# $L^{P}$ BOUNDEDNESS OF CARLESON TYPE MAXIMAL OPERATORS WITH NONSMOOTH KERNELS 

Yong Ding and Honghai Liu

(Received March 10, 2010, revised September 17, 2010)


#### Abstract

In this paper, the authors give the $L^{p}$ boundedness of a class of the Carleson type maximal operators with rough kernel, which improves some known results.


1. Introduction. For $f \in L^{2}([-\pi, \pi])$ and $x \in[-\pi, \pi]$, the Carleson operator $\mathcal{C}^{*}$ is defined by

$$
\begin{equation*}
\mathcal{C}^{*} f(x)=\sup _{\lambda \in \boldsymbol{R}}\left|\int_{-\pi}^{\pi} \frac{e^{-i \lambda t} f(t)}{x-t} d t\right| . \tag{1.1}
\end{equation*}
$$

In 1966, using the weak type $(2,2)$ of $\mathcal{C}^{*}$, Carleson [1] proved his celebrated theorem on almost everywhere convergence of Fourier series of $L^{2}$ functions on $[-\pi, \pi]$. Following that, Hunt [8] modified Carleson's proof and extended Carleson's theorem to $L^{p}$ functions on $[-\pi, \pi]$ for $1<p<\infty$.

In 1970, Sjölin [11] studied several variables analogue of the Carleson operator $\mathcal{C}^{*}$. Suppose that $K$ is an appropriate Calderón-Zygmund kernel in $\boldsymbol{R}^{n}$, then the Carleson type maximal operator $\mathcal{S}^{*}$ on $\boldsymbol{R}^{n}$ is defined by

$$
\begin{equation*}
\mathcal{S}^{*}(f)(x)=\sup _{\lambda \in \boldsymbol{R}^{n}}\left|\int_{\boldsymbol{R}^{n}} e^{-i \lambda \cdot y} K(x-y) f(y) d y\right|, \tag{1.2}
\end{equation*}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \boldsymbol{R}^{n}$.
Theorem A (Sjölin, [11]). Let $K$ satisfy the following conditions:
(a) $K(t x)=t^{-n} K(x)$, for $t>0$;
(b) $\int_{S^{n-1}} K\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0$;
(c) $K \in C^{n+1}\left(\boldsymbol{R}^{n} \backslash\{0\}\right)$.

Then $\left\|\mathcal{S}^{*}(f)\right\|_{L^{p}} \leq C_{p}\|f\|_{L^{p}}$ for $1<p<\infty$.
In 2001, Stein and Wainger [13] considered to extend Theorem A to a broader context. More precisely, the authors of [13] replaced the linear phase $\lambda \cdot y$ in the definition of $\mathcal{S}^{*}$ by more general polynomial phase with a fixed degree. Let $P_{\lambda}(x)=\sum_{2 \leq|\alpha| \leq d} \lambda_{\alpha} x^{\alpha}$ be a

[^0]polynomial in $\boldsymbol{R}^{n}$ with real coefficients $\lambda:=\left(\lambda_{\alpha}\right)_{2 \leq|\alpha| \leq d}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \boldsymbol{Z}_{+}^{n}$ and $|\alpha|=\sum_{j=1}^{n} \alpha_{j}$. Define
$$
T_{\lambda}(f)(x)=\int_{\boldsymbol{R}^{n}} e^{i P_{\lambda}(y)} K(y) f(x-y) d y
$$

Then the Carleson type maximal operator $\mathcal{T}^{*}$ is defined by

$$
\begin{equation*}
\mathcal{T}^{*} f(x)=\sup _{\lambda}\left|T_{\lambda}(f)(x)\right|, \tag{1.3}
\end{equation*}
$$

where the supremum is taken over all the real coefficients $\lambda$ of $P_{\lambda}$. Stein and Wainger proved the following result:

Theorem B (Stein-Wainger, [13]). Suppose that $P_{\lambda}(x)=\sum_{2 \leq|\alpha| \leq d} \lambda_{\alpha} x^{\alpha}$ and $K$ satisfies the following conditions:
(a) $K$ is a tempered distribution and agrees with a $C^{1}$ function $K(x)$ for $x \neq 0$;
(b) $\widehat{K} \in L^{\infty}$;
(c) $\left|\partial_{x}^{\gamma} K(x)\right| \leq A|x|^{-n-|\gamma|}$ for $0 \leq|\gamma| \leq 1$.

Then the Carleson type maximal operator $\mathcal{T}^{*}$ defined in (1.3) is bounded on $L^{p}$ for $1<p<$ $\infty$.

In 2000, Prestini and Sjölin [9] gave the weighted analogue of Theorem A. Recently, we gave also a weighted variant of Theorem B under weaker conditions [4].

In this paper, we will study the $L^{p}$ boundedness of the Carleson type maximal operators with rough kernels. Before giving our result, let us recall some definitions. Suppose that $\Omega$ is a measurable function on $\boldsymbol{R}^{n} \backslash\{0\}$ and satisfying the following conditions:

$$
\begin{align*}
& \Omega(t x)=\Omega(x) \text { for any } x \in \boldsymbol{R}^{n} \backslash\{0\} \text { and } t>0 ;  \tag{1.4}\\
& \Omega \in L^{1}\left(S^{n-1}\right) \tag{1.5}
\end{align*}
$$

where $S^{n-1}$ denotes the unit sphere in $\boldsymbol{R}^{n}(n \geq 2)$ with area measure $d \sigma$;

$$
\begin{equation*}
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{1.6}
\end{equation*}
$$

Let $Q_{\lambda}(r)=\sum_{2 \leq k \leq d} \lambda_{k} r^{k}$ be a real-valued polynomial on $\boldsymbol{R}$ and $\lambda=\left(\lambda_{2}, \ldots, \lambda_{d}\right) \in \boldsymbol{R}^{d-1}$. With the notations above, the Carleson type maximal operator $\mathcal{T}^{*}$ associated to polynomial $Q$ is defined by

$$
\begin{equation*}
\mathcal{T}^{*}(f)(x)=\sup _{\lambda}\left|T_{\lambda}(f)(x)\right|, \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\lambda}(f)(x)=\int_{\mathbf{R}^{n}} e^{i Q_{\lambda}(|y|)} K(y) f(x-y) d y \tag{1.8}
\end{equation*}
$$

and $\Omega$ satisfies (1.4) through (1.6). Our main result is following:

THEOREM 1.1. Let $\mathcal{T}^{*}$ be given as in (1.7). If $\Omega \in H^{1}\left(S^{n-1}\right)$, the Hardy space on $S^{n-1}\left(\right.$ see Section 2 for the definition of $H^{1}\left(S^{n-1}\right)$ ), then for $1<p<\infty$, there exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|\mathcal{T}^{*}(f)\right\|_{L^{p}} \leq C\|f\|_{L^{p}} \tag{1.9}
\end{equation*}
$$

Now we want to give two remarks on our main theorem.
REMARK 1. There are the following containing relationship among the function spaces on $S^{n-1}$ :

$$
C^{1}\left(S^{n-1}\right) \subsetneq L^{\infty}\left(S^{n-1}\right) \subsetneq L^{q}\left(S^{n-1}\right)(1<q<\infty) \subsetneq H^{1}\left(S^{n-1}\right) \subsetneq L^{1}\left(S^{n-1}\right) .
$$

Hence, in the sense of removing the smoothness assumption on the kernel function $K$, Theorem 1.1 improves Theorem B.

REMARK 2. We should point out that the study of a singular integral with oscillating factor $e^{i Q_{\lambda}(|y|)}$ has an important motivation. In fact, the operator $T_{\lambda}$ defined in (1.8) is a generalization of the stronger singular convolution operator, which was first studied by C. Fefferman in [6].

The proof of Theorem 1.1 is based on an idea of linearizing maximal operators and Stein-Wainger's $T T^{*}$ method presented in [13]. However, because the kernel of our objective operator lacks smoothness on the unit sphere, we need some new ideas to overcome the roughness of the kernel. Namely we use Calderón-Zygmund's rotation method.
2. Notations and Lemmas. Let us begin with recalling the definition of the Hardy space $H^{1}\left(S^{n-1}\right)$.

$$
\begin{aligned}
& H^{1}\left(S^{n-1}\right) \\
& =\left\{\Omega \in L^{1}\left(S^{n-1}\right) ;\|\Omega\|_{H^{1}\left(S^{n-1}\right)}=\left\|\sup _{0<r<1}\left|\int_{S^{n-1}} \Omega\left(y^{\prime}\right) P_{r(\cdot)}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|\right\|_{L^{1}\left(S^{n-1}\right)}<\infty\right\},
\end{aligned}
$$

where $P_{r x^{\prime}}\left(y^{\prime}\right)$ denotes the Possion kernel on $S^{n-1}$ defined by

$$
P_{r x^{\prime}}\left(y^{\prime}\right)=\frac{1-r^{2}}{\left|r x^{\prime}-y^{\prime}\right|^{n}}, \quad 0 \leq r<1 \quad \text { and } \quad x^{\prime}, y^{\prime} \in S^{n-1}
$$

See [2], [5] or [7] for the properties of $H^{1}\left(S^{n-1}\right)$.
In the proof of Theorem 1.1, we will apply the 1-dimensional variant of Stein-Wainger's results. For a real polynomial $P(t)=\sum_{1 \leq k \leq d} \lambda_{k} t^{k}$ on $\boldsymbol{R}$ with real coefficients $\lambda:=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$, we denote

$$
\begin{equation*}
|\lambda|=\sum_{1 \leq k \leq d}\left|\lambda_{k}\right| . \tag{2.1}
\end{equation*}
$$

Lemma 2.1 ([13, Proposition 2.1]). Assume that $\varphi$ is a $C^{1}$ function defined in the unit interval $I=(-1,1), V$ is any subinterval of $I$ and $P(t)=\sum_{1 \leq k \leq d} \lambda_{k} t^{k}$ is a polynomial on
$\boldsymbol{R}$ of degree d. Then

$$
\left|\int_{V} e^{i P(t)} \varphi(t) d t\right| \leq C|\lambda|^{-1 / d} \sup _{t \in I}\left(|\varphi(t)|+\left|\varphi^{\prime}(t)\right|\right)
$$

The constant $C$ depends on the degree $d$, but not on $P, \varphi$ or $V$.
Lemma 2.2 ([13, Proposition 2.2]). With the same notation as above in Lemma 2.1,

$$
|\{t \in I ;|P(t)| \leq \varepsilon\}| \leq C_{d} \varepsilon^{1 / d}|\lambda|^{-1 / d} \quad \text { for any } \varepsilon>0
$$

The constant $C_{d}$ does not depend on the coefficients of $P$, but on the degree $d$.
We also need the following $L^{p}$ boundedness for a variant of the Hardy-Littlewood maximal operator.

Lemma 2.3 ([13, Proposition 3.1]). Let $I_{2}=(-2,2), E$ is the measurable subset of $I_{2}$ and $\chi_{E}$ denotes the characteristic function of $E$. For $\varepsilon>0$, the maximal operator $\mathcal{M}_{\varepsilon}$ is defined by

$$
\begin{equation*}
\mathcal{M}_{\varepsilon}(f)(t)=\sup _{\substack{a>0 \\|E| \leq \varepsilon}}|f| *\left(\chi_{E}\right)_{a}(t), \tag{2.2}
\end{equation*}
$$

where $\left(\chi_{E}\right)_{a}(t)=a^{-1} \chi_{E}(t / a)$ for $a>0$, and the supremum is taken over all subsets $E$ in $I_{2}$ of measure less than $\varepsilon$. Then for $1<p<\infty$, there exists a constant $c>0$, independent of $\varepsilon$, such that

$$
\begin{equation*}
\left\|\mathcal{M}_{\varepsilon}(f)\right\|_{L^{p}(\boldsymbol{R})} \leq C \varepsilon^{1-1 / p}\|f\|_{L^{p}(\boldsymbol{R})} . \tag{2.3}
\end{equation*}
$$

3. The proof of main result. We now turn to the proof of the main result in this paper. It is obvious that

$$
\begin{equation*}
\mathcal{T}^{*}(f)(x)=\sup _{\lambda}\left|T_{\lambda}(f)(x)\right| \leq \sup _{\lambda \neq \mathbf{0}}\left|T_{\lambda}(f)(x)\right|+\left|T_{\Omega}(f)(x)\right|, \tag{3.1}
\end{equation*}
$$

where $T_{\Omega}$ denotes the singular integral operator, which is defined by

$$
T_{\Omega}(f)(x)=\text { p.v. } \int_{R^{n}} \frac{\Omega(y)}{|y|^{n}} f(x-y) d y .
$$

Since $\Omega \in H^{1}\left(S^{n-1}\right)$, by the $L^{p}$ boundedness of $T_{\Omega}$ (see [3] and [10]), we may assume that the first supremum in (3.1) is taken over all the nonzero vectors $\lambda=\left(\lambda_{2}, \ldots, \lambda_{d}\right)$.

Let $\psi \in C_{0}^{\infty}\left(\boldsymbol{R}_{+}\right)$be a nonnegative function such that $\operatorname{supp}(\psi) \subseteq\{1 / 4<t<1\}$ and

$$
\sum_{j=-\infty}^{\infty} \psi_{j}(t)=1 \quad \text { for } t>0
$$

where $\psi_{j}(t)=\psi\left(2^{-j} t\right)$. Denote $K(y)=\Omega(y)|y|^{-n}$ and decompose the kernel $K$ by

$$
K(y)=\sum_{j=-\infty}^{\infty} K_{j}(y),
$$

where $K_{j}(y)=\psi_{j}(|y|) K(y)$. For $\lambda \in \boldsymbol{R}^{d-1} \backslash\{\mathbf{0}\}$, let $j_{0} \in \boldsymbol{Z}$ such that $2^{j_{0}} \leq 1 / N(\lambda)<$ $2^{j_{0}+1}$, where $N(\lambda)$ is given by

$$
N(\lambda)=\sum_{2 \leq k \leq d}\left|\lambda_{k}\right|^{1 / k} .
$$

Thus, we may write

$$
\begin{equation*}
T_{\lambda} f(x)=T_{\lambda}^{-} f(x)+T_{\lambda}^{+} f(x), \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\lambda}^{-} f(x)=\sum_{j \leq j_{0}} \int_{\boldsymbol{R}^{n}} e^{i Q_{\lambda}(|y|)} K_{j}(y) f(x-y) d y \quad \text { and } \quad T_{\lambda}^{+} f(x)=T_{\lambda} f(x)-T_{\lambda}^{-} f(x) . \tag{3.3}
\end{equation*}
$$

We first give the estimate of $\left\|\sup _{\lambda}\left|T_{\lambda}^{-}(f)\right|\right\|_{L^{p}}$. Note that $\sum_{j \leq j_{0}} K_{j}(y)=K(y)$ for $|y| \leq$ $2^{j_{0}-1}$ and $\psi(|y|) \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$. Thus

$$
\begin{align*}
\left|T_{\lambda}^{-}(f)(x)\right| \leq & \left|\int_{|y| \leq 2^{j_{0}-1}} e^{i Q_{\lambda}(|y|)} K(y) f(x-y) d y\right| \\
& +\int_{2^{j_{0}-1} \leq|y| \leq 2^{j_{0}}} \frac{|\Omega(y)|}{|y|^{n}}|f(x-y)| d y  \tag{3.4}\\
= & I+I I .
\end{align*}
$$

It is easy to see that

$$
I I \leq C M_{\Omega} f(x),
$$

where $C=C(n)$ and $M_{\Omega}$ is the maximal operator with homogeneous kernel defined by

$$
M_{\Omega} f(x)=\sup _{t>0} \frac{1}{t^{n}} \int_{|y| \leq t}|\Omega(y)||f(x-y)| d y .
$$

Now we consider the term $I$. Note that

$$
\left|e^{i Q_{\lambda}(|y|)}-1\right| \leq C \sum_{2 \leq k \leq d}\left|\lambda_{k}\right||y|^{k} \leq C \sum_{2 \leq k \leq d} N(\lambda)^{k}|y|^{k} \leq C N(\lambda)|y|,
$$

since $\left|\lambda_{k}\right| \leq N(\lambda)^{k}$ and $N(\lambda)|y|<1$ for $|y| \leq 2^{j_{0}-1}$. Then, the term $I$ can be dominated by

$$
\begin{aligned}
\mid \int_{|y| \leq 2^{j_{0}-1}} & \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\left|+\left|\int_{|y| \leq 2^{j 0^{-1}}}\left(e^{i Q_{\lambda}(|y|)}-1\right) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right|\right. \\
\leq & \left|\int_{R^{n}} \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right|+\sup _{\varepsilon>0}\left|\int_{|y| \geq \varepsilon} \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right| \\
& +C N(\lambda) \int_{|y| \leq \frac{1}{2 N(x)}} \frac{|\Omega(y)|}{|y|^{n-1}}|f(x-y)| d y \\
\leq & \left|T_{\Omega}(f)(x)\right|+T_{\Omega}^{*}(f)(x)+C M_{\Omega}(f)(x),
\end{aligned}
$$

where the constant $C$ is independent on $\lambda$ and $T_{\Omega}^{*}$ denotes the truncated singular integral maximal operator with homogeneous kernel, which is defined by

$$
T_{\Omega}^{*}(f)(x)=\sup _{\varepsilon>0}\left|\int_{|y| \geq \varepsilon} \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right| .
$$

Hence,

$$
\begin{equation*}
\left|T_{\lambda}^{-}(f)(x)\right| \leq\left|T_{\Omega}(f)(x)\right|+T_{\Omega}^{*}(f)(x)+C M_{\Omega}(f)(x) . \tag{3.5}
\end{equation*}
$$

Thus, by the $L^{p}$ boundedness of $T_{\Omega}, T_{\Omega}^{*}$ and $M_{\Omega}$ (see [3], [5] or [7]), we have

$$
\begin{equation*}
\left\|\sup _{\lambda}\left|T_{\lambda}^{-}(f)\right|\right\|_{L^{p}} \leq C\|f\|_{L^{p}}, \tag{3.6}
\end{equation*}
$$

where the constant $C$ is independent of $\lambda$.
Following that, we will estimate $\left\|\sup _{\lambda}\left|T_{\lambda}^{+}(f)\right|\right\|_{L^{p}}$. For $\delta>0$ and $\lambda=\left(\lambda_{2}, \ldots, \lambda_{d}\right)$, we denote

$$
\delta \circ \lambda=\sum_{2 \leq k \leq d} \delta^{k} \lambda_{k} .
$$

Noticing that $j_{0}$ depends on $\lambda$ and $N\left(2^{j} \circ \lambda\right)=2^{j} N(\lambda)$, we have

$$
\begin{align*}
\sup _{\lambda}\left|T_{\lambda}^{+} f(x)\right| & =\sup _{\lambda}\left|\sum_{j>j_{0}} N\left(2^{j} \circ \lambda\right)^{-\delta_{0}} N\left(2^{j} \circ \lambda\right)^{\delta_{0}} T_{\lambda}^{j} f(x)\right| \\
& \leq \sup _{\lambda}\left(\sup _{j>j_{0}}\left|N\left(2^{j} \circ \lambda\right)^{\delta_{0}} T_{\lambda}^{j} f(x)\right|\right) \sum_{j=j_{0}+1}^{\infty} N\left(2^{j} \circ \lambda\right)^{-\delta_{0}}  \tag{3.7}\\
& \leq C \sup _{\lambda} \sup _{2^{j}>1 / N(\lambda)}\left|N\left(2^{j} \circ \lambda\right)^{\delta_{0}} \lambda_{\lambda}^{j} f(x)\right| \\
& =C \sup _{j} \sup _{N\left(2^{j} \circ \lambda\right)>1}\left|N\left(2^{j} \circ \lambda\right)^{\delta_{0}} T_{\lambda}^{j} f(x)\right|
\end{align*}
$$

where $\delta_{0}$ is a positive number which will be chosen later. It is trivial that, for $j \in \boldsymbol{Z}$,

$$
Q_{\lambda}(|y|)=\sum_{2 \leq k \leq d} \lambda_{k}|y|^{k}=\sum_{2 \leq k \leq d} 2^{j k} \lambda_{k}\left|2^{-j} y\right|^{k}=Q_{2^{j} \lambda}\left(\left|2^{-j} y\right|\right)
$$

and

$$
\begin{align*}
T_{\lambda}^{j} f(x) & =\int_{\boldsymbol{R}^{n}} e^{i Q_{\lambda}(|y|)} \psi_{j}(|y|) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y \\
& =\int_{\boldsymbol{R}^{n}} e^{i Q_{2} j_{0 \lambda}\left(\left|2^{-j} y\right|\right)} \psi\left(2^{-j}|y|\right) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y \tag{3.8}
\end{align*}
$$

There exists a constant $C_{0}>0$, such that $N(\lambda) \leq C_{0}|\lambda|$ for any vector $\lambda$ satisfying $N(\lambda) \geq 1$ (see [13, p. 797]). Then, by (3.8),

$$
\begin{align*}
\sup _{j} & \sup _{N\left(2^{j} \circ \lambda\right)>1} N\left(2^{j} \circ \lambda\right)^{\delta_{0}}\left|T_{\lambda}^{j} f(x)\right| \\
& \leq \sup _{a>0} \sup _{N(\lambda)>1} N(\lambda)^{\delta_{0}}\left|\int_{R^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right| \\
& \leq C \sum_{l=0}^{\infty} 2^{l \delta_{0}} \sup _{\substack{N(\lambda) \geq 2^{l} \\
a>0}}\left|\int_{R^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right|  \tag{3.9}\\
\quad \leq C \sum_{l=0}^{\infty} 2^{l \delta_{0}} \sup _{|\lambda| \geq 2^{l} l C_{0}}^{a>0} \mid & \left|\int_{R^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right| .
\end{align*}
$$

If we can show that there is a $\delta_{p}>0$ such that

$$
\begin{align*}
& \left(\int_{\boldsymbol{R}^{n}} \sup _{\substack{|\lambda| \geq 2^{l} / C_{0} \\
a>0}}\left|\int_{\boldsymbol{R}^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) a^{n} K(a y) f(x-y) d y\right|^{p} d x\right)^{1 / p}  \tag{3.10}\\
& \quad \leq C 2^{-l \delta_{p}}\|f\|_{L^{p}},
\end{align*}
$$

then taking $\delta_{0}=\delta_{p} / 2$ and by (3.7) and (3.9), we have

$$
\left\|\sup _{\lambda}\left|T_{\lambda}^{+}(f)\right|\right\|_{L^{p}} \leq C\|f\|_{L^{p}} .
$$

Thus, to complete the proof of Theorem 1.1, we just need to show inequality (3.10). It is easy to see that, to get (3.10), we need only to show for $t \geq 1 / C_{0}$,

$$
\begin{equation*}
\left\|\sup _{\substack{|\lambda| \geq t \\ a>0}}\left|\int_{R^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) \frac{\Omega(y)}{|y|^{n}} f(\cdot-y) d y\right|\right\|_{L^{p}} \leq C t^{-\delta_{p}}\|f\|_{L^{p}} . \tag{3.11}
\end{equation*}
$$

By a polar coordinate transformation, we have

$$
\begin{aligned}
& \sup _{\substack{|\lambda| \geq t \\
a>0}}\left|\int_{\boldsymbol{R}^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right| \\
& \quad \leq \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| \sup _{\substack{|\lambda| \geq t \\
a>0}}\left|\int_{0}^{\infty} e^{i Q_{\lambda}(a r)} \psi(a r) \frac{1}{r} f\left(x-r y^{\prime}\right) d r\right| d \sigma\left(y^{\prime}\right) .
\end{aligned}
$$

By the above inequality and Minkowski's inequality, we have

$$
\begin{align*}
& \left(\int_{\boldsymbol{R}^{n}} \sup _{\substack{\mid \lambda>t \\
a>0}}\left|\int_{R^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right|^{p} d x\right)^{1 / p} \\
& \leq\left[\int_{R^{n}}\left(\int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| \sup _{\substack{|\lambda| \geq \geq \\
a>0}}\left|\int_{0}^{\infty} e^{i Q_{\lambda}(a r)} \psi(a r) \frac{1}{r} f\left(x-r y^{\prime}\right) d r\right|^{2} d \sigma\left(y^{\prime}\right)\right)^{p} d x\right]^{1 / p} \\
& \leq \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right|\left(\int_{R^{n}} \sup _{|\lambda| \geq t}\left|\int_{0}^{\infty>0} e^{i Q_{\lambda}(a r)} \psi(a r) \frac{1}{r} f\left(x-r y^{\prime}\right) d r\right|^{p} d x\right)^{1 / p} d \sigma\left(y^{\prime}\right)  \tag{3.12}\\
& =\int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right|\left(\int_{L_{y^{\prime}}^{\perp}} \int_{\boldsymbol{R}} \sup _{\substack{|\lambda| \geq t \\
a>0}} \mid \int_{0}^{\infty} e^{i Q_{\lambda}(a r)} \psi(a r)\right. \\
& \left.\quad \times\left.\frac{1}{r} f\left(z+(s-r) y^{\prime}\right) d r\right|^{p} d s d z\right)^{1 / p} d \sigma\left(y^{\prime}\right)
\end{align*}
$$

where for fixed $y^{\prime} \in S^{n-1}, L_{y^{\prime}}$ denotes the line through the origin containing $y^{\prime}$. Thus for $x \in \boldsymbol{R}^{n}$, there are $s \in \boldsymbol{R}$ and $z \in L_{y^{\prime}}^{\perp}$ such that $x=s y^{\prime}+z$ and this decomposition is unique. Moreover, for fixed $y^{\prime}$ and $z \in L_{y^{\prime}}^{\perp}$, denote $f\left(z+s y^{\prime}\right)$ by $f_{y^{\prime}, z}(s)$. It is obvious that

$$
\begin{aligned}
& \int_{\substack{\boldsymbol{R} \\
\sup _{|\lambda| \geq t} \\
a>0}}\left|\int_{0}^{\infty} e^{i Q_{\lambda}(a r)} \psi(a r) \frac{1}{r} f\left(z+(s-r) y^{\prime}\right) d r\right|^{p} d s
\end{aligned}
$$

Now, for $t \geq 1 / C_{0}$, we define a maximal operator $\mathcal{R}_{t}$ by

$$
\mathcal{R}_{t}(g)(s)=\sup _{\substack{2 t \geq|\lambda| \geq t \\ a>0}}\left|\int_{0}^{\infty} e^{i Q_{\lambda}(a r)} \psi(a r) \frac{1}{r} g(s-r) d r\right| .
$$

If we can show that there exists a $C>0$ such that, for $t \geq 1 / C_{0}$ and $g \in L^{p}(\boldsymbol{R})(1<p<$ $\infty$ ),

$$
\begin{equation*}
\left\|\mathcal{R}_{t}(g)\right\|_{L^{p}(\boldsymbol{R})} \leq C t^{-\delta_{p}}\|g\|_{L^{p}(\boldsymbol{R})} \tag{3.13}
\end{equation*}
$$

then by (3.12),

$$
\begin{aligned}
& \left(\int_{\boldsymbol{R}^{n}} \sup _{\substack{|\lambda| \geq t \\
a>0}}\left|\int_{\boldsymbol{R}^{n}} e^{i Q_{\lambda}(|a y|)} \psi(a|y|) \frac{\Omega(y)}{|y|^{n}} f(x-y) d y\right|^{p} d x\right)^{1 / p} \\
& \quad \leq \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right|\left(\int_{L_{y^{\prime}}^{\perp}} \sum_{k=0}^{\infty}\left\|\mathcal{R}_{2^{k} t}\left(f_{y^{\prime}, z}^{\prime}(\cdot)\right)\right\|_{L^{p}(\boldsymbol{R})}^{p} d z\right)^{1 / p} d \sigma\left(y^{\prime}\right) \\
& \quad \leq C t^{-\delta_{p}} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right|\left(\int_{L_{y^{\prime}}^{\perp}} \sum_{k=0}^{\infty} 2^{-k p \delta_{p}} \int_{\boldsymbol{R}}\left|f_{y^{\prime}, z}(s)\right|^{p} d s d z\right)^{1 / p} d \sigma\left(y^{\prime}\right) \\
& \quad \leq C t^{-\delta_{p}}\|\Omega\|_{L^{1}\left(S^{n-1}\right)}\|f\|_{L^{p}\left(\boldsymbol{R}^{n}\right)} .
\end{aligned}
$$

Hence, to get (3.11), it suffices to prove (3.13). Note that $\psi$ is a smooth function supported on $(1 / 4,1)$. It is trivial that

$$
\left|\int_{0}^{\infty} e^{i Q_{\lambda}(a r)} \psi(a r) \frac{1}{r} g(s-r) d r\right| \leq 4 a \int_{1 / 4 a}^{1 / a}|g(s-r)| d r \leq C M(g)(s),
$$

where $M$ denotes the Hardy-Littlewood maximal operator on $\boldsymbol{R}$. Thus, for $1<p<\infty$,

$$
\begin{equation*}
\left\|\mathcal{R}_{t}(g)\right\|_{L^{p}(\boldsymbol{R})} \leq C\|g\|_{L^{p}(\boldsymbol{R})} \tag{3.14}
\end{equation*}
$$

where $C$ is independent of $t$. If we can prove that, for some $\delta_{2}>0$,

$$
\begin{equation*}
\left\|\mathcal{R}_{t}(g)\right\|_{L^{2}(\boldsymbol{R})} \leq C t^{-\delta_{2}}\|g\|_{L^{2}(\boldsymbol{R})} \tag{3.15}
\end{equation*}
$$

with $C$ is independent of $t$, then (3.13) follows by using Marcinkiewicz interpolation theorem between (3.14) and (3.15) with $\delta_{p}=\min \left\{2 / p, 2 / p^{\prime}\right\} \theta \delta_{2}$, where $0<\theta<p /(2 p-1)$.

We devote ourselves to the proof of (3.15) in the following. By the definition of $\mathcal{R}_{t}$, for fixed $s \in \boldsymbol{R}$, there are a nonzero vector $\lambda(s)$ in $\boldsymbol{R}^{d-1}$ satisfying $t \leq|\lambda(s)| \leq 2 t$ and a positive number $a(s)$ such that

$$
\begin{equation*}
\left|\int_{0}^{\infty} e^{i Q_{\lambda(s)}(a(s) r)} \psi(a(s) r) \frac{1}{r} g(s-r) d r\right| \geq \frac{1}{2} \mathcal{R}_{t}(g)(s) . \tag{3.16}
\end{equation*}
$$

For fixed vector valued function $\lambda(\cdot)$ and positive real valued function $a(\cdot)$, we define

$$
\mathcal{L}_{\lambda, a}(g)(s)=\int_{\boldsymbol{R}} e^{i Q_{\lambda(s)}(a(s) r)} \psi(a(s) r) \frac{1}{r} g(s-r) d r .
$$

Thus, by (3.16), to get (3.15) we just need to estimate the $L^{2}$ norm of $\mathcal{L}_{\lambda, a}(g)$. That is, we have to prove

$$
\begin{equation*}
\left\|\mathcal{L}_{\lambda, a}(g)\right\|_{L^{2}(\boldsymbol{R})} \leq C t^{-\delta_{2}}\|g\|_{L^{2}(\boldsymbol{R})} \tag{3.17}
\end{equation*}
$$

where $C$ is independent of $t$ and the choices of $\lambda(\cdot)$ and $a(\cdot)$.
For fixed $\lambda(\cdot)$ and $a(\cdot), \mathcal{L}_{\lambda, a}^{*}$ denote the adjoint operator of $\mathcal{L}_{\lambda, a}$. Thus, $\mathcal{L}_{\lambda, a}^{*}$ can be represented as

$$
\mathcal{L}_{\lambda, a}^{*}(h)(r)=\int_{\boldsymbol{R}} e^{-i Q_{\lambda(s)}(a(s)(s-r))} \psi(a(s)(s-r)) \frac{1}{s-r} h(s) d s .
$$

We consider the $L^{2}$ norm of $\mathcal{L}_{\lambda, a} \mathcal{L}_{\lambda, a}^{*}(g)$. It is easy to verify that

$$
\mathcal{L}_{\lambda, a} \mathcal{L}_{\lambda, a}^{*}(g)(s)=\int_{\boldsymbol{R}} \mathcal{K}(s, u) g(u) d u,
$$

where

$$
\begin{aligned}
\mathcal{K}(s, u) & =\int_{\boldsymbol{R}} e^{i Q_{\lambda(s)}(a(s) r)} e^{-i Q_{\lambda(u)}(a(u)(u-s+r))} \psi(a(s) r) \frac{1}{r} \psi(a(u)(u-s+r)) \frac{1}{u-s+r} d r \\
& =\left(e^{i Q_{\lambda(s)}(a(s) \cdot)} \psi(a(s) \cdot) \frac{1}{\cdot}\right) *\left(e^{-i Q_{\lambda(u)}(-a(u) \cdot)} \psi(-a(u) \cdot) \frac{1}{(-\cdot)}\right)(s-u) .
\end{aligned}
$$

We claim that

$$
\begin{align*}
|\mathcal{K}(s, u)| \leq C\{ & t^{-2 \delta_{2}} a(s) \chi_{I_{2}}(a(s)(s-u))+a(s) \chi_{E_{\lambda(s)}}(a(s)(s-u))  \tag{3.18}\\
& \left.+t^{-2 \delta_{2}} a(u) \chi_{I_{2}}(a(u)(s-u))+a(u) \chi_{E_{\lambda(u)}}(a(u)(s-u))\right\},
\end{align*}
$$

where $E_{\lambda(s)}$ and $E_{\lambda(u)}$ are subsets of $I_{2}:=(-2,2)$ satisfying $\left|E_{\lambda(s)}\right|,\left|E_{\lambda(u)}\right| \leq t^{-4 \delta_{2}}$ for $\delta_{2}=(6 d)^{-1}$. Once we verify (3.18), then (3.17) can be deduced from (3.18). In fact,

$$
\begin{aligned}
\left|\left\langle\mathcal{L}_{\lambda, a} \mathcal{L}_{\lambda, a}^{*}(g), \ell\right\rangle\right| \leq & \int_{\boldsymbol{R}} \int_{\boldsymbol{R}}|\mathcal{K}(s, u)||g(u)||\ell(s)| d u d s \\
\leq & C t^{-2 \delta_{2}} \int_{\boldsymbol{R}}|\ell(s)| a(s) \int_{|s-u| \leq 2 / a(s)}|g(u)| d u d s \\
& +C \int_{\boldsymbol{R}}|\ell(s)| a(s) \int_{\boldsymbol{R}} \chi_{E_{\lambda(s)}}(a(s)(s-u))|g(u)| d u d s \\
& +C t^{-2 \delta_{2}} \int_{\boldsymbol{R}}|g(u)| a(u) \int_{|s-u| \leq 2 / a(u)}|\ell(s)| d s d u \\
& +C \int_{\boldsymbol{R}}|g(u)| a(u) \int_{\boldsymbol{R}} \chi_{E_{\lambda(u)}}(a(u)(s-u))|\ell(s)| d s d u \\
\leq & C t^{-2 \delta_{2}} \int_{\boldsymbol{R}}|\ell(s)| M(g)(s) d s+C \int_{\boldsymbol{R}}|\ell(s)| \mathcal{M}_{\varepsilon}(g)(s) d s \\
& +C t^{-2 \delta_{2}} \int_{\boldsymbol{R}}|g(u)| M(\ell)(u) d u+C \int_{\boldsymbol{R}}|g(u)| \mathcal{M}_{\varepsilon}(\ell)(u) d u
\end{aligned}
$$

where $\varepsilon=t^{-4 \delta_{2}}$. Using Hölder's inequality, the $L^{2}$ boundedness of $M$ (see [12]) and Lemma 2.3, we get

$$
\begin{equation*}
\left|\left\langle\mathcal{L}_{\lambda, a} \mathcal{L}_{\lambda, a}^{*} g, \ell\right\rangle\right| \leq C t^{-2 \delta_{2}}\|g\|_{L^{2}(\boldsymbol{R})}\|\ell\|_{L^{2}(\boldsymbol{R})}, \tag{3.19}
\end{equation*}
$$

and (3.17) follows from (3.19). Thus, in order to finish the proof of Theorem 1.1, it remains to verify the claim (3.18).

For fixed $s, u$ and function $a(\cdot), \lambda(\cdot)$, let $w=s-u, \mu=\lambda(u), v=\lambda(s), a_{1}=a(u)$, $a_{2}=a(s)$. Then, for fixed $s, u, \mathcal{K}(s, u)$ can be represented as

$$
\mathcal{K}(s, u)=\int_{\boldsymbol{R}} e^{i Q_{v}\left(a_{2} r\right)} e^{-i Q_{\mu}\left(a_{1}(r-w)\right)} \psi\left(a_{2} r\right) \frac{1}{r} \psi\left(a_{1}(r-w)\right) \frac{1}{r-w} d r .
$$

First we assume that $a_{2} \geq a_{1}$. Thus, $h=a_{1} / a_{2} \leq 1$. By rescaling by $a_{1}$, we obtain

$$
\mathcal{K}(s, u)=\int_{\boldsymbol{R}} e^{i Q_{\nu}(r / h)} e^{-i Q_{\mu}\left(r-a_{1} w\right)} \psi(r / h) \frac{1}{r} \psi\left(r-a_{1} w\right) \frac{a_{1}}{r-a_{1} w} d r .
$$

Hence, if we denote

$$
\begin{aligned}
\mathcal{F}_{h}^{\mu, v}(w) & =\int_{R} e^{i Q_{\nu}(r / h)} e^{-i Q_{\mu}(r-w)} \psi(r / h) \frac{1}{r} \psi(r-w) \frac{1}{r-w} d r \\
& =\int_{R} e^{i Q_{v}(r)} e^{-i Q_{\mu}(h r-w)} \psi(r) \frac{1}{r} \psi(h r-w) \frac{1}{h r-w} d r,
\end{aligned}
$$

then we have

$$
\mathcal{K}(s, u)=a_{1} \mathcal{F}_{h}^{\mu, v}\left(a_{1} w\right)
$$

Assume that, for $t \leq|\mu|,|\nu| \leq 2 t$ and $0<h \leq 1$, there is a measurable set $E_{\mu}$ in $I_{2}$ with $\left|E_{\mu}\right| \leq t^{-4 \delta_{2}}$ such that

$$
\begin{equation*}
\left|\mathcal{F}_{h}^{\mu, v}(w)\right| \leq C\left(t^{-2 \delta_{2}} \chi_{I_{2}}(w)+\chi_{E_{\mu}}(w)\right) . \tag{3.20}
\end{equation*}
$$

Then when $a(s) \geq a(u)$,

$$
\begin{aligned}
|\mathcal{K}(s, u)| & \leq C\left(t^{-2 \delta_{2}} a_{1} \chi_{I_{2}}\left(a_{1} w\right)+a_{1} \chi_{E_{\mu}}\left(a_{1} w\right)\right) \\
& =C\left[t^{-2 \delta_{2}} a(u) \chi_{I_{2}}(a(u)(s-u))+a(u) \chi_{E_{\lambda(u)}}(a(u)(s-u))\right] .
\end{aligned}
$$

By the symmetry of $u$ and $s$, we can get similar inequality as above when $a(s) \leq a(u)$. Thus, (3.18) is proved under this assumption.

Following that, we just need to verify the existence of $E_{\mu}$ with the inequality (3.20). The discussion will be divided into two cases: $h$ is near the origin and away from the origin.

CASE 1. $0<h \leq \eta \ll 1$, where $\eta$ will be chosen later. If we denote $\nu_{1}=0$, $\binom{k}{j}=k \cdot(k-1) \cdots(k-j+1) / j!$ and $\binom{k}{j}=0$ if $k<j$, by a trivial calculation we have

$$
\begin{align*}
Q_{v}(r)-Q_{\mu}(h r-w) & =\sum_{j=2}^{d} v_{j} r^{j}-\left[Q_{\mu}(-w)+\sum_{j=1}^{d} h^{j} r^{j} \sum_{k=2}^{d}\binom{k}{j} \mu_{k}(-w)^{k-j}\right]  \tag{3.21}\\
& =\sum_{j=1}^{d} r^{j}\left(v_{j}-h^{j} \sum_{k=2}^{d}\binom{k}{j} \mu_{k}(-w)^{k-j}\right)-Q_{\mu}(-w)
\end{align*}
$$

If $r$ and $h r-w$ are in $\operatorname{supp}(\psi) \subseteq\{1 / 4<r \leq 1\}$, then we have $|w| \leq|h r-w|+h r \leq 1+h \leq 2$ and

$$
\begin{aligned}
\sum_{j=1}^{d}\left|v_{j}-h^{j} \sum_{k=2}^{d}\binom{k}{j} \mu_{k}(-w)^{k-j}\right| & \geq \sum_{j=2}^{d}\left|v_{j}\right|-\sum_{j=1}^{d} h^{j} \sum_{k=2}^{d}\binom{k}{j}\left|\mu_{k}\right||w|^{k-j} \\
& \geq \sum_{j=2}^{d}\left|v_{j}\right|-C h \sum_{k=2}^{d}\left|\mu_{k}\right|
\end{aligned}
$$

If $\eta$ is chosen small enough, since $t \leq|\mu|,|\nu| \leq 2 t$, we get

$$
\sum_{j=1}^{d}\left|v_{j}-h^{j} \sum_{k=2}^{d}\binom{k}{j} \mu_{k}(-w)^{k-j}\right| \geq \sum_{j=2}^{d}\left|v_{j}\right|-C \eta \sum_{k=2}^{d}\left|\mu_{k}\right| \geq C \sum_{j=2}^{d}\left|v_{j}\right| \geq C t
$$

By Lemma 2.1, we have

$$
\begin{equation*}
\left|\mathcal{F}_{h}^{\mu, v}(w)\right| \leq C t^{-1 / d} \chi_{I_{2}}(w) . \tag{3.22}
\end{equation*}
$$

CASE 2. $\eta<h \leq 1$ and $\eta$ is fixed now. We consider the term of degree 1 in $r$ in the phase $Q_{\nu}(r)-Q_{\mu}(h r-w)$. Since there is no first order term in $r$ in $Q_{\nu}(r)$, by (3.21), the first order term of the above is

$$
-r h \sum_{k=2}^{d} k \mu_{k}(-w)^{k-1} .
$$

Since $h>\eta$, by Lemma 2.1, we get

$$
\left|\mathcal{F}_{h}^{\mu, v}(w)\right| \leq C\left|\sum_{k=2}^{d} k \mu_{k}(-w)^{k-1}\right|^{-1 / d} \chi_{L_{2}}(w) .
$$

We define

$$
E_{\mu}=\left\{w \in I_{2} ;\left|\sum_{k=2}^{d} k \mu_{k}(-w)^{k-1}\right| \leq \rho\right\}
$$

and $\rho$ will be chosen later. For $w \in\left(E_{\mu}\right)^{c}$, it is obvious that

$$
\begin{equation*}
\left|\mathcal{F}_{h}^{\mu, v}(w)\right| \leq C \rho^{-1 / d} \chi_{I_{2}}(w) . \tag{3.23}
\end{equation*}
$$

By Lemma 2.2, we obtain

$$
\left|E_{\mu}\right| \leq C\left(\sum_{k=2}^{d} k\left|\mu_{k}\right|\right)^{-1 / d} \rho^{1 / d} .
$$

Note that

$$
\sum_{k=2}^{d} k\left|\mu_{k}\right| \geq \sum_{k=2}^{d}\left|\mu_{k}\right|=|\mu| \geq t
$$

Thus for $w \in E_{\mu}$, we have

$$
\begin{equation*}
\left|\mathcal{F}_{h}^{\mu, v}(w)\right| \leq C \chi_{E_{\mu}}(w), \tag{3.24}
\end{equation*}
$$

with $\left|E_{\mu}\right| \leq C(\rho / t)^{1 / d}$.
Specially, we take $\rho=\bar{c} t^{1 / 3}$ with $\bar{c}$ appropriately small. Since $t \geq 1 / C_{0}>0$ and $\delta_{2}=1 / 6 d$, it follows from (3.22), (3.23) and (3.24) that

$$
\left|\mathcal{F}_{h}^{\mu, v}(w)\right| \leq C\left(t^{-2 \delta_{2}} \chi_{I_{2}}(w)+\chi_{E_{\mu}}(w)\right)
$$

with $\left|E_{\mu}\right| \leq t^{-4 \delta_{2}}$, that is, the estimate (3.20) is satisfied for $E_{\mu}$.
Thus, we complete the proof of Theorem 1.1.

Acknowledgment. The authors would like to express their gratitude to the referee for his/her very careful reading, valuable comments and very nice modifiable suggestions.

## REFERENCES

[1] L. CARLESON, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.
[2] L. Colzani, Hardy spaces on spheres, Ph. D. Thesis, Washington University, St. Louis, 1982.
[3] W. Connett, Singular integrals near $L^{1}$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Amer. Math. Soc. 35, Providence, R.I., 1979. 163-165.
[4] Y. Ding and H. LiU, Weighted $L^{p}$ boundedness of Carleson type maximal operators, to appear in Proc. Amer. Math. Soc.
[5] D. FAN AND Y. PAN, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), 799-839.
[6] C. FEFFERMAN, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
[7] L. Grafakos and A. Stefanov, Convolution Calderón-Zygmund singular integral operators with rough kernels, Analysis of Divergence: Control and Management of Divergent Processes, 119-143, Birkhauser, Boston-Basel-Berlin, 1999.
[8] R. Hunt, On the convergence of Fourier series, Orthogonal Expansions and Their Continuous Analogues (Proc. Cont. Edwardsville, Ill., 1967), 235-255, Southern Illinois Univ. Press, Carbondale Ill., 1968.
[9] E. Prestini and P. SjöLin, A Littlewood-Paley inequality for the Carleson operator, J. Fourier Anal. Appl. 6 (2000), 457-466.
[10] F. Ricci and G. Weiss, A characterization of $H^{1}\left(\Sigma_{n-1}\right)$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), 289-294, Amer. Math. Soc. 35, Providence, R.I., 1979.
[11] P. SJÖLIN, Convergence almost everywhere of certain singular integral and multiple Fourier series, Ark. Mat. 9 (1971), 65-90.
[12] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
[13] E. M. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem, Math. Res. Lett. 8 (2001), 789-800.

School of Mathematical Sciences
Laboratory of Mathematics and Complex Systems (BNU)
Ministry of Education, China
Beiding Normal University
BEIJING 100875
China
E-mail address: dingy @bnu.edu.cn
School of Mathematics and Information Science
Henan Polytechnic University
Jiaozuo 454000
China
E-mail address: hhliu@hpu.edu.cn


[^0]:    2000 Mathematics Subject Classification. Primary 42B20; Secondary 42B25.
    Key words and phrases. Carleson maximal operators, singular integral operators, rough kernel.
    The research was supported by NSF of China (Grant: 10931001), SRFDP of China (Grant: 20090003110018) and PCSIRT of China.

