formula and other standard properties of the Gamma
function, one can obtain this expression:

φ̂(�) =
(−1)�ωnΓ(λn + 1)

2�
√
πΓ(�+ λn + 1

2 )

∫ 1

−1

φ(x)
d�

dx�

{
(1− x2)�+λn− 1

2

}
dx,

which holds for all �, even when n = 1; i.e., λ1 = 0.
Schoenberg [30] defined φ to be positive definite if for every set of centers X the

matrix [φ(ξj · ξk)] is positive semidefinite. He showed that φ is positive definite if

and only if the coefficients satisfy φ̂(�) ≥ 0 for all � and
∑∞

�=0 φ̂(�)d� < ∞. If in

addition φ̂(�) > 0, then [φ(ξj · ξk)] is a positive definite matrix and one can use
shifts of φ to interpolate any function f ∈ C(Sn) on X. We will say that φ is a
spherical basis function (SBF) in this case.

One usually makes the assumption that the sum
∑∞

�=0 φ̂(�)d� < ∞, for then
φ is continuous and φ(1) = ‖φ‖L∞ . This is essential if we are doing standard

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Lp BERNSTEIN ESTIMATES AND APPROXIMATION 1653

interpolation of a function from its values on X. However, we are more interested
in approximation than interpolation, and so we will not make this assumption here.

Indeed, we will say that any distribution φ for which φ̂(�) > 0 for all � is a spherical
basis function. In general, we will be interested in SBFs in Lp.

Zonal functions that satisfy φ̂(�) > 0 for � ≥ L > 0 are said to be condition-
ally positive definite SBFs. In the RBF theory on Euclidean space, the difference
between strictly positive definite RBFs and conditionally strictly positive definite
RBFs is significant. On Sn, this difference is less important: a conditionally posi-
tive definite SBF differs from an SBF by a polynomial of degree L− 1. This does
play a role in interpolation, but is much less significant in approximation problems.
That being the case, unless there is a genuine need to distinguish between the two,
we will refer to both as simply SBFs.

Below we will list Fourier-Legendre expansion coefficients for some of the more
significant SBFs. Apart from certain Green’s functions that we will do first, these
are restrictions of various Euclidean RBFs in Rn+1 to Sn. (The restriction of
any RBF in Rn+1 to Sn is an SBF [24, Corollary 4.3].) These include Gaus-
sians, multiquadrics, thin-plate splines, and Wendland functions. Such SBFs are
RBFs expressed in terms of the Euclidean distance between ξ and η or its square,
‖ξ − η‖2 = 2− 2ξ · η; with t = ξ · η, these give rise to functions of 1− t.

Green’s functions. Let β > 0. The Green’s function solution to LβnGβ = δ is

a kernel with an expansion in spherical harmonics having coefficients Ĝβ(�,m) =
(�+ λ)−β. Properties of Green’s functions are discussed in more detail in Proposi-
tion 4.12. We simply remark that the kernel Gβ is an SBF that is in L1(Sn) for all
β > 0. For us, Gβ will play a significant role. The SBFs we consider will generally
be of two types: φ = Gβ + Gβ ∗ ψ, where ψ is an L1 zonal function, or φ will be
in C∞. The first type includes the thin-plate splines and Wendland functions, and
the second, the Gaussians and multiquadrics.

Thin-plate splines. The thin-plate splines are defined in [35, Section 8.3]; their
Fourier-Legendre coefficients are found in [22, §4.2]. These are given below:

(3.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φs(t) =

{
(−1)�(s)+	(1− t)s, s > −n

2 , s �∈ N,

(−1)s+1(1− t)s log(1− t), s ∈ N,

φ̂s(�) = Cs,n
Γ(�−s)

Γ(�+s+n)

where the factor Cs,n is given by

Cs,n := 2s+nπ
n
2 Γ(s+ 1)Γ(s+

n

2
)

{
sin(πs)

π s > −n
2 , s �∈ N,

1, s ∈ N.

Let ν = � + λn. For large ν, the Fourier-Legendre coefficients φs(�) for the
thin-plate splines have the asymptotic form

(3.4) φ̂s(�) = Cs,nν
−2s−n

⎛⎝1 +

p−1∑
j=1

Gj(n, s)ν
−j +Rp(n, s, ν)

⎞⎠ ,

where Rp(n, s, ν) = O(ν−p) and Gj(n, s) are defined in [25, p. 119].
Two remarks. First, we have made use of G0(n, s) = 1 in the expansion from

[25, p. 119]. Second, when s is an integer or half-integer, φ̂s(�) is a rational function
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of �, and, hence, of ν. In that case, it follows that the series for φ̂s(�) is actually a
convergent power series in ν−1. For other s, the expansion is only asymptotic.

From the structure of the expansions above and the properties of Green’s func-
tions listed in Proposition 4.12, we see that any finite linear combination of thin-
plate splines,

(3.5) φ =

m∑
j=1

Ajφsj , −n

2
< s1 < s2 < · · · < sm,

has the form

(3.6) φ = A1(G2s+n +G2s+n ∗ ψ), ψ ∈ L1.

Wendland functions. All of the SBFs we have discussed so far are related to RBFs
stemming from completely monotonic functions. These RBFs have the property
that they are strictly positive definite or conditionally positive definite in Rn for all
n. The corresponding SBFs are also positive definite in Sn, again for all n. These
RBFs are not compactly supported, however. This can be remedied, but there is a
price: we must give up positive definiteness beyond a certain dimension.

Wendland (cf. [35, Section 9.4]) constructed families of RBFs that are compactly
supported on 0 ≤ r ≤ R, strictly positive definite in Euclidean spaces of dimension d
or less, have smoothness C2k, and, within their supports, are polynomials of degree
�d
2� + 3k + 1. The quantities d, k, and R are parameters and may be adjusted as

needed.
Restricting the Wendland functions to Sn just requires setting r =

√
2(1− t)

and R =
√
2(1− t0), where −1 < t0 ≤ t ≤ 1. We will denote these functions

by φd,k(t). The support of φd,k on Sn is then 0 ≤ θ ≤ cos−1(t0) < π. From [35,

Theorems 9.12 & 9.13], if t > t0, then these functions are polynomials in
√
1− t

that may be put into the form,

pd,k(t) = e1(1− t) + (1− t)k+
1
2 e2(1− t),

where e1 and e2 are polynomials having deg e1 = � 1
2 (�

d
2� + 3k + 1)� and deg e2 =

� 1
2 (�

d
2�+k)�. Outside of this interval, the φd,k are identically 0. Using a power series

argument, we have that, near t � t0, φd,k(t) = A(t − t0)

 d
2 �+2k+1

(
1 + O(t − t0)

)
,

from which it follows that φd,k(t) is piecewise C
 d
2 �+2k+1 near t0. In addition, it

follows that ψd,k(t) := φd,k(t)−pd,k(t) is piecewise C

 d
2 �+2k+1 on the whole interval

[−1, 1]. Putting all of this together, we conclude that

(3.7) φd,k(t) = e1(1− t) + (1− t)k+
1
2 e2(1− t) + ψd,k(t).

Our aim is to use this decomposition to obtain large � asymptotics for the Fourier-

Legendre coefficients φ̂d,k(�) in Sn. This we now do.

Proposition 3.1. Let m = �d
2�+ 2k + 1. If � > deg e1, then

φ̂d,k(�) = (�+ λn)
−(2k+1+n)

(
A0 +

A1

�+ λn
+O(�+ λn)

−2

)
+

L̂mψd,k(�)

(�+ λn)m
.

Moreover, if we choose �d
2� > n, then the φd,k have the structure

φd,k = polynomial +A0

(
G2k+n +G2k+n ∗ ψ̃

)
, ψ̃ ∈ L.
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Proof. The polynomial term e1(1 − t) doesn’t contribute to coefficients with � >

deg e1. The term (1 − t)k+
1
2 e2(1 − t) is a linear combination of thin-plate splines,

starting with s = k + 1
2 . Thus it contributes the first term on the right above. By

Remark 2.2, the function ψd,k is in H2
m, so it can be written as ψd,k = L−m

n Lmn ψd,k.
The second term on the right follows directly from this fact. Finally, the form of

the φ̂d,k(�)’s leads to the second statement. �

Before leaving the topic, we point out that, when �d
2� > n, we have determined

the precise asymptotics of the Fourier-Legendre coefficients for the Wendland func-
tions. Heretofore only upper and lower bounds were known.

Gaussians. The Fourier-Legendre coefficients for the Gaussians, which are given
below, may be found in [36, Ex. 37, p. 383], [15, Example 5.2], and [22, §4.3]:

(3.8)

{
γσ(t) = e−2σ(1−t), σ > 0,

γ̂σ(�) = 2π
(
2π
σ

)λn e−σIλn+�(σ),

where Iλn+� is an order λn + � modified Bessel function of the first kind. For all
� ≥ 0, the coefficient γ̂σ(�) satisfies this bound [22, Proposition 4.3]:

(3.9)
2σ�e−2σπ

n+1
2

Γ(�+ n+1
2 )

≤ γ̂σ(�) ≤
2σ�π

n+1
2

Γ(�+ n+1
2 )

.

Multiquadrics. The Hardy multiquadrics are treated in [22, §5]. The results are:

(3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mqα(t) = −
√
δ2 + 2(1− t), δ > 0,

m̂qδ(�) =
πλnΓ(�− 1/2)

(α2 + 2)�−1/2Γ(�+ λn + 1)

× 2F1

(
�− 1/2

2
,
�+ 1/2

2
; �+ λn + 1;

4

(δ2 + 2)2

)
.

Here, 2F1 is the usual hypergeometric function. Expressions for Fourier-Legendre
coefficients for generalized multiquadrics may be found in [22, §5]. Again, this
time for � sufficiently large, the coefficient m̂qδ(�) satisfies the following bound [22,
Proposition 5.1]:

(3.11) C1�
−n

2 −1

(
1

δ2 + 2

)�− 1
2

< m̂qδ(�) < C2�
−1−n

(
2

δ2 + 2

)�− 1
2

.

Ultraspherical generating functions. For n ≥ 2, the ultraspherical polynomi-

als P
(λn)
� are frequently defined in terms of the generating function [33, Equation

(4.7.23)] below:

(3.12)

{
uλn,w(t) = (1− 2tw + w2)−λn , 1 > w > 0, n ≥ 2,

ûλn,w(�) = w�.

When n = 1, λ1 = 0, the expansion is in terms of the T�(t)’s, the Chebyshev
polynomials of the first kind. In this case, the generating function is simply the
Poisson kernel:

(3.13)

⎧⎪⎨⎪⎩
Pw(t) =

1−w2

1−2tw+w2 , 1 > w > 0,

P̂w(�) =
1, � = 0,

2w�, � ≥ 1.
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4. Approximation

The approximation part of the analysis makes use of kernels and frames, which
are related to them. These were studied in [1, 12, 14, 18, 21] and further devel-
oped in [26]; we review them here, along with a number of other results impor-
tant to attaining the goals of this paper. First, we will develop various types of
Marcinkiewicz-Zygmund inequalities for the sphere. Although some of these were
previously derived [17, 16, 21], those pertinent to both the approximation and the
stability analysis are new.

Second, using frames we establish a Bernstein inequality for spherical polynomi-
als. Again, using frames we establish various distance estimates for φ ∈ H1

β and

we discuss Green’s function solutions to LβnGβ = δ. As we have mentioned earlier,
these form a very important class of SBFs. Finally, at the end of the section we
will complete the approximation part of the analysis.

4.1. Kernels. Let κ(t) ∈ Ck(R), with k ≥ max{2, n− 1}, be even, not identically
0, and satisfy

(4.1) |κ(r)(t)| ≤ Cκ(1 + |t|)r−α for all t ∈ R, r = 0, . . . , k,

where α > n + k and Cκ > 0 are fixed constants. We remark that all compactly
supported, Ck functions that are even satisfy (4.1). Functions in the Schwartz class
S(R) that are even satisfy (4.1) for arbitrarily large k and α. Given such a κ, define
the family of operators

Kε,n := κ(εLn) =
∞∑
�=0

κ(ε(�+ λn))P�, 0 < ε ≤ 1,

along with the associated family of kernels

(4.2) Kε,n(ξ · η︸︷︷︸
cos θ

) :=

{ 1
2πκ(0) +

1
π

∑∞
�=1 κ(ε�) cos �θ, n = 1,∑∞

�=0 κ(ε(�+ λn))
�+λn

λnωn
P

(λn)
� (cos θ), n ≥ 2,

where cos θ = ξ · η and 0 < ε ≤ 1.

It is worthwhile noting that κ(t) = e−t2 satisfies (4.1) and that the corresponding
kernel is essentially the heat kernel for Sn.

We will need several results concerning these kernels and operators. First of all,
we require the estimates on the Lp norms for the kernels. Material closely connected
to the theorem below appeared in [12, Proposition 4.1].

Theorem 4.1 ([21, Theorem 3.5 & Corollary 3.6]). Let κ satisfy (4.1), with k ≥
max{2, n−1}. If 0 ≤ θ ≤ π, then there is a constant βn,k,κ > 0 such that the kernel
Kε,n satisfies the bound

(4.3) |Kε,n(cos θ)| ≤
βn,k,κ

1 + ( θε )
k
ε−n.

Moreover, we have that

(4.4) ‖Kε,n‖p := ‖Kε,n(cos θ)‖Lp(Sn) ≤ Cn,k,κε
−n/p′

.

These operators can be applied to functions in Lp(Sn) or even distributions in
D′(Sn), provided κ decays fast enough; compact support will certainly work. As
the result below shows, all of them are bounded operators taking Lp(Sn) → Lq(Sn).
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Theorem 4.2 ([21, Theorem 3.7]). If κ satisfies (4.1), with k > max{2, n}, then,
for all 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, the operator Kε,n : L

p(Sn) → Lq(Sn) is bounded
and its norm satisfies

‖Kε,n‖p,q ≤ Cn,k,κ(4ωn−1ε
n)−( 1

p−
1
q )+ ,

where Cn,k,κ is a constant that depends only on n, k, κ, and where (x)+ = x for
x > 0 and (x)+ = 0 otherwise.

We point out that more can be said when κ has restrictions on its support. The
result below follows from the spherical harmonics of degree L ∼ 1/ε being in the
kernel (i.e., null space) of Kε,n when κ(t) = 0 near t = 0.

Remark 4.3. If κ(t) = 0 for |t| ≤ 1, then for any spherical harmonic in ΠLε
, where

Lε = �ε−1−λ−1
n � ∼ ε−1 or less, then we have gε := Kε,ng = Kε,n(g−P ), and hence

‖gε‖q ≤ ‖Kε,n‖p,qELε
(g)p.

Another important result for κ supported away from t = 0 and having fast decay
is the one below, which follows directly from Theorems 4.1 and 4.2. To simplify
matters, we will assume that κ is also compactly supported.

Corollary 4.4. Let k > max{2, n}. If the support of κ is compact and does not
include t = 0, then, for every fixed γ in C, the function κ̃(t) := |t|γκ(t) is also an

even Ck function that satisfies (4.2). Moreover, LγKε,n = ε−γK̃ε,n. Finally, for real
γ, we have the two bounds below:

‖LγKε,n‖p,q ≤ Cn,k,κ̃(4ωn−1)
−( 1

p−
1
q )+ε−γ−n( 1

p−
1
q )+ ,

‖LγKε,nδ‖p ≤ Cn,k,κ̃ε
−γ−n/p′

,

where δ is the Dirac distribution and thus LγKε,nδ is the kernel for LγKε,n.

4.2. Marcinkiewicz-Zygmund inequalities. Marcinkiewicz-Zygmund (MZ) in-
equalities provide equivalences between norms defined through integrals and ones
defined through discrete sums. For Sn, these were developed in [17, 16, 21]. We
will need to adapt these MZ inequalities to estimate certain sums.

Let X ⊂ Sn be the set of centers; also, let q = qX , h = hX , and ρ = ρX := h/q
be the separation radius, mesh norm, and mesh ratio, respectively. We will need
a decomposition of the sphere into a finite number of nonoverlapping regions. The
Voronoi tessellation corresponding to X will serve our purpose here, although many
other decompositions will work as well.

Let Rξ be the Voronoi region containingX. Denote the collection of these regions
by X = {Rξ ⊂ Sn | ξ ∈ X} and its partition norm by ‖X‖ = maxξ∈X{diam(Rξ)}.
It is easy to show that the following geometric inequalities hold:

(4.5) h ≤ ‖X‖ ≤ 2h and min
ξ∈X

μ(Rξ) ≥ cnq
n.

Here cn is a constant related to the volume of Sn. We will need these later. For a
sequence space version of the results below, see [13, Proposition 4.1].

Proposition 4.5. Fix ζ ∈ Sn and k ≥ n+2. Let Kε(η) := Kε,n(η · ζ). Then, there
is a constant C = Cn,κ,k for which

(4.6)

∣∣∣∣‖Kε‖1 −
∑
ξ∈X

μ(Rξ)|Kε(ξ)|
∣∣∣∣ ≤ C

{
‖X‖/ε ‖X‖ ≤ ε,

(‖X‖/ε)n ‖X‖ ≥ ε.
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Moreover, if ζ ∈ X, then
(4.7)∣∣∣∣ ∫

Sn−Rζ

|Kε(η)|dμ(η)−
∑

X�ξ �=ζ

μ(Rξ)|Kε(ξ)|
∣∣∣∣ ≤ Cn,κ,k

{
(‖X‖/ε)−1 ‖X‖ ≤ ε,

(ε/‖X‖)k−n−2 ‖X‖ ≥ ε.

Proof. This is a strengthened version of [21, Proposition 4.1]. Since its proof is
similar to that result, we will only sketch it here, referring the reader to [21] for the
technical details.

The inequalities in both (4.6) and (4.7) involve bounding sums of contributions
from each Rξ having the form

Dξ :=

∣∣∣∣ ∫
Rξ

|Kε(η)|dμ(η)− μ(Rξ)|Kε(ξ)|
∣∣∣∣ ≤ ∫

Rξ

|Kε(η)−Kε(ξ)|dμ(η).

Take ζ to be the north pole of the sphere and θ to be the co-latitude. Divide
the sphere into M ∼ π/‖X‖ bands, Bm, in which (m − 1)π/M ≤ θ ≤ mπ/M ,
m = 1, . . . ,M . Each Rξ can have nontrivial intersection with at most two adjacent
bands, because diam(Rξ) ≤ ‖X‖ ∼ π/M . Thus, if Rξ ⊂ Bm ∪ Bm+1, then its
lowest and highest co-latitudes satisfy (m− 1)π/M ≤ θ−ξ ≤ θ+ξ ≤ (m+ 1)π/M . As

is shown in [21], for m = 2, . . . ,M−1, the sum of the Dξ from all Rξ ⊂ Bm∪Bm+1

is bounded above by the quantity

(4.8)
∑

Rξ⊂Bm∪Bm+1

Dξ ≤ Cn,κ,k

Mε

∫ m+1
Mε π

m−1
Mε π

tn

1 + tk
dt.

If Rξ � ζ, then dealing with the corresponding Dξ can be done by estimating the
integral that bounds the contribution from the region Rξ in the cap 0 ≤ θ ≤ 2π/M ,

(4.9) Dξ ≤ C ′
n,κ,k(Mε)−n

∫ 2π
Mε

0

tdt

1 + tk
≤

C ′′
n,κ,k

(Mε)n

{
(Mε)−2 Mε ≥ 1,

1 Mε ≤ 1.

Now, let M = �π/‖X‖�, precisely. Adding up the Dξ for all ξ ∈ X yields the bound
in (4.6), which was implicit in the proof of [21, Proposition 4.1].

To get (4.7), we need to adjust M so that all Rξ �� ζ are contained in the bands
Bm ∪Bm+1, m = 2, . . . ,M − 1. This is easy to do. Just take M = �(π − q)/‖X‖�.
Summing the Dξ bounded in (4.8) and taking care of some double counting yields∣∣∣∣ ∫

Sn−Rζ

|Kε(η)|dμ(η)−
∑

X�ξ �=ζ

μ(Rξ)|Kε(ξ)|
∣∣∣∣ ≤ Cn,κ,k

Mε

∫ π
ε

π
Mε

tn

1 + tk
dt

≤ Cn,κ,k

Mε

∫ ∞

π
Mε

tn

1 + tk
dt

≤ Cn,κ,k

{
(Mε)−1 Mε ≥ 1,

(Mε)k−n−2 Mε ≤ 1,

from which (4.7) follows easily. �

Let f ∈ L1(Sn) and set fε := Kε,n ∗ f ; the function f is not assumed to be
zonal. We wish to estimate the difference EX :=

∣∣‖fε‖1 − ∑
ξ∈X |fε(ξ)|μ(Rξ)

∣∣. It
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is straightforward to show that

EX ≤
∑
ξ∈X

∫
Rξ

|fε(η)− fε(ξ)|dμ(η) ≤ sup
ζ∈Sn

Fε,X (ζ)‖f‖1 ,

where Fε,X (ζ) :=
∑

ξ∈X

∫
Rξ

∣∣Kε,n(η · ζ) −Kε,n(ξ · ζ)
∣∣dμ(η), which is the quantity

estimated in Proposition 4.5. Applying that proposition and Remark 4.3, we obtain
the desired estimate below.

Corollary 4.6. Let κ satisfy (4.1), with k ≥ n + 2, and, for f ∈ L1(Sn), let
fε = Kε,n ∗ f . If X is the decomposition of Sn described above, ‖X‖ ≥ ε and
Lε = �ε−1 − λ−1

n � ∼ ε−1, then
(4.10)∣∣∣∣‖fε‖1 − ∑

ξ∈X

|fε(ξ)|μ(Rξ)

∣∣∣∣ ≤ Cn,κ,k (‖X‖/ε)n
{

ELε
(f)1, κ(t) = 0, |t| ≤ 1,

‖f‖1, otherwise.

Remark 4.7. If f is zonal, i.e. f(ξ) = ψ(ξ · ζ), then the right side (4.10) is in-
dependent of the variable ζ. Also, the strict inequality ‖X‖ ≥ ε isn’t absolutely
necessary. The results still hold when ‖X‖ and ε are comparable.

For the most part, we will use these results to bound the sums
∣∣∑

ξ∈X aξfε(ξ)
∣∣,

under the assumption that ‖X‖ ≥ ε. Using Corollary 4.6 for that case, we see that∣∣∣∣ ∑
ξ∈X

aξfε(ξ)

∣∣∣∣ ≤ |a|∞
minξ∈X μ(Rξ)

∑
ξ∈X

μ(Rξ)|fε(ξ)|

≤ |a|∞
minξ∈X μ(Rξ)

(‖fε‖L1 + Cn,κ,k (‖X‖/ε)n ‖f‖L1) .

From Theorem 4.2, (4.5), and h = ρq, with Lε ∼ ε−1 and ρq ≈ ‖X‖ ≥ ε. we have
that

(4.11)

∣∣∣∣ ∑
ξ∈X

aξfε(ξ)

∣∣∣∣ ≤ Cρnε−n|a|∞

{
ELε

(f)1, if κ(t) = 0, |t| ≤ 1,

‖f‖1, otherwise.

If f is a zonal function, then, by Remark 4.7, we may use the ‖ · ‖∞ norm on the
left above.

We want to make the same kind of estimate, but with f being replaced by δζ , the
usual Dirac delta function. Thus fε is replaced byKε(·) := Kε,n∗δ(·) = Kε,n((·)·ζ).
A nearly identical argument to the one used above, coupled with (4.6) for ‖X‖ ≥ ε
and the bound on ‖Kε‖1 from Theorem 4.2, results in

(4.12)

∣∣∣∣ ∑
ξ∈X

aξKε((·) · ξ)
∣∣∣∣ ≤ Cρnε−n|a|∞.

The constants on the right above hold uniformly, so we thus have

(4.13)

∥∥∥∥ ∑
ξ∈X

aξKε((·) · ξ)
∥∥∥∥
∞

≤ Cρnε−n|a|∞.

The two bounds above are very similar and can be used in combination. They
will be needed to complete the approximation part of the analysis. There is another
bound, somewhat different from these two, that we will need in section 5:
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Lemma 4.8. If ρq ∼ ‖X‖ ≥ ε > 0 and if k ≥ n+ 2, then

(4.14) max
ζ∈X

∑
X�ξ �=ζ

|Kε,n(ξ · ζ)| ≤ Cn,κ,kq
−n.

Proof. In equation (4.7), Proposition 4.5, again for ‖X‖ ≥ ε, an argument similar
to the ones used above gives us∑
X�ξ �=ζ

|Kε,n(ξ ·ζ)| ≤ C ′
n,κ,kq

−n

∫
Sn−Rζ

|Kε,n(η ·ζ)|dμ(η)+C ′′
n,κ,kq

−n

(
ε

‖X‖

)k−n−2

.

Using
∫
Sn−Rζ

|Kε,n(η · ζ)|dμ(η) ≤ ‖Kε,n‖1 ≤ Cn,κ,k,
ε

‖X‖ ≤ 1, and maximizing over

ζ ∈ X, we obtain (4.14). �

This estimate is more delicate than (4.13), because the term missing from the
sum is Kε,n(ζ · ζ) = Kε,n(1), which turns out to be O(ε−n). For ε/q small enough,
the sum (4.14) will be majorized by Kε,n(1). This is needed as part of a diagonal
dominance argument.

4.3. Frames. We now address the question of the frame decomposition mentioned
previously. Our approach follows the one in [21]. As mentioned earlier, others are
certainly possible. For this, we need a function a ∈ Ck(R),which we may assume is
even, with support in [−2,− 1

2 ]∪ [ 12 , 2], and satisfying |a(t)|2+ |a(2t)|2 ≡ 1 on [ 12 , 1].
Such a function can be easily constructed out of an orthogonal wavelet mask m0

[2, §8.3]. In fact, if m0(ξ) ∈ Ck+1, then a(t) := m0(π log2(|t|)) on [−2,− 1
2 ] ∪ [ 12 , 2],

and 0 otherwise, is a Ck function that satisfies the appropriate criteria. Define
b ∈ Ck(R) by

(4.15) b(t) :=

{
1 |t| ≤ 1,

|a(t)|2 |t| > 1.

Using the properties of a we see that
∑J

j=−∞ |a(t/2j)|2 = b(t/2J) if t > 0. In the

sum on the left, only terms with j ≥ �log2(t)� contribute. Terms with j < �log2(t)�
are identically 0.

The quantity �log2(t)� is obviously important. On Sn, the integer that corre-
sponds to it is this:

(4.16) jn :=

{
0 n = 1,

�log2(λn)� n ≥ 2.

The integer jn helps us in defining our frame operators, which we now do. Let
Aj := a(2−j−jnLn) and Bj := b(2−j−jnLn). Taking into account the support of

a, we have BJ =
∑J

j=0 AjA
∗
j for n ≥ 2 . For n = 1, a projection P0 onto the

constant function enters, and BJ = P0 +
∑J

j=0 AjA
∗
j . We will need the following

approximation result concerning these operators.

Proposition 4.9 ([21, Proposition 5.1]). Let k > max{n, 2}, and let b be defined
by (4.15), with a ∈ Ck(R). If f ∈ Lp(Sn), 1 ≤ p ≤ ∞, and if L > 0 is an integer
such that 2−J−jn ≤ (L+ λn)

−1, then

(4.17) ‖f − BJf‖p ≤ Cb,k,nEL(f)p , EL(f)p := distLp(f,ΠL).

Also, for 1 ≤ p < ∞ or, if p = ∞, for f ∈ C(Sn), we have limJ→∞ BJf = f .
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Bernstein/Nikolskii inequalities. There are several inequalities that follow eas-
ily using frames. We will give a Nikolskii-type inequality, which is a well-known
inequality ([15, Proposition 2.1] and [21, §3.5]). From our point of view, the most
important inequality derived here is a Bernstein theorem for spherical polynomials
[28, Theorem 2 (English transl.)]. An independent proof is given in [10, Proposition
4.3]. For the convenience of the reader, short proofs for both are given below.

Theorem 4.10. Let S ∈ ΠL. Then, for 1 ≤ p, q ≤ ∞ and for γ > 0, we have

(Nikolskii) ‖S‖q ≤ Cp,q,nL
n( 1

p−
1
q )+‖S‖p,(4.18)

(Bernstein) ‖S‖Hp
γ

≤ Cn,γL
γ‖S‖p.(4.19)

Proof. Let γ > 0 and suppose L+λn ≤ 2J+jn . From the definition of BJ , it is easy
to see that BJ reproduces ΠL, and so BJS = S for all S ∈ ΠL. By Theorem 4.2, with

κ = b and ε = 2−J−jn ∼ L−1, we see that ‖S‖q ≤ Cp,q,nL
n( 1

p−
1
q )+‖S‖p, S ∈ ΠL.

Dependence of the constants on b and k disappears upon taking the infimum over
these two quantities, yielding (4.18).

We now establish the Bernstein inequality. If S ∈ ΠL, then so is LγS, and
we have that BJL

γ
nS = LγnS, provided L + λn ≤ 2J+jn . Using the expansion

BJ =
∑J

j=0 AjA
∗
j , we see that

LγS =
J∑

j=0

AjA
∗
jL

γS =
J∑

j=0

LγAjA
∗
jS.

Consequently, we have that ‖S‖Hγ
p
= ‖LγS‖p ≤

∑J
j=0 ‖LγAjA

∗
j‖p,p‖S‖p. Applying

Corollary 4.4, with κ(t) = |a(t)|2 and ε = 2−j−jn for each j, then yields:

‖S‖Hγ
p

≤
( J∑

j=0

2(j+jn)γ

)
Ca,n,γ‖S‖p

≤ 2(J+jn+1)γ − 2jnγ

2γ − 1
Ca,n,γ‖S‖p ≤ LγCa,n,γ‖S‖p ,

where again L ∼ 2J+jn . In the last inequality of the chain above, we can take the
infimum over all a satisfying the requisite conditions. This yields (4.19). �

Distance estimates. Frames can be used to estimate the distance in Lp(Sn) from
the polynomials to a function in a smoother space. If f ∈ Lp, let EL(f)p :=
distLp(f,ΠL). Because BJf is a spherical polynomial in Π2J+jn+1 , we have

EL(f)p ≤ ‖f − BJf‖p, L+ λn ≤ 2J+jn+1.

Because BJf converges to f in all Lp, 1 ≤ p < ∞ and p = ∞ if f ∈ C(Sn), we also
have that

EL(f)p ≤ ‖f − BJf‖p ≤
∞∑

j=J+1

‖AjA
∗
jf‖p,

where the right side above may be infinite. Now, suppose that f = Lγnh, h ∈ Hq
β(S

n).

In that case, we have AjA
∗
jL

γ
nh = L

−(β−γ)
n AjA

∗
jL

β
nh. From this and Corollary 4.4,

with p ↔ q, we arrive at

‖AjA
∗
jL

γ
nh‖p = ‖L−(β−γ)

n AjA
∗
jL

β
nh‖p ≤ 2−(β−γ−n( 1

q−
1
p )+)(j+jn)Cn,k,a‖h‖Hq

β
.
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Insert this in the equation above, sum the appropriate geometric series, and take
L ∼ 2J+jn to get

E2J+jn (L
γ
nh)p ≤ C ′

β−γ,a,k,n2
−(β−γ−n( 1

q−
1
p )+)(J+jn)‖h‖Hq

β
,

which was essentially obtained by Kamzolov [9]. Now, since the left side above
is unchanged if we replace Lγn by Lγn − S, S ∈ Π2J+jn , we can replace ‖h‖Hq

β
by

E2J+jn (Lβnh)q. Collecting these results yields the proposition below.

Proposition 4.11. Let γ ≥ 0, and β > γ + n( 1q − 1
p )+), where 1 ≤ p, q ≤ ∞. If

h ∈ Hq
β, then there is a constant C = Cn,β,γ,a such that

E2J+jn (L
γ
nh)p ≤ ‖(I − BJ)h‖Hp

γ
≤ Cn,β,γ,a2

−(β−γ−n( 1
q−

1
p )+))(J+jn)E2J+jn (L

β
nh)q .

Green’s functions and their properties. Let β > n/p′. Recall that the Green’s
function solution to LβnGβ = δ is a kernel with an expansion in spherical harmonics

having coefficients Ĝβ(�,m) = (�+ λ)−β. Properties of Green’s functions (pseudo-
differential operator kernels, really) on manifolds have been studied extensively
(cf. [8]). Our aim here is to use frames to obtain properties and various distance
estimates that we need here quickly, and in a self-contained way, for SBFs of the
form φβ = Gβ + Gβ ∗ ψ, where ψ ∈ L1. Because the φβ’s are not in any of the
Bessel-Sobolev spaces Hp

β , they have to be treated separately from the class in
Proposition 4.11 above

We begin with Green’s functions themselves. Note that AjA
∗
jGβ = L−β

n AjA
∗
jδ.

Since AjA
∗
j = |a|2(2−j−jnLn), where both a and, of course, |a|2, have compact

support that excludes t = 0, we may apply Corollary 4.4, with εj := 2−(j+jn), to
get this:

(4.20) ‖AjA
∗
jGβ‖p ≤ Cn,β,aε

β−n/p′

j = Cn,β,a2
−(β−n/p′)(j+jn).

Thus, for β > n/p′, the terms in
∑∞

j=0 AjA
∗
jGβ are bounded by a geometric series,

and so the Weierstrass M test implies that the series converges in Lp. That is, we
have shown that when β > n/p′ the limit limJ→∞ BJGβ is in Lp. A simple duality
argument then shows that the kernel Gβ = limJ→∞ BJGβ in Lp(Sn). Summing the

geometric series in (4.20) yields ‖Gβ − BJGβ‖p ≤ C 2−(β−n/p′)(J+jn).
These results also give us error bounds in Hp

γ (S
n). If γ ≥ 0, then LγGβ = Gβ−γ

and LγBJGβ = BJGβ−γ . This and the estimate above imply that if, in addition,
β > γ + n/p′, then

(4.21) ‖Gβ − BJGβ‖Hp
γ
= ‖Gβ−γ − BJGβ−γ‖p ≤ C 2−(β−γ−n/p′)(J+jn).

Perturbations of Gβ can be dealt with, too. Let ψ be in L1. By Theorem 4.2,
(4.20) and Remark 4.3, we have that, for all j ≥ J ,

‖AjA
∗
jGβ ∗ ψ‖p ≤ ‖AjA

∗
jGβ‖1,pE2j+jn (ψ)1 ≤ C2−(β−γ)(j+jn)E2J+jn (ψ)1 .

Summing a geometric series and using (4.21), we arrive at the following bound.

Proposition 4.12. Let γ ≥ 0, β > γ + n/p′, εj = 2−(j+jn), and let ψ ∈ L1 be
a zonal function. If φβ = Gβ + Gβ ∗ ψ, then φβ ∈ Hp

γ and there is a constant
C = Cn,β,γ,a, which depends only on n, β, γ, and the function a, such that

(4.22)

E2J+jn (L
γφβ)p ≤ ‖(I − BJ )φβ‖Hp

γ

≤ Cn,β,γ,a

(
1 + ε

n/p′

J E2J+jn (ψ)1

)
ε
β−γ−n/p′

J
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4.4. Approximation analysis. The task at hand is to estimate the norms
‖(I − BJ )g‖Hp

γ
/|a|p, where g ∈ GX,φ. Our approach will be to carry this out

for p = 1 and p = ∞, then use the Riesz-Thorin theorem to obtain the result for
all intermediate values of p.

The easier of the two cases is p = 1. Since g ∈ GX,φ, then g =
∑

ξ∈X aξφ((·) · ξ).
Again, let εj = 2−(j+jn). From the triangle inequality, the rotational invariance of
the norms involved, and Proposition 4.11 and Proposition 4.12 it follows that

‖(I − BJ )g‖H1
γ
≤ |a|1‖(I − BJ )φ‖H1

γ

≤ Cεβ−γ
J |a|1

{
E2J+jn (Lβnφ)1 φ ∈ H1

β ,

(1 + E2J+jn (ψ)1) φ = Gβ +Gβ ∗ ψ .

The p = ∞ case requires using frames. Again, we have that

‖(I − BJ )g‖H∞
γ

≤
∞∑

j=J+1

‖AjA
∗
jL

γ
ng‖∞ ,

where AjA
∗
jL

γ
ng =

∑
ξ∈X aξAjA

∗
jL

γ
nφ((·) · ξ). By equation (4.11), with f = Lγnφ,

Kεj ,n corresponding to κ(t) = |a(t)|2, h ≥ εJ ≥ εj , all j ≥ J , and Lε ∼ 2j+jn , we
have

‖AjA
∗
jL

γ
ng‖∞ =

∥∥∥∥ ∑
ξ∈X

aξfε((·) · ξ)
∥∥∥∥
∞

≤ Cρnε−n
j |a|∞ E2j+jn (L

γ
nφ)1 .

By Proposition 4.11 and Proposition 4.12, with J there replaced by j, p = ∞, we
have

‖AjA
∗
jL

γ
ng‖∞ ≤ C|a|∞ρnεβ−γ−n

j

{
E2j+jn (Lβnφ)1 φ ∈ H1

β ,

(1 + εnj E2j+jn (ψ)1) φ = Gβ +Gβ ∗ ψ .

Since E2j+jn (f)1 ≤ E2J+jn (f)1 when j ≥ J , in the inequality above we may replace
the distances with respect to 2j+jn with ones with respect to 2J+jn . Doing so and
again summing a geometric series, we obtain

‖(I − BJ )g‖H∞
γ

≤ C|a|∞ρnεβ−γ−n
J

{
E2J+jn (Lβnφ)1 φ ∈ H1

β ,

(1 + εnJE2J+jn (ψ)1) φ = Gβ +Gβ ∗ ψ .

Applying the Riesz-Thorin theorem in conjunction with the bounds above, we com-
plete the approximation part of the problem:

Theorem 4.13. Let γ ≥ 0, 1 ≤ p ≤ ∞, β > γ + n/p′, εj = 2−(J+jn). If hX ≥ εj
and if g ∈ GX,φ, then
(4.23)

‖(I − BJ)g‖Hp
γ

|a|p
≤ Cρn/p

′
ε
β−γ−n/p′

J

{
E2J+jn (Lβnφ)1 φ ∈ H1

β ,

(1 + E2J+jn (ψ)1) φ = Gβ +Gβ ∗ ψ .

5. Stability

The problem that we address here is estimating the norm |a|p in terms of the
Lp(Sn) norm of g, where g(x) =

∑
ξ∈X aξφ(x ·ξ) and φ ∈ Lp is an SBF. Specifically,

we wish to estimate the p-norm stability ratio

rG, p := max
G�g �=0

|a|p
‖g‖p

,
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which we defined in (1.1). This quantity exists and is finite because the set
{φ(x · ξ)}ξ∈X is a linearly independent, finite set of functions. The quantity rG, p
provides a measure of the linear independence of the set, albeit one that scales with
the norm of φ. Once φ is fixed, it depends completely on the geometry of X.

For a continuous SBF φ, this is related to the stability of the interpolation matrix
for φ and X. However, we are only assuming that φ is in Lp, and thus evaluating φ
on X is meaningless. Even so, using a smoothed version of φ allows us to connect
the two concepts.

5.1. Stability ratios and interpolation matrices. Let κ ≥ 0 be in Ck(R),
k ≥ n + 2, and let it satisfy (4.1). Of course, since κ is not identically 0, we also
have that there is some open interval on which κ > 0. Consider the corresponding
operator Kε,n = κ(εLn) and its kernel Kε,n. To smooth g(x) =

∑
ξ∈X aξφ(x · ξ),

apply Kε,n to both sides. Doing this yields

(5.1) gε(x) = Kε,ng(x) =
∑
ξ∈X

aξ Kε,nφ(x · ξ)︸ ︷︷ ︸
φε(x · ξ)

.

We want to relate rG, p to quantities in a standard SBF interpolation problem
on X involving φε. The function φε is a spherical harmonic, with nonnegative
Fourier-Legendre coefficients, whose degree depends on the support of κ. It is thus
a positive definite function on Sn, but not an SBF.

The interpolation matrix corresponding to φε is

Aε = [φε(η · ξ)]ξ,η∈X .

Later, as a by-product of our analysis, we will establish the invertibility of Aε,
provided ε satisfies certain conditions. When ε is sufficiently small, one can also
establish it by using a result of Ron and Sun [27, Theorem 6.4]: Let X ⊂ Sn be
fixed and let ψ be a positive definite function, but not necessarily an SBF (i.e.,

some of coefficients ψ̂(�) may vanish). Then, there is an integer jX,n such that
the interpolation matrix Aψ will be positive definite if the set of integers on which

ψ̂(�) > 0 contains at least jX,n consecutive even integers and jX,n consecutive odd
integers. With our assumptions on κ, in particular, that κ is not identically 0, it
is clear that for sufficiently small ε there are arbitrarily large sets of consecutive

integers for which φ̂ε(�) > 0. Thus Aε is (strictly) positive definite, and hence
invertible, for all such ε.

Our approach will again be to use the Riesz-Thorin theorem. Let yε := gε|X ,
the restriction of gε to X. Using (5.1), we can interpolate gε on X:

yε = Aεa , Aε = [φε(η · ξ)]ξ,η∈X .

Solving and taking the �1 norm, we see that

|a|1 ≤ ‖A−1
ε ‖1|yε|1 , |yε|1 =

∑
ξ∈X

|gε(ξ)|.

By our assumptions on κ and by (4.11), we have that |yε|1 ≤ Cn,κ,kρ
nε−n‖g‖L1 .

Consequently, for φ ∈ L1 we have that

rG, 1 ≤ Cκ,n,kρ
nε−n‖A−1

ε ‖1 .
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Similarly, working with p = ∞ we obtain

|a|∞ ≤ ‖A−1
ε ‖∞|yε|∞ , |yε|∞ = max

ξ∈X
{|gε(ξ)|} ≤ ‖g‖∞.

Recall that A−1
ε is a selfadjoint matrix, and that for such matrices the p = 1 and

p = ∞ norms are equal: ‖A−1
ε ‖∞ = ‖A−1

ε ‖1. Hence, for φ ∈ C (p = ∞), we obtain

rG,∞ ≤ ‖A−1
ε ‖1 .

Applying the Riesz-Thorin theorem to these bounds yields the following:

Proposition 5.1. Let ε ≤ ‖X‖ and let φ ∈ Lp. Then,

rG, p ≤ C
1/p
κ,n,kρ

n/pε−n/p‖A−1
ε ‖1 .

5.2. �1 stability estimates for interpolation matrices. The estimates we need
next are for ‖A−1

ε ‖1, and the approach we take to get them will depend on φ and

the behavior of the φ̂(�)’s. We will first deal with the Green’s function case, in

which φ̂(�) decays algebraically. After that, we will deal with the case in which φ

is C∞, and φ̂(�) has very fast decay.

5.2.1. SBFs that are perturbations of Green’s functions. A straightforward way to
estimate the 1-norm of the inverse of a matrix is to use diagonal dominance tech-
niques if the matrix is amenable to them. To that end, split an n × n matrix A
into its diagonal D and off-diagonal F , so A = D+ F . We then have the following
standard norm estimate, whose proof we omit.

Lemma 5.2. If D is invertible and ‖D−1F‖1 < 1, then A is invertible and
‖A−1‖1 < ‖D−1‖1(1− ‖D−1F‖1)−1.

We can apply this to Aε. The diagonal part is D = φε(1)I, and so ‖D−1‖1 =
φε(1)

−1 and ‖D−1F‖1 = φε(1)
−1‖F‖1. Since the 1-norm of a matrix is the maxi-

mum of the 1-norms of its columns, our condition becomes

(5.2) φε(1)
−1‖F‖1 = φε(1)

−1 max
η∈X

∑
X�ξ �=η

|φε(η · ξ)| < 1.

We now want to deal with a special φε, which is not necessarily generated by an
SBF φ. Let ψ be a zonal function in L1, so that

ψ(ξ · η) =
∞∑
�=0

ψ̂(�)
�+ λn

λnωn
P

(λn)
� (ξ · η).

We will assume that 1+ψ̂(�) > 0 for all � ≥ 0 and that κ has support in |t| ∈ [1,∞).
Take φε = Kε,n + Kε,n ∗ ψ, where Kε,n is the kernel for the operator κ(εL). In

addition, define ψε = Kε,n ∗ ψ. Since φ̂ε(�) = κ(ε(� + λn))(1 + ψ̂(�)) ≥ 0, we see
that φε is a positive definite spherical function, but not an SBF. Using (4.14) yields∑

X�ξ �=η

|φε(η · ξ)| ≤
∑

X�ξ �=η

|Kε,n(η · ξ)|+
∑

X�ξ �=η

|ψε(η · ξ)|

≤ Cn,κ,kq
−n +

∑
ξ∈X

|ψε(η · ξ)|.

Thus, from this and equation (4.11), with κ(t) = 0, |t| ≤ 1, we have shown that

(5.3)
∑

X�ξ �=η

|φε(η · ξ)| ≤ Cn,κ,k(q
−n + ρnε−nELε

(ψ)1), Lε = �1/ε− λn�.
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Thus we have bounded the sum involved in the diagonal dominance condition
(5.2). Next, we will deal with φε(1). We have the following chain of inequalities:

φε(1) = Kε,n(1) +Kε,n ∗ ψ(1)

=

∞∑
�=0

κ(ε(�+ λn))(1 + ψ̂(�))dn�

≥ c0

∞∑
�=0

κ(ε(�+ λn))d
n
� = c0Kε,n(1),

where c0 = min�≥0(1 + ψ(�)) > 0. (This is true because ψ ∈ L1 implies that

ψ̂(�) → 0 as � → ∞.) Furthermore, it is easy to see that

Kε,n(1) =

∞∑
�=0

κ(ε(�+ λn))d
n
� ∼ ε−n

∫ ∞

1

κ(t)tn−1dt︸ ︷︷ ︸
>0

.

Thus, φε(1) ≥ C ′′
n,κ,kε

−n. From this and (5.3), we arrive at the bound below:

(5.4) ‖D−1F‖1 ≤ Cn,κ,k ((ε/q)
n + ρnELε

(ψ)1) , Lε = �1/ε− λn�.
By choosing ε ≤ q sufficiently small, we can make Cn,κ,kρ

nELε
(ψ)1 less than 1/4,

since ELε
(ψ)1 → 0 as Lε → ∞. At this point, the choice of ε depends only on ψ

and the mesh ratio ρ. If necessary, we may then choose ε smaller still in order to
force the first term on the right to be less than 1/4. With this choice of ε, which
depends on ρ, n, κ and k, we obtain ‖D−1F‖1 < 1/2. By Lemma 5.2, we get the
bound on ‖A−1

ε ‖1 below.

Proposition 5.3. Suppose that κ has support in |t| ∈ [1,∞). Let φε = Kε,n +
Kε,n ∗ ψ, where ψ ∈ L1 is a zonal function satisfying 1 + ψ(�) > 0 for � ≥ 0.
Then there are constants c and C, which depend on ψ, on ρ, n, κ and k, such that
whenever ε ≤ cq, we have ‖A−1

ε ‖1 ≤ Cεn.

The proof above required conditions on the support of κ in order to deal with the
perturbation generated by ψ. If ψ is 0, then there is no need for such restrictions.
Also, the term involving ρ is gone, and it is no longer involved in determining c and
C. We collect these observations below.

Remark 5.4. If ψ = 0, then Proposition 5.3 holds without restriction on the support
of κ, and neither c nor C depends on ρ.

We now take an SBF φ of the form φ = Gβ +Gβ ∗ ψ, where Gβ is the Green’s
function for Lβ and ψ ∈ L1. Our aim is to establish a bound on the stability ratio
for such a φ.

Theorem 5.5. Consider the SBF φ = Gβ + Gβ ∗ ψ, where Gβ is the Green’s
function for Lβ and ψ ∈ L1. Let X be a set of centers with separation radius q and
mesh ratio ρ. Let G = Gφ,X be the corresponding SBF network. Then there is a
constant C = C(n, φ, β) such that the stability ratio of G satisfies

(5.5) rG, p ≤ Cρn/pqn/p
′−β .

Proof. Since we are assuming that φ is an SBF, the coefficients of the L1 function

ψ must satisfy 1 + ψ̂(�) > 0 for all � ≥ 0. Assume κ satisfies (4.1) and has support
in |t| ∈ [1,∞). The corresponding φε is just φε = Kε,nφ = Kε,n(Gβ + Gβ ∗ ψ).
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By Corollary 4.4, we have that Kε,nGβ = εβK̃ε,n = κ̃(εL), where κ̃(t) = |t|−βκ(t)

satisfies (4.1). From this, we have that φε = εβφ̃ε. If we let Ãε be the interpolation

matrix for φ̃ε, we see that Aε = εβÃε. The function φ̃ε satisfies the conditions on
the corresponding function in Proposition 5.3. Thus, by choosing ε ≤ cq, we have

‖A−1
ε ‖1 = ε−β‖Ã−1

ε ‖1 ≤ Cεn−β .

From Proposition 5.1, we obtain

rG, p ≤ C
1/p
κ,n,kρ

n/pε−n/p‖A−1
ε ‖1 ≤ C ′ρn/pεn/p

′−β.

Choosing ε as large as possible, namely ε = cq, we have

rG, p ≤ Cρn/pqn/p
′−β ,

where the constant C = C(n, κ, k, φ, p, β). By taking the infimum over all κ, p and
k, we reduce the dependency of C to C = C(n, φ, β). This completes the proof. �

5.2.2. Infinitely differentiable SBFs. Let φ be an infinitely differentiable SBF. The

fast decay of the Fourier-Legendre coefficient φ̂(�) requires a different approach to
bounding rG than the one used to obtain Theorem 5.5. As before, we let Aε be
the N × N interpolation matrix for φε = Kε,nφ. In addition, we will let A be
the corresponding matrix for φ. By standard matrix estimates, the norm ‖A−1

ε ‖1
satisfies

‖A−1
ε ‖1 ≤ N1/2‖A−1

ε ‖2.

Since Aε is a positive definite selfadjoint matrix, the norm ‖A−1
ε ‖2 is equal to the

reciprocal of λmin(Aε), the smallest eigenvalue of Aε; that is, ‖A−1
ε ‖2 = 1/λmin(Aε).

We will begin by estimating this eigenvalue. In preparation for this, we define the
quantity

(5.6) φ̂min(L) := min
0≤�≤L

φ̂(�) > 0,

where the strict positivity follows from φ being an SBF.

Proposition 5.6. Let κ ≥ 0 be in Ck(R), k ≥ n + 2, and let it satisfy (4.1). In
addition, suppose that supp(κ) ⊆ [−2, 2] and that κ ≤ 1. Then, there are constants
c = cn,κ,k > 0 and C = Cn,κ,k > 0 such that for all ε ≤ cq,

λmin(A) ≥ λmin(Aε) ≥ Cφ̂min(Lε/2)ε
−n, Lε/2 := �2/ε− λn�.

Proof. Using the Rayleigh-Ritz principle, we thus have

‖A−1
ε ‖−1

2 = λmin(Aε) = min
a∈CN

a∗Aεa,

where Aε = [φε(η · ξ)]ξ,η∈X . Because φε is a (positive definite) zonal function, we
can use its expansion in spherical harmonics to represent λmin(Aε) via

(5.7) λmin(Aε) = min
a∈CN

⎛⎝ ∞∑
�=0

d�∑
m=1

κ((�+ λn)ε)φ̂(�)

∣∣∣∣ ∑
ξ∈X

Y�,m(ξ)aξ

∣∣∣∣2
⎞⎠ .
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Since the support of κ is [−2, 2], the sum above cuts off at Lε/2 := �2/ε − λn�.
Consequently, we can bound below λmin(Aε) this way:

λmin(Aε) ≥ φ̂min(Lε/2) min
a∈CN

⎛⎝Lε/2∑
�=0

d�∑
m=1

κ((�+ λn)ε)

∣∣∣∣ ∑
ξ∈X

Y�,m(ξ)aξ

∣∣∣∣2
⎞⎠

︸ ︷︷ ︸
λmin([Kε,n(ξ · η)])

,

Note that λmin([Kε,n(ξ · η)]) = ‖ [Kε,n(ξ · η)]−1‖−1
2 ≤ ‖ [Kε,n(ξ · η)]−1‖−1

1 , because
‖B‖2 ≤ ‖B‖1 for all selfadjoint B. The existence of c and C and their dependencies,
along with ‖ [Kε,n(ξ · η)]−1‖1 ≤ Cεn for ε ≤ cq, follow from Proposition 5.3 and
Remark 5.4. Finally, applying the Rayleigh-Ritz principle, (5.7), and 0 ≤ κ ≤ 1,
we have that λmin(A) ≥ λmin(Aε). This finishes the proof. �

There are two immediate consequences that follow from Proposition 5.6. The
first is a bound on the stability ratio in this case.

Theorem 5.7. Consider the SBF φ, where φ is assumed to be infinitely differen-
tiable, and let X be a set of centers with separation radius q and mesh ratio ρ. Let
G = Gφ,X be the corresponding SBF network. Then there are positive constants
C = Cn,κ,k and c = cn,κ,k such that the stability ratio of G satisfies

rG, p ≤ Cρn/p
qn(1/p

′−1/2)

φ̂min(Lcq/2)
, where Lcq/2 = �2/(cq)− λn�.

Proof. Since ‖A−1
ε ‖1 ≤ N1/2‖A−1

ε ‖2, Proposition 5.6 implies that for ε ≤ cq,

‖A−1
ε ‖1 ≤ Cn,κ,k

N1/2εn

φ̂min(Lε/2)
.

By Proposition 5.1, we then have that

rG, p ≤ Cκ,n,k,p
N1/2ρn/pεn/p

′

φ̂min(Lε/2)
.

Noting that N ∼ q−n and choosing ε = cq, which is as large as possible, we obtain
the desired inequality. �

The second consequence is a new stability estimate for interpolation via a C∞

SBF φ. Again, let A be the interpolation matrix for φ on the set X. By Proposi-

tion 5.6, ‖A−1‖2 = λmin(A)−1 ≤ Cεn/φ̂min(Lε/2). Taking ε = cq, we obtain a new

bound on the norm of A−1:

(5.8) ‖A−1‖2 ≤ C
qn

φ̂min(Lcq/2)
.

6. Bernstein inequalities and inverse theorems

In this section, we will discuss both direct and inverse theorems for approxima-
tion by SBFs. For an overview of these notions, see [3].
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6.1. Bernstein inequalities. Bernstein inequalities are a primary tool in obtain-
ing inverse theorems. In the introduction, we gave a strategy for obtaining Bernstein
theorems. We have completed the preparation required to state and prove them.
Our first result is for SBFs that are perturbations of Green’s functions.

Theorem 6.1. Consider the SBF φ = Gβ + Gβ ∗ ψ, where Gβ is the Green’s
function for Lβ and ψ ∈ L1. Let X be a set of centers with separation radius q and
mesh ratio ρ, and let G = Gφ,X be the corresponding SBF network. If 1 ≤ p ≤ ∞,
0 < γ < β − n/p′ and g ∈ G, then
(6.1) ‖g‖Hp

γ
≤ Cq−γ‖g‖p.

Proof. Recall that ‖g‖Hp
γ

≤ ‖BJg‖Hp
γ
+ ‖(I − BJ)g‖Hp

γ
, where BJ is the frame

reconstruction operator defined in section 4.3. Of course, from (4.17), this operator
is bounded independently of J . From the polynomial version of the Bernstein
inequality in (4.19), we have that ‖BJg‖Hp

γ
≤ C2γJ‖BJg‖p ≤ C2γJ‖g‖p, which

implies (1.2). Inserting the approximation estimate (4.23) and the stability-ratio
estimate (5.5) into (1.2) yields

‖g‖Hp
γ

≤
(
C2γJ + C ′2−(β−γ−n/p′)Jqn/p

′−β(1 + E2J+jn (ψ)1

)
‖g‖p

≤ q−γ
(
C(2Jq)γ + C ′(2−Jq)(β−γ−n/p′)(1 + ‖ψ‖1)

)
‖g‖p.

The integer J is still a free parameter. Choose it to be J = �− log2(q)�. The
Bernstein inequality (6.1) then follows on noting that q ≤ π, β− γ − n/p′ > 0, and
‖ψ‖1 is finite and fixed. �

Up to a point, an SBF φ ∈ C∞ is handled in the same way as one related to a
Green’s function. In particular, using the argument above, coupled with the approx-
imation estimate (4.23), with β = γ+n, and the stability estimate in Theorem 5.7,
we obtain
(6.2)

‖g‖Hp
γ
≤ CLγ

(
1 + C ′ρn(qL)n(1/p

′−1/2)L
−(β−n

2 )EL(L
β
nφ)1

φ̂min(Lcq/2)

)
‖g‖p, L = 2J+jn ,

where Lcq/2 = �2/cq − λn�. Because φ ∈ C∞, it is in Hp
β for all β. The inequality

thus holds for all β > γ + n/p′. The object here is to find a constant L = αq−1,
where α is independent of q, such that the ratio on the right above is bounded. The
other terms will be controlled easily in that case. To obtain a simple, applicable
condition, we need the following lemma.

Lemma 6.2. Let 0 < μ(�) ≤ σ(�) be eventually decreasing sequences. Assume that
for every α > 0 there is an integer m1 = m1(α, σ) ≥ 0 such that �ασ(�) ≤ σ(2−m1�).
If in addition for all � sufficiently large there is an integer m2(α, μ, σ) ≥ 0 such that
σ(2m2�) ≤ Cμ,σμ(�), then with m = m1 +m2,

1

μ(L)

∞∑
�=2mL

�ασ(�) ≤ Cμ,σ2
−mL−1.

Proof. Let m1 = m1(α+ 2, φ). Then
∞∑

�=L

�ασ(�) ≤
∞∑
�=L

�−2�α+2σ(�) ≤ σ(2−m1L)
∞∑
�=L

�−2 ≤ σ(2−m1L)

L
.
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Replace L by 2mL in the inequality above, so that the sum on the left above is
bounded by (2mL)−1σ(2m2L) ≤ Cμ,σ2

−mL−1μ(L). Dividing by μ(L) yields the
desired inequality. �

Lemma 6.3. If there are two sequences μ(�) and σ(�) that satisfy the conditions

of Lemma 6.2 and in addition satisfy μ(�) ≤ φ̂(�) ≤ σ(�), then there is an integer
m = m(β, φ, n) such that for all L sufficiently large,

(6.3)
E2mL(L

β
nφ)1

φ̂min(L)
≤ Cβ,φ,n2

−mL−1.

Proof. Because φ is a C∞ SBF, the error EL(L
β
nφ)1 satisfies

EL(L
β
nφ)1 ≤ ωnEL(L

β
nφ)∞ ≤

∞∑
�=L

(�+ λn)
βP

(λn)
� (1)

λn
φ̂(�) ≤ 2β+n

Γ(n)

∞∑
�=L

�β+n−1φ̂(�),

where we have estimated factors independent of φ to get the term on the right.
Applying Lemma 6.2 then completes the proof. �

Putting all these results together leads to this theorem.

Theorem 6.4. Let φ be a C∞ SBF. If there are two sequences μ(�) and σ(�) that

satisfy the conditions of Lemma 6.2 and in addition satisfy μ(�) ≤ φ̂(�) ≤ σ(�),
then for every γ > 0 Bernstein’s inequality,

‖g‖Hp
γ
≤ Cφ,γ,pq

−γ‖g‖p,
holds for all g ∈ Gφ,X , 1 ≤ p ≤ ∞. In particular, it holds for the Gaussians,
multiquadrics, ultraspherical generating functions, and the Poisson kernel.

Proof. To get the inequality itself, use Lemma 6.4 with β = γ + n > γ + n/p′. The
statement concerning the list of functions may be established by checking that for
each of them the upper and lower bounds given in section 3 satisfy the conditions
on μ(�) and σ(�). �

6.2. Direct theorems. In [15, §4], we used a linear process to estimate the dis-
tance distLp(f,Gφ,X), given that φ is a continuous SBF and f ∈ Lp. In several
important cases, including the Gaussian, the process produced a near-best approx-
imant. We will use a similar process here for an SFB of the form φβ = Gβ +Gβ ∗ψ,
ψ ∈ L1, again obtaining the corresponding distance estimates. Such SBFs are at
least in L1, but they might not be continuous. Our approach also makes use of
recently developed positive-weight quadrature formulas for Sn, introduced in [17]
and further developed in [21]. We remark that a version of Theorem 6.8, with

the conditions on φ given in terms of sequence spaces involving the φ̂(�)’s, was
established in [13, Theorem 3.1].

The general framework is this. Let φ be an SBF, so that the Fourier-Legendre

coefficients φ̂(�) are positive for all �. Define φ−1 to be the formal expansion

φ−1 ∼
∞∑
�=0

�+ λn

λnωn
φ̂(�)−1P

(λn)
� .

This expansion will converge in a distributional sense if the φ̂(�)−1 grow polynomi-
ally fast. Otherwise, i.e. for faster growth, the expansion is purely formal. Since we
are using it in connection with polynomials of finite degree, this is not a problem.
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For every spherical polynomial S ∈ ΠL, we can use φ−1 to define an inverse for
the convolution operator S → φ ∗S ∈ ΠL, namely, the expression φ−1 ∗S, which is
defined by the expansion

φ−1 ∗ S =

L∑
�=0

dn
�∑

m=1

�+ λn

λnωn

Ŝ(�,m)

φ̂(�)
Y�,m,

which is just the convolution of S with the polynomial
∑L

�=0
�+λn

λnωn
φ̂(�)−1P

(λn)
� .

Suppose that S is a spherical polynomial for which degS + λn ≤ 2J+jn . By
Theorem 4.10, we have that BJS = S. In addition, S = φ ∗ φ−1 ∗ S. Combining
these two then yields

S(x) = BJφ ∗ φ−1 ∗ S =

∫
Sn

(BJφ)(x · η)(φ−1 ∗ S)(η)dμ(η).

The kernel BJφ(x · η) is a zonal polynomial with degree less than 2J+jn+1. In
addition, φ−1 ∗ S is a spherical polynomial of degree 2J+jn−1. Thus, the integrand
above is a polynomial of degree less than 2J+jn+1 + 2J+jn−1 < 2J+jn+2.

We will discretize this integral by applying the quadrature formula in [21, §4.2].
Let X be a set of centers, with q, h, ρ, and X being the separation radius, mesh
norm, mesh ratio, and Voronoi (or similar) decomposition, respectively. Take L > 0
to be an integer. There are positive weights cξ, ξ ∈ X and a constant sn > 0 (cf.
[21, §4.1]) such that

(6.4)

∫
Sn

f(η)dμ(η)
.
=

∑
ξ∈X

cξf(ξ)

holds exactly for polynomials in ΠL, provided that h ≤ 1
4s

−1
n (L + λn)

−1. The
weights behave like cξ = O (hn), where the constants hidden by “big” O are de-
pendent only on the dimension n. Applying the quadrature formula to the integral
representing S yields

S(x) =
∑
ξ∈X

cξ(BJφ)(x · ξ)(φ−1 ∗ S)(ξ).

Of course we are assuming that h ∼ 2−J . Let Q : ΠL → Gφ,X be given via

QGS(x) :=
∑
ξ∈X

cξφ(x · ξ)(φ−1 ∗ S)(ξ),

and let g = QGS, where Q is used because of the operator’s relationship with
quadrature. The difference between g and S is thus

g − S =
∑
ξ∈X

cξ(I − BJ )φ((·) · ξ)(φ−1 ∗ S)(ξ) = (I − BJ)g.

We now want to estimate the Hp
γ norm of the difference g − S = (I − BJ)g in

terms of ‖φ−1 ∗ S‖p. It is important to note that the norm ‖φ−1 ∗ S‖p depends on
the degree of S and on φ. We will deal with it later.

The easiest way to estimate ‖g−S‖Hp
γ
is to employ Theorem 4.13, where the norm

ratios ‖(I −BJ)g‖Hp
γ
/|a|p have been estimated. Thus, the task to be accomplished

is to relate |a|p to ‖φ−1 ∗ S‖p. To do this, we will again use the Riesz-Thorin
theorem.
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First of all, we have that aξ, which is the coefficient of φ((·) · ξ) in g, is given by
aξ = cξ(φ

−1 ∗ S)(ξ). Thus, |a|∞ = maxξ∈X cξ|(φ−1 ∗ S)(ξ)|. Since cξ = O(hn), the
bound |a|∞ ≤ Chn‖φ−1 ∗ S‖∞ holds.

The p = 1 case requires more work. Now, |a|1 =
∑

ξ∈X cξ|(φ−1 ∗ S)(ξ)|. Since

cξ = O (hn) ≤ Cnρ
nqn ≤ C ′′

nρ
n minξ∈X μ(Rξ) ≤ C ′′

nρ
nμ(Rξ), we have

|a|1 ≤ C ′′
nρ

n

( ∑
ξ∈X

μ(Rξ)|(φ−1 ∗ S)(ξ)|
)
≤ 5C ′′

nρ
n

4
‖φ−1 ∗ S‖1 .

The right-hand side above follows on applying the polynomial version of the
Marcinkiewicz-Zygmund inequality from [21, Theorem 4.2], with δ = 1/4, to bound
the sum in the middle by (5/4)‖φ−1 ∗S‖1. The Riesz-Thorin theorem then implies
that

|a|p ≤ Cn,pρ
n/phn/p′‖φ−1 ∗ S‖p.

Combining this with the estimate (4.23), where h ∼ εJ = 2−(J+jn) and noting that
g − S = (QG − I)S, we obtain the following result.

Lemma 6.5. Let γ ≥ 0, 1 ≤ p ≤ ∞, β > γ + n/p′, h ∼ 2−(J+jn). If S is a
spherical polynomial of degree 2J+jn−1 or less , then

‖(QG − I)S‖Hp
γ
≤ Cn,pρ

nhβ−γ‖φ−1 ∗S‖p
{

E2J+jn (Lβnφ)1 φ ∈ H1
β ,

(1 + E2J+jn (ψ)1) φ = Gβ +Gβ ∗ ψ .

The φβ case. We will now focus on the φβ’s. Our immediate concern is estimating

‖φ−1
β ∗ S‖p.

Lemma 6.6. Let 1 ≤ p ≤ ∞, β > 0, ψ ∈ L1, and S ∈ ΠL. If φβ = Gβ +Gβ ∗ ψ,
then there is a constant C = Cn,p,ψ, which is independent of β, L, and S, such that
the following holds:

(6.5) ‖φ−1
β ∗ S‖p ≤ Cn,p,ψ‖S‖Hp

β
.

Proof. Note that φ−1
β ∗ S = (Lβnφβ)

−1 ∗ LβnS. The kernel Gβ is a Green’s function

for Lβn, and so Lβnφβ = δ+ δ ∗ψ = δ+ψ, which is to be regarded as a distributional
kernel. Finding (Lβnφβ)

−1LβnS requires solving Lβnφβ ∗ T = T + ψ ∗ T = LβnS for T
in ΠL, which can be done directly, coefficient by coefficient. The solution T is of
course unique.

There is another way to look at this equation, in an Lp setting. Suppose that we
want to solve Hf := f +ψ ∗f = h in Lp, for 1 ≤ p < ∞ and in C (for p = ∞). The
operator norm for f → ψ∗f is ‖ψ‖1. By Theorem 4.9, we have that ‖ψ−BJψ‖1 → 0
as J → ∞. It follows that the convolution operator with kernel ψ is the norm limit
of finite rank operators with convolution kernels, BJψ. The operator ψ∗ is therefore
compact on all Lp and C; hence, Hf = f +ψ ∗ f has closed range on these spaces.
Moreover, a simple coefficient argument shows that ker(H) = {0}. The Fredholm
Alternative [4, §VII.11] then implies that ker(H∗) = {0}, so H−1 exists and is
bounded on all Lp and C. Since φ−1

β ∗ S = H−1LβnS, we have that

(6.6) ‖φ−1
β ∗ S‖p ≤ ‖H−1‖p‖S‖Hp

β
.

We emphasize that ‖H−1‖p is independent of β, L, and S. It depends only on p,
n, and ψ. Consequently, Cn,p,ψ = ‖H−1‖p, and (6.5) holds. �
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These lemmas lead to the following two direct theorems, the first for S ∈ ΠL

and the second for f ∈ Hp
γ .

Theorem 6.7. Let 1 ≤ p ≤ ∞, γ ≥ 0, and β > γ + n/p′. If S is a spherical
polynomial of degree 2J+jn−1 or less and if h = ρq ∼ 2−J−jn , then we have for
φ = φβ,

(6.7) distHp
γ
(S,Gφβ ,X) ≤ Cn,β,γ,p,ψρ

nhβ−γ‖S‖Hp
β
.

Proof. The two lemmas, when applied to φβ, yield

(6.8) ‖(QG − I)S‖Hp
γ
≤ Cn,β,γ,p,ψρ

nhβ−γ‖S‖Hp
β
.

The result follows on observing that distHp
γ
(S,Gφβ,X) ≤ ‖(QG − I)S‖Hp

γ
. Note that

the dependence of C on the particular frame operator disappears on minimizing
the constants involved over all functions a. �

Theorem 6.8. Let 1 ≤ p ≤ ∞, γ ≥ 0, and β > γ + n/p′. If f ∈ Hp
β, then for

φβ = Gβ +Gβ ∗ ψ, ψ ∈ L1,

distHp
γ
(f,Gφ,X) ≤ Cβ,γ,n,p,ψh

β−γρn‖f‖Hp
β
.

Proof. Let 2−J−jn ∼ h and choose S to be the polynomial S = BJf ; note that
QGS ∈ Gφβ,X . From these choices and (6.8), it follows that

‖f − QGS‖Hp
γ
≤ ‖f − BJf‖Hp

γ
+ ‖(QG − I)S‖Hp

γ

≤ ‖f − BJf‖Hp
γ
+ hβ−γρnCβ,n,p‖BJf‖Hp

β
.

By Proposition 4.11, with p = q, we have

‖f − BJf‖Hp
γ
≤ Cβ,γ,n,a2

−(β−γ)(J+jn)E2J+jn (L
β
nf)p ≤ Cβ,γ,n,ah

β−γ‖f‖Hp
β
.

From Proposition 4.9, we easily see that ‖BJf‖Hp
β
≤ Cβ,γ,n,a‖f‖Hp

β
. Combining all

of these inequalities establishes that

(6.9) ‖f − QGS‖Hp
γ
≤ Cβ,γ,n,a,ψρ

nhβ−γ‖f‖Hp
β
.

Since distHp
γ
(f,Gφ,X) ≤ ‖f −QGS‖Hp

γ
, and since the distance itself doesn’t depend

on the particular frame function, minimizing over the a yields the result, with the
constant independent of a. �

The C∞ case. The case in which the SBF φ is C∞ was in large part done in
[15]. However, some adjustments need to be made because the estimates in that
paper did not involve Hp

γ . One difference is in estimating the norm ‖φ−1 ∗ S‖p.

Lemma 6.9. Let 1 ≤ p ≤ ∞, δ ≥ 0, L > 0 an integer, and S ∈ ΠL. If φ ∈ HP
δ

is an SBF, then there is a constant C = Cn, depending only on n, such that the
following holds:

(6.10) ‖φ−1 ∗ S‖p ≤ Cn
Ln| 12− 1

p |

L̂δnφmin(L)
‖S‖Hp

δ
,

where L̂δnφmin(L) = min 0≤�≤L(�+ λn)
δφ̂(�).
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Proof. We begin by estimating ‖φ−1∗S‖p. The case in which φ ∈ Hp
δ was essentially

done in the proof of [15, Theorem 4.1]; the result, which makes use of the Nikolskii
inequality (4.18), is the following. If S ∈ ΠL, then the Nikolskii inequality implies
that

‖φ−1 ∗ S‖p = ‖(Lδnφ)−1 ∗ LδnS‖p ≤ CnL
n( 1

2−
1
p )+‖(Lδnφ)−1 ∗ LδnS‖2 .

At this point, we simply use the 2-norm estimate done in [15, Theorem 4.1] and a
second application of (4.18) to get

‖(Lδnφ)−1 ∗ LδnS‖2 ≤ (L̂δnφmin(L))
−1‖LδnS‖2 ≤ CnL

n( 1
p−

1
2 )+(L̂δnφmin(L))

−1‖LδnS‖p .

Putting the two inequalities together completes the proof. �

Let φ ∈ C∞. We can now estimate the Hp
γ distance of S ∈ ΠL to Gφ,X , in terms

of ‖S‖Hp
δ
, where δ > γ + n/p′. In Lemma 6.5, let β = δ + n/2. Apply Lemma 6.9,

noting that L ≤ 2J+jn−1 ≤ h−1 implies that Ln| 12− 1
p | ≤ Ln/2 ≤ h−n/2 to get the

following:

(6.11) distHp
γ
(S,Gφ,X) ≤ ‖(QG − I)S‖Hp

γ
≤ Cn,pρ

nhδ−γE2J+jn (L
δ+n/2
n φ)1

L̂δnφmin(L)
‖S‖Hp

δ
.

Theorem 6.10. Let 1 ≤ p ≤ ∞, γ ≥ 0, δ > γ + n/p′, and φ ∈ C∞. If there is an
integer m = m(δ, φ) > 0 such that

(6.12) sup
�>0

E2m�(L
δ+n/2
n φ)1

L̂δnφmin(�)
≤ Cm,n,δ,φ

holds, and if S ∈ ΠL, with L ≤ 2J+jn−1−m and h ∼ 2−J−jn , then

(6.13) distHp
γ
(S,Gφ,X) ≤ Cm,n,p,δ,γh

δ−γρn‖S‖Hp
δ
.

In addition, for f ∈ Hp
γ , we have that

(6.14) distHp
γ
(f,Gφ,X) ≤ Cm,n,p,γ,δ,φh

δ−γρn‖f‖Hp
δ
.

Finally, these estimates hold for Gaussians, multiquadrics, ultraspherical generating
functions and Poisson kernels.

Proof. If (6.12) holds, then, since L̂δnφmin(L) ≥ L̂δnφmin(2
J+jn−m), it follows that

E2J+jn (L
δ+n/2
n φ)1

L̂δnφmin(L)
≤ E2J+jn (L

δ+n/2
n φ)1

L̂δnφmin(2
J+jn−m)

≤ Cm,n,δ,φ,

and (6.13) follows from this and (6.11). One can establish the Hp
γ distance esti-

mate (6.14) using a proof virtually identical to that for Theorem 6.8. Essentially
the same argument used in section 6.1 can be used here to show that Gaussians,
multiquadrics, etc. satisfy (6.12), and so the estimates hold for them, too. �

6.3. Besov spaces. In this section, we review the definitions and basic facts re-
garding Besov spaces on Sn. These spaces, which will interpolate between Lp(Sn)
and Hp

γ , are defined in [34]. Other, equivalent definitions of Besov spaces on Sn

are given in [20]. Below, we will make use of a general construction found in [3,
Chapter 6] to characterize these spaces in terms of spaces of SBF networks, Gφ,X .
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There are two ingredients. First, we need to introduce certain sequence spaces.
If r > 0 and 0 < τ ≤ ∞, we define for a sequence a = {an}∞n=0 of real numbers,

(6.15) ‖a‖τ,r :=

⎧⎪⎪⎨⎪⎪⎩
{ ∞∑

n=0

2nrτ |an|τ
}1/τ

, if 0 < τ < ∞,

sup
n≥0

2nr|an|, if τ = ∞.

The space of sequences a for which ‖a‖τ,r < ∞ will be denoted by bτ,r.
The other ingredient in the definition of Besov spaces is a K–functional [3,

Chapter 6]. For δ, γ > 0, 1 ≤ p ≤ ∞ and f ∈ Lp, the K–functional for Lp

and Hp
γ is given by

(6.16) Kγ(p, f, δ) := inf
g∈Hp

γ

{‖f − g‖p + δγ(‖g‖p + ‖g‖Hp
γ
)}.

If r > 0, 0 < τ ≤ ∞, r < γ, we define the class of all f ∈ Lp for which

(6.17) ‖f‖r,γ,τ,p := ‖f‖p + ‖{Kγ(p, f, 2
−n)}∞n=0‖τ,r < ∞

to be the Besov space Br
τ,p. As we shall see, other than the requirement r < γ,

the γ dependence will disappear from the characterization of the space, so it isn’t
necessary to keep it in designating the space.

An important problem in approximation theory is to characterize Besov spaces
using degrees of approximation of functions. We recall the results [3, Theorems 7.5.1
and 7.9.1] as they apply in the context of the present paper.

Proposition 6.11. Let 1 ≤ p ≤ ∞, γ > 0, and let {Vj}∞j=0, with V0 = {0}, be a
nested sequence of finite-dimensional linear subspaces of Lp, p < ∞ or C, p = ∞
Suppose that for j = 1, 2, . . ., one has both the Favard (Jackson) estimate

(6.18) distLp(f, Vj) ≤ C 2−jγ(‖f‖p + ‖f‖Hp
γ
),

for all f ∈ Hp
γ , and the Bernstein inequality

(6.19) ‖g‖Hp
γ
≤ C2jγ‖g‖p, g ∈ Vj .

Then for 0 < r < γ, 0 < τ ≤ ∞, f ∈ Br
τ,p if and only if {distLp(f, Vj)}∞j=0 ∈ bτ,r.

Proof. This is just [3, Theorem 7.5.1], with the sequence of spaces satisfying all
requirements listed in [3, (5.2), p. 216], except possibly density. This requirement
is in fact satisfied if the Favard inequality (6.18) is satisfied. To see this, note
that Hp

γ contains all of the spherical polynomials, which form a dense set in Lp,
1 ≤ p < ∞ and in C. The Favard inequality (6.18) then implies that the

⋃
j Vj is

dense in Hp
γ and therefore in Lp, 1 ≤ p < ∞, or in C. �

In the important case when Vj = Π2j , Proposition 4.10 gives the Bernstein
estimate, while Proposition 4.11 provides the Favard estimate. In addition, since
the criterion that {distLp(f,Π2J )}∞n=0 ∈ bτ,r does not depend upon γ, it follows
that the Besov spaces Br

τ,p are independent of the different choices of γ > r in their
definition. This is why we don’t need to include the parameter γ to index these
spaces.

Remark 6.12. The polynomial characterization of Br
τ,p is precisely the one given in

[20, Proposition 5.3], so that the “needlet” definition [20, Definition 5.1] is equiva-
lent to the one above. (See also [18].) The needlet definition is itself known to be
equivalent (cf. [20]) to that given in [34]. It follows that all three are equivalent.
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Using the proposition above, one can also characterize Besov spaces using a
variety of spherical basis functions. To do this, we must first have an appropriate
nested sequence of sets of centers. By Proposition 2.1, we can find a nested sequence
{Xj}∞j=0 ∈ Fρ, ρ ≥ 2, each Xj having mesh norm hj := hXj

satisfying 1
4hj <

hj+1 ≤ 1
2hj ≤ 1

2j h0. If φ ∈ Lp is an SBF, then define the Vj ’s to be

(6.20) Vj := Gφ,Xj
, j = 1, 2, . . . , and V0 = {0}.

These spaces have finite dimension equal to the cardinality of Xj and, by virtue
of the Xj ’s being nested, are themselves nested. At issue then are the Favard and
Bernstein inequalities. Since any φ that satisfies both will provide us with a Besov
space via Proposition 6.11, we have the following result.

Corollary 6.13. Let 1 ≤ p ≤ ∞, φβ = Gβ + Gβ ∗ ψ, where ψ ∈ L1 and 0 <
β. Fix 0 < γ < β − n/p′ and suppose that Vj = Gφβ ,Xj

, with Xj as in (6.20).
For all 0 < r < γ and all 0 < τ ≤ ∞, we have that f ∈ Br

τ,p if and only if
{distLp(f, Vj)}∞j=0 ∈ bτ,r. The same conclusion holds true, with any γ > 0, for all φ
that simultaneously satisfy (6.3) and (6.12), including the Gaussians, multiquadrics,
etc.

Proof. When Vj = Gφβ,Xj
, the result follows immediately from the Bernstein in-

equality in Theorem 6.1 and the Favard inequality in Theorem 6.8. If φ satisfies
both (6.3) and (6.12), then it also satisfies both the Bernstein inequality in Theo-
rem 6.4 and the Favard inequality in Theorem 6.10. As before, with the same set
of Vj ’s, the same conclusion holds. �

6.4. Inverse theorems. Inverse theorems give indications of rates of approxima-
tion being best, or nearly best, possible. We now establish inverse theorems for
the approximation rates in the previous section and in [15]. These involve Bessel-
potential Sobolev spaces, and in addition Besov spaces.

Theorem 6.14. Let 1 ≤ p ≤ ∞ and let φ be as in Theorem 6.1 or Proposition 6.4.
If for f ∈ Lp, 1 ≤ p < ∞, or f ∈ C(Sn), p = ∞, there are constants 0 < μ ≤ γ,
t ∈ R, and cf > 0 such that

(6.21) distLp(Sn)(f,Gφ,X) ≤ cf
hμ
X

logt2(h
−1
X )

holds for all X ∈ Fρ, then, for every 0 ≤ ν < μ, f ∈ Hp
ν (S

n). If (6.21) holds for
ν = μ and some t > 1, then f ∈ Hp

μ(S
n). Moreover, if in addition φ satisfies the

conditions in Corollary 6.13, then for any τ > t−1 > 0 and 0 < r ≤ μ, the function
f is in the Besov space Br

τ,p.

Proof. Let the Vj ’s be as in (6.20), and set fj := argmin
(
distLp(Sn)(f, Vj)

)
, which

always exists because Vj is finite dimensional. Since the Vj ’s are nested, we have
that fj ∈ Vk for all k ≥ j. We want to show that fj is a Cauchy sequence in Hp

ν .
From the Bernstein estimate in Theorem 6.1 (or Proposition 6.4) and the inequality
hj+1/qj+1 ≤ ρ, we have

‖fj+1 − fj‖Hp
ν
≤ Cρνh−ν

j+1‖fj+1 − fj‖p ≤ Cρνh−ν
j+1

(
‖fj+1 − f‖p + ‖f − fj‖p

)
.
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By (6.21), we also have

‖fj+1 − fj‖Hp
ν
≤ Ccfρ

νh−ν
j+1(h

μ
j+1 log

−t
2 (hj+1) + hμ

j log
−t
2 (hj))

≤ Ccfρ
νh02

−(μ−ν)(j+1)
(
(h0 + j + 1)−t + 2μ(h0 + j)−t

)
≤ C ′cf2

−(μ−ν)jj−t,

where C ′ is independent of j. Take k > j. Using the previous inequality and a
standard telescoping-series argument, we arrive at the following:

‖fj − fk‖Hp
ν
≤ C ′′(

k∑
m=j

2−(μ−ν)mm−t).

Letting j, k → ∞, we see that ‖fj − fk‖Hp
ν
→ 0 when μ > ν and τ ∈ R or when

μ = ν and t > 1 . Thus, fj is a Cauchy sequence in Hp
ν and is therefore convergent

to f̃ ∈ Hp
ν . Moreover, by (6.21) with X = Xj , we see that fj → f in Lp, so

f̃ = f almost everywhere. Hence, we have f ∈ Hp
ν . The statement concerning

Besov spaces follows from two things: the observation that aj := distLp(f, Vj) ≤
cf2

−μjj−t, so ‖a‖τ,r < ∞ whenever 0 < r ≤ μ and τt > 1, and Corollary 6.13. �

For the case ν = μ, 0 < t ≤ 1, the inverse theorem fails for Bessel-potential
Sovolev spaces, but still remains valid for Besov spaces with τ > t−1.

7. Concluding remarks

There are connections between this paper and [15, 13]. In these papers, quasi-
interpolatory SBF networks were obtained yielding near-best approximants for
functions in Sobolev classes. The associated quasi-interpolation operators were
constructed in the Fourier domain. The paper [15] focused on sequences corre-
sponding to the c∞ case treated within this paper. The paper [10] dealt with
sequences connected to the “perturbations of Green’s functions” case. For exam-
ple, let ψ be a perturbation of a Green’s function as described in this paper. If the
Fourier coefficients of ψ satisfy the “difference condition” as stated in [13], then it
is in L1. The examples given in section 3 satisfy both kinds of conditions.

In [15, 13], the quasi-interpolatory SBF networks were shown to give the best
results in the sense of n-widths. In this paper, using the frame approach, we have
shown that the quasi-interpolatory networks are also optimal for approximation
of individual functions. Also note that in [13], Marcinkiewicz-Zygmund measures
generalizing the measure that associates μq(Rξ) with each ξ were introduced. These
measures were used to derive [13, Proposition 4.1 & (4.15)], which have overlap with
the current Proposition 4.4, Lemma 4.7 and estimate (5.4).

In [10], the quasi-interpolation polynomial operators were further utilized to
show that, in the presence of certain singularities, they exhibited better approxi-
mation properties than traditional methods. Also [10, Propositon 4.3] is related to
Proposition 4.10 given here. Finally there is material closely connected to Theorem
4.1 appearing in [6] and [12, Proposition 4.1]. Another version of the operator BJ

was introduced in [14]: σJ (f) =
∑2J

l=0 h(l/2
J)Pl(f), where h : [0,∞) → [0,∞) is a

function in Ck, equal to 1 on [0, 1/2] and 0 on [1,∞). An early form of Theorem 4.1
was Theorem 3.4 of [14]. Frames, based on the σJ (f) operator can be constructed
as in [11, 18] using h(t)− h(2t) in place of κ used in the construction given here.
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Finally we mention that the idea of using minimal separation for converse theo-
rems and Bernstein inequalities goes back to [29]; see also [11]. Also, for the neural
network community, we note that the number of neurons is not used as a measure
of complexity, but rather the minimal separation of the nodes.
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