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Lp consonant approximations of belief

functions

Fabio Cuzzolin

Abstract

In this paper we solve the problem of approximating a belief measure with a necessity measure

or “consonant belief function” in a geometric framework. Consonant belief functions form a simplicial

complex in both the space of all belief functions and the space of all mass vectors: partial approximations

are first sought in each component of the complex, while global solutions are selected among them. As a

first step in this line of study, we seek here approximations which minimize Lp norms. Approximations

in the mass space can be interpreted in terms of mass redistribution, while approximations in the belief

space generalize the maximal outer consonant approximation. We compare them with each other and

with other classical approximations, and illustrate them with the help of a running example.

Index Terms

Theory of evidence, possibility theory, consonant belief functions, geometric approach, simplicial

complex, (outer) consonant approximation, isopignistic function, Lp norms.

I. INTRODUCTION

The theory of evidence [1] is a popular approach to uncertainty description in which prob-

abilities are replaced by belief functions (b.f.s), functions b : 2Θ → [0, 1] on the power set

2Θ = {A ⊆ Θ} of the sample space Θ of the form b(A) =
∑

B⊆Amb(B), where mb : 2Θ → [0, 1]

is a non-negative, normalized set function called “basic probability assignment” (b.p.a.) or “mass

assignment”. Subsets of Θ associated with non-zero values of mb are called focal elements.

Possibility theory [2], instead, studies possibility measures, i.e., functions Pos : 2Θ → [0, 1] on

F. Cuzzolin is with the Department of Computing and Communication Technologies, Oxford Brookes University, Oxford,

UK. Email: Fabio.Cuzzolin@brookes.ac.uk.

October 23, 2012 DRAFT



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. XX, NO. Y, MONTH 2012 2

the power set such that Pos(∅) = 0, Pos(Θ) = 1, and Pos(
⋃
iAi) = maxi Pos(Ai) for any

family of subsets {Ai|Ai ∈ 2Θ}. Given a possibility measure Pos, the dual necessity measure

is defined as Nec(A) = 1 − Pos(Ac). Necessity measures have counterparts in the theory of

evidence in the form of consonant belief functions (co.b.f.s), i.e., b.f.s whose non-zero mass

subsets mb(A) 6= 0 or “focal elements” (f.e.s) are nested [1] and form a chain (totally ordered

collection) of subsets A1 ⊂ · · · ⊂ Am, Ai ⊆ Θ.

Reducing the complexity of belief calculus: an argument often raised against using belief

functions in practice is their relatively high computational complexity, when compared to methods

based on classical probability theory. To overcome these computational limitations, different

approximation methods have been proposed. Some are based on Monte-Carlo techniques [3],

[4], [5], while others seek to restrict the number of focal elements [6], [7], often by mapping

belief functions to probability measures (Bayesian approximation or probability transformation

[8], [9], [10], [11]), as the latter have a number of focal elements which is linear in the size of

the frame of discernment.

As possibilities are completely determined by their values on the singletons (Pos({x}), x ∈

Θ), they are also less computationally expensive than belief functions, making a “possibility

approximation” process attractive for many applications. Approximating a belief function with a

possibility/necessity measure amounts, as we pointed out, to mapping it to a consonant b.f. [12],

[13], [14], [15]. However, as explained by Dubois et al [16], possibility and probability do not

capture the same facets of uncertainty: while probability theory offers a good quantitative model

for randomness and undecisiveness, possibility theory better models partial ignorance. Bayesian

and consonant approximation focus therefore on different aspects of the original belief function,

while allowing us both to reduce its complexity. For this reason, possible mappings between

possibilities and probabilities have also been investigated in the past [16], [17].

This consonant approximation problem has been studied by relatively few researchers: in

[13] a “focused consistent transformation” of a random set was sought which minimized the

information loss caused by the transformation. On their side, Dubois and Prade have developed

the notion of “outer consonant approximation”, which has received considerable attention in the

past. Indeed, belief functions admit the following order relation: b ≤ b′ ≡ ∀A ⊆ Θ, b(A) ≤ b′(A),

called “weak inclusion”. It is then possible to define the outer consonant approximations [12]

of a belief function b as those co.b.f.s co such that co(A) ≤ b(A) ∀A ⊆ Θ. Dubois and
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Prade’s work has been later extended by Baroni [15] to capacities, while the author of this

paper has provided a comprehensive description of the geometry of the set of outer consonant

approximations [18]. Particularly interesting is, for each possible maximal chain A0 ⊂ · · · ⊂ A|Θ|,

|Ai| = i of focal elements, the maximal outer consonant approximation with mass assignment:

m′(Ai) = b(Ai) − b(Ai−1), which mirrors the behavior of the vertices of the credal set of

probabilities dominating a belief function or a 2-alternating capacity [19], [20].

Another interesting approximation emerges in the framework of Smets’ Transferable Belief

Model [21], where the “pignistic” probability BetP (x) =
∑

A⊇x
mb(A)
|A| has a central role for

decision making. The notion of an “isopignistic” approximation as the unique consonant belief

function whose pignistic probability is identical to that of the original b.f. b can then be defined

[22], [16]. The expression of the isopignistic consonant b.f. associated with a unimodal probabil-

ity density has been derived in [23]. In [24], instead, consonant belief functions are constructed

from sample data using confidence sets of pignistic probabilities.

A geometric approach to approximation: in more recent times the opportunity of seeking

probability or consonant approximations / transformations of belief functions by minimizing

appropriate distance functions has been explored. The author has himself introduced the notion

of orthogonal projection π[b] of a belief function onto the probability simplex [25], and studied

consistent approximations of belief functions induced by classical Lp norms [26] in the space of

belief functions [27]. In [28] he has shown that norm minimization can also be used to define

families of geometric conditional belief functions. As to what distances are the most appropriate,

Jousselme et al [29] have recently conducted a nice survey of the distance or similarity measures

so far introduced in belief calculus, come out with an interesting classification, and proposed a

number of generalizations of known measures. Other similarity measures between belief functions

have been proposed by Shi et al [30], Jiang et al [31], and others [32], [33]. Many of these

measures can be in principle employed to define conditional belief functions, or to approximate

belief functions by necessity or probability measures. As the author has recently proven [18],

geometrically, consonant belief functions live in a collection of simplices or “simplicial complex”.

Each maximal simplex of the consonant complex CO is associated with a maximal chain of

nested non-empty (as in this paper we only consider normalized belief functions, for which

mb(∅) = 0) focal elements: C = {A1 ⊂ A2 ⊂ · · · ⊂ A|Θ| = Θ}. Computing the consonant

belief function(s) at minimal distance from a given b.f. b involves therefore: 1) computing first
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a partial solution for each possible maximal chain; 2) selecting a global approximation among

all the partial ones. Geometric approximation, however, can be performed in different Cartesian

spaces. Indeed, a belief function can be represented either by the vector of its belief values, or

the vector of its mass values. We call the set of vectors of the first kind belief space B [27], [34],

and the collection of vectors of the second kind mass space M [28]. In both cases consonant

b.f.s belong to a simplicial complex.

Contribution: the goal of this paper is to conduct an exhaustive, analytical study of all the

consonant approximations of belief functions induced by minimizing L1, L2 or L∞ distances

between the consonant complex and the original belief function, in both the belief and the mass

space. Even though we believe the resulting consonant approximations are likely to be useful in

practical applications, our purpose at this stage is not to empirically compare them with existing

approaches such as isopignistic function and outer approximations, but to initiate a theoretical

study of the nature of consonant approximations induced by geometric distance minimization,

starting with Lp norms as a stepping stone of a more extensive line of research. Our purpose

is to point out their semantics in terms of degrees of belief and their mutual relationships, and

to analytically compare them with the existing approximations. What emerges is a picture in

which belief-, mass-, and pignistic-based approximations form distinct families of approximations

with different semantics. As it turns out, partial approximations in the mass space amount to

redistributing in various ways the mass of focal elements outside the desired maximal chain to

elements of the chain itself (compare [28]). The global approximations in the L1, L2, L∞ cases

span the simplicial components of CO whose chains minimize the sum of mass, sum of square

masses, and maximal mass outside the desired maximal chain, respectively. In the belief space,

all partial Lp approximations can be considered as generalizations of the classical maximal outer

approximation m′(Ai) = b(Ai)−b(Ai−1). As for the global approximations, in the L∞ case they

fall on the component(s) associated with the maximal plausibility singleton(s). In the other two

cases they are, for now, of more difficult interpretation.

Limitations: in some cases, improper partial solutions (potentially including negative mass

assignments) may be obtained: the set of approximations may fall partly outside the simplex of

proper consonant belief functions, for a given desired chain of focal elements. This situation is

not new, as outer approximations themselves include infinitely many improper solutions, while

only the subset of acceptable solutions is retained. In the case of the present work, the set of
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all (admissible and not) partial solutions is typically much simpler to describe geometrically,

in terms of simplices or polytopes. Computing the set of proper approximations in all cases

requires significant further effort, which for reasons of clarity and length we reserve for the near

future. However, conditions under which such partial solutions are admissible are here given.

Additionally, in this paper only “normalized” belief functions, i.e., b.f.s whose mass of the

empty set is nil, are considered. Unnormalized b.f.s, however, play an important role in the

TBM [35] as the mass of the empty set is an indicator of conflicting evidence. The analysis of

the unnormalized case is also left to future work for lack of sufficient space here.

Paper outline: we first provide the necessary background on consonant belief functions and

consonant approximations (Section II), in particular on the geometric representation of belief

and mass vectors (II-A) and the geometric approach to the approximation problem (II-B). We

first tackle the problem in the mass space in Section III, where we: analytically compute

the approximations induced by L1, L2 and L∞ norms (III-A); discuss their interpretation in

terms of mass re-assignment (III-B); analyze the computability and admissibility of global

approximations (III-C); study the relation of the obtained approximations with classical outer

consonant approximations (III-D); illustrate the results in the significant ternary case (III-E); and

finally, analyze their relationships with the isopignistic approximation (III-F). In the second part

of the paper we analyze the Lp approximation problem in the belief space (Section IV). Again, we

compute the approximations induced by L1 (IV-A), L2 (IV-B) and L∞ (IV-C) norms, respectively;

propose a comprehensive view of all the approximations in B via lists of belief values induced

by the desired maximal chain (Section IV-D); illustrate them with the help of the usual ternary

example (IV-E), and draw some conclusions on the behavior of geometric approximations in the

belief and in the mass space (IV-F). All proofs are collected in an Appendix.

II. GEOMETRY OF CONSONANT BELIEF FUNCTIONS

A dual mathematical representation of the evidence encoded by a belief function b is the

plausibility function (pl.f.) plb : 2Θ → [0, 1], where the plausibility value plb(A) of an event A

is given by plb(A)
.
= 1 − b(Ac) =

∑
B∩A 6=∅mb(B), and expresses the amount of evidence not

against A. A probability function is simply a special belief function assigning non-zero masses

to singletons only (Bayesian b.f.): mb(A) = 0 if |A| > 1. A belief function is said, instead, to

be consonant if its focal elements are nested, and form a totally ordered chain A1 ⊂ · · · ⊂ Am.
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Consonant b.f.s are characterized by the fact that plb(A) = maxx∈A plb(x) for all non-empty

A ⊆ Θ; the restriction {plb(x), x ∈ Θ} of the plausibility function to singletons only is called the

contour function. They constitute the link between the theory of belief functions and possibility

theory [2]. Each possibility measure is uniquely characterized by a membership function or

possibility distribution π : Θ → [0, 1] s.t. π(x)
.
= Pos({x}) via the formula (in the finite case)

Pos(A) = maxx∈A π(x). From the fact that for consonant b.f.s plb(A) = maxx∈A plb(x) for all

A, it follows that [1] the plausibility function plb associated with a b.f. b is a possibility measure

(i.e., b is a necessity measure) iff b is consonant, in which case π(x) = plb(x).

A. Geometric representation of uncertainty measures

1) Belief space representation: given a frame Θ, each belief function b : 2Θ → [0, 1] is

completely specified by its N−2 belief values {b(A), ∅ ( A ( Θ}, N .
= 2n (n .

= |Θ|), (as b(∅) =

0, b(Θ) = 1 for all b.f.s), and can therefore be represented as a point of RN−2. Once introduced

a set of coordinate axes {~vA, ∅ ( A ( Θ} in RN−2, a belief function b can be represented by the

vector ~b =
∑
∅(A(Θ b(A)~vA. If we denote by bA the categorical [21] belief function (also called

“unanimity game” [36]) assigning all the mass to a single subset A ⊆ Θ, we can prove that [27],

[34] the set of points of RN−2 which correspond to a b.f. or “belief space” B coincides with the

convex closure (Cl(~b1, ...,~bk) = {~b ∈ B : ~b = α1
~b1 + · · · + αk~bk,

∑
i αi = 1, αi ≥ 0 ∀i}) of all

the vectors representing categorical belief functions: B = Cl(~bA, ∅ ( A ⊆ Θ). The belief space

B is a simplex1 [27], and each vector ~b ∈ B representing a belief function b can be written as a

convex sum as (see also [36]): ~b =
∑
∅(A⊆Θmb(A)~bA.

2) Mass space representation: in the same way, each belief function is uniquely associated

with the related set of mass values {mb(A), ∅ ( A ⊆ Θ} (Θ this time included). It can

therefore be seen also as a point of RN−1, the vector ~mb of its N − 1 mass components:

~mb =
∑
∅(A⊆Θ

mb(A)~mA, where ~mA is the vector of mass values of the categorical b.f. bA:

~mA(A) = 1, ~mA(B) = 0 ∀B 6= A. Note that in RN−1 ~mΘ = [0, ..., 0, 1]′ and cannot be

neglected. The collection M = Cl(~mA, ∅ ( A ⊆ Θ) of all the mass vectors in the Cartesian

space RN−1 is a simplex with N − 1 vertices {~mA, ∅ ( A ⊆ Θ} and of dimension N − 2.

1 An n-dimensional simplex is the convex closure Cl(x1, ..., xn+1) of n + 1 affinely independent [27] points x1, ..., xn+1

of the Euclidean space Rn. The faces of an n-dimensional simplex are all the possible simplices generated by a subset of its

vertices, i.e., Cl(xj1 , ..., xjk ) with {j1, ..., jk} ⊂ {1, ..., n + 1}.
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3) Binary example: in the case of a frame of discernment containing only two elements,

Θ2 = {x, y}, each b.f. b : 2Θ2 → [0, 1] is completely determined by its belief values2 b(x) =

mb(x) and b(y) = mb(y). We can therefore collect them in a vector of RN−2 = R2 (since

N = 22 = 4), ~b = [mb(x) = b(x),mb(y) = b(y)]′ ∈ R2. Since mb(x) ≥ 0, mb(y) ≥ 0, and

mb(x) +mb(y) ≤ 1 we can easily infer that the set B2 of all the possible belief functions on Θ2

can be depicted as the triangle in the Cartesian plane of Figure 1-left, whose vertices are the

points ~bΘ = [0, 0]′, ~bx = [1, 0]′, ~by = [0, 1]′, which correspond respectively to the vacuous belief

function bΘ (mbΘ(Θ) = 1), the Bayesian b.f. bx with mbx(x) = 1, and the Bayesian b.f. by with

mby(y) = 1.

As for the mass space, since on Θ2 = {x, y} we can represent mass functions as vectors

[mb(x),mb(y),mb(Θ)]′ of R3, M2 is a 2-dimensional simplex in R3 (see Figure 1-right).

On Θ2 = {x, y} consonant b.f.s can have as chain of focal elements either {{x} ⊂ Θ2} or

{{y} ⊂ Θ2}. Therefore, they live in the union of two segments (see Figure 1): CO2 = CO{x,Θ}∪

CO{y,Θ} = Cl(~mx, ~mΘ) ∪ Cl(~my, ~mΘ).

Fig. 1. Left: the belief space B2 for a binary frame Θ = {x, y} is a triangle in R2 whose vertices are the belief vectors
~bx,~by,~bΘ associated with the categorical belief functions focused on {x}, {y} and Θ, respectively. The unique L1 consonant

approximation (red circle) and the set of L∞ consonant approximations (dashed segment) on CO{x,Θ} are shown. Right: the

mass space M2 for the same binary frame is instead a 2-dimensional triangle embedded in R3, whose vertices are the mass

vectors ~mx, ~my, ~mΘ. Consonant b.f.s live in the union of the segments CO{x,Θ} = Cl(~mx, ~mΘ) and CO{y,Θ} = Cl(~my, ~mΘ).

Using the L1 norm for approximation yields in this case a whole segment of solutions (in red).

2We use the notation mb(x), b(x), plb(x) for the values of set functions on singletons, instead of mb({x}), b({x}), plb({x})
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B. The consonant approximation problem

1) Approximation in the consonant complex: the geometry of consonant belief functions in

the general case can be described through the notion of “simplicial complex” [37]. A simplicial

complex is a collection Σ of simplices of arbitrary dimensions such that: 1) if a simplex belongs

to Σ, then all its faces of any dimension belong to Σ; 2) the intersection of any two simplices

is a face of both. It can be proven that [18] the region COB of consonant belief functions

in the belief space is a simplicial complex, the union of a collection of (maximal) simplices,

each of them associated with a maximal chain C = {A1 ⊂ · · · ⊂ An}, |Ai| = i of non-

empty subsets of the frame Θ: COB =
⋃
C={A1⊂···⊂An}Cl(

~bA1 , · · · ,~bAn). Analogously, the region

COM of consonant belief functions in the mass space M is the simplicial complex: COM =⋃
C={A1⊂···⊂An}Cl(~mA1 , · · · , ~mAn).

Given a belief function b, we call consonant approximation of b induced by a distance function

d in M/B the b.f.(s) coM/B,d[mb/b] which minimize(s) the distance d(~mb, COM)/d(~b, COB)

between ~mb/~b and the consonant simplicial complex in M/B:

coM,d[mb] = arg min
~mco∈COM

d(~mb, ~mco)
/
coB,d[b] = arg min

~co∈COB
d(~b, ~co). (1)

2) Choice of norm: consonant b.f.s are the counterparts of necessity measures in the theory of

evidence, so that their plausibility functions are possibility measures. These, in turn, are related

to the L∞ (max) norm via Pos(A) = maxx∈A Pos(x). It is then sensible to conjecture that a

consonant transformation obtained by picking as distance function d in (1) the L∞ norm would

be meaningful. Indeed, the latter (often in the space of log-likelihoods) has been continually

rediscovered and extensively used in probabilistic graphical models as well, under the names of

“dynamic range” [38] and “L∞ quotient metric” [39], among others.

In the context of the approximation problem, Lp norms in general have been successfully

employed to design novel transformations: for instance, the L2 probability transformation induces

the so-called “orthogonal projection” of b onto P [25]. The use of Lp norms to define conditional

belief functions has also been brought forward [40], [28]. In the belief space, the Lp distances

between two vectors of belief values ~b and ~b′ are, respectively: ‖~b−~b′‖L1

.
=

∑
∅(B⊆Θ

|b(B)−b′(B)|;

‖~b− ~b′‖L2

.
=
√∑

∅(B⊆Θ(b(B)− b′(B))2 and ‖~b− ~b′‖L∞
.
= max
∅(B⊆Θ

|b(B)− b′(B)|.

In the mass space, instead, they read as: ‖~mb − ~mb′‖L1

.
=

∑
∅(B⊆Θ

|mb(B) − mb′(B)|; ‖~mb −
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~mb′‖L2

.
=

√ ∑
∅(B⊆Θ

(mb(B)−mb′(B))2 and ‖~mb − ~mb′‖L∞
.
= max
∅(B⊆Θ

|mb(B) −mb′(B)|, where

~mb, ~mb′ ∈M are vectors representing the b.p.a.s of two belief functions b, b′.

Clearly, a number of other norms can be introduced in the framework of belief functions and

used to define consonant (or Bayesian) approximations. For instance, generalizations to belief

functions of the classical Kullback-Leibler divergence between probability distributions or other

measures based on information theory such as fidelity and entropy-based norms [41] can be

studied. Many other similarity measures have indeed been proposed [30], [31], [32], [33]. The

application to the approximation problem of similarity measures more specific to belief functions

or inspired by classical probability is a huge task, of which this paper is just a first step.

3) Distance of a point from a simplicial complex: as the consonant complex CO is a collection

of simplices which generate distinct linear spaces (in both the belief and the mass space), solving

the consonant approximation problem involves finding first a number of partial solutions:

coCM,Lp
[mb] = arg min

~mco∈COCM
‖~mb − ~mco‖Lp

/
coCB,Lp

[b] = arg min
~co∈COCB

‖~b− ~co‖Lp , (2)

one for each maximal chain C of subsets of Θ. Then, the distance of b from all such partial

solutions has to be assessed in order to select a global optimal approximation.

4) Moebius inversion and preservation of norms, induced orderings: given a belief function

b, the corresponding basic probability assignment mb can be obtained via Moebius inversion as:

mb(A) =
∑

B⊆A(−1)|A\B|b(B). More in general, a Moebius inverse exists for any sum function

f(A) =
∑

B≤A g(B) defined on a partially ordered set with ordering ≤, and is the combinatorial

analogue of the derivative operator in calculus [42].

If a norm d existed for belief functions that was preserved by Moebius inversion, d(~b,~b′) =

d(~mb, ~mb′), then the approximation problems (2) in B and M would obviously yield the same

result(s). The same would be true if Moebius inversion preserved the ordering induced by d:

d(~b,~b1) ≤ d(~b,~b2)⇔ d(~m, ~m1) ≤ d(~m, ~m2) ∀~b,~b1,~b2 ∈ B.

Unfortunately, this is not the case at least for any of the above Lp norms. Let us consider again

the binary example of Section II-A, and measure the distance between the categorical belief

function ~b = ~by (such that mb(y) = 1) and the segment Cl(~bx,~bΘ) of consonant b.f.s with chain

of focal elements {x} ⊂ Θ. When using the L2 distance in the belief space:

‖~by −~bΘ‖L2 = ‖[0, 1, 1]′ − [0, 0, 1]′‖ = 1 < ‖~by −~bx‖L2 = ‖[0, 1, 1]′ − [1, 0, 1]′‖ =
√

2,
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and ~bΘ is closer to ~by than ~bx. In the mass space embedded in R3, instead:

‖~my − ~mΘ‖L2 = ‖[0, 1, 0]′ − [0, 0, 1]′‖ =
√

2 = ‖~my − ~mx‖L2 = ‖[0, 1, 0]′ − [1, 0, 0]′‖ =
√

2,

while ‖~my − (~mx + ~mΘ)/2‖L2 =
√

3/2 <
√

2. The L2 partial consonant approximation in the

first case is ~bΘ, in the second (~mx + ~mΘ)/2. Similar results can be shown for L1 and L∞.

As a consequence, separate approximation problems (2) have to be set up in the belief and

mass space, respectively. Indeed, an interesting question is whether there actually is a norm

whose induced ordering is preserved by Moebius inversion. This is an extremely challenging

open problem which, to the best of our knowledge, has not been studied so far and cannot be

quickly addressed here, but we intend to tackle, among others, in the near future.

III. CONSONANT APPROXIMATION IN THE MASS SPACE

Let us then compute first the analytical form of all Lp consonant approximations in the mass

space. The mass vector associated with an arbitrary consonant b.f. co with maximal chain of

non-empty focal elements C reads as ~mco =
∑

A∈Cmco(A)~mA, so that the difference vector is:

~mb − ~mco =
∑
A∈C

(
mb(A)−mco(A)

)
~mA +

∑
B 6∈C

mb(B)~mB. (3)

We denote by COCM,Lp
[mb] (uppercase) the set of partial Lp approximations of b with maximal

chain C calculated in the mass space M. We drop the superscript C for global solutions, and

use coCM,Lp
[mb] (lowercase) for pointwise solutions and the barycenters of sets of solutions.

A. Results of Lp consonant approximation in the mass space

Theorem 1: Given a belief function b : 2Θ → [0, 1] with b.p.a. mb, the partial L1 consonant

approximations of b with maximal chain of focal elements C, calculated in the mass space M,

is the set of co.b.f.s co with chain C such that mco(A) ≥ mb(A) ∀A ∈ C. They form a simplex:

COCM,L1
[mb] = Cl

(
~mĀ
L1

[mb], Ā ∈ C
)
, whose vertices have b.p.a.:

~mĀ
L1

[mb](A) = mb(A), A ∈ C, A 6= Ā; ~mĀ
L1

[mb](Ā) = mb(A) +
∑
B 6∈C

mb(B), (4)

and whose barycenter has mass assignment:

coCM,L1
[mb](A) = mb(A) +

1

n

∑
B 6∈C

mb(B) ∀A ∈ C. (5)
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The set of global L1 approximations of b in M is the union of the simplices of partial solutions

associated with the maximal chain(s) which maximize(s) their own total original mass:

COM,L1 [mb] =
⋃

C∈arg maxC
∑

A∈Cmb(A)

COCM,L1
[mb].

In order to find the L2 consonant approximation(s) in M, instead, it is convenient to recall

that the minimal L2 distance between a point and a vector space is attained by the point of

the vector space V such that the difference vector is orthogonal to all the generators ~gi of V :

arg min~q∈V ‖~p−~q‖L2 = q̂ ∈ V : 〈~p− q̂, ~gi〉 = 0 ∀i whenever ~p ∈ Rm, V = span({~gi, i}). Instead

of minimizing the L2 norm of the difference vector ‖~mb − ~mco‖L2 we impose a condition of

orthogonality between the difference vector itself ~mb − ~mco and each component COCM of the

consonant complex in the mass space.

Theorem 2: Given a belief function b : 2Θ → [0, 1] with b.p.a. mb, the partial L2 consonant

approximation of b with maximal chain of focal elements C, calculated in the mass spaceM, has

mass assignment (5): coCM,L2
[mb] = coCM,L1

[mb]. The set of all global such L2 approximations

is the union of the partial solutions associated with maximal chains of focal elements which

minimize the sum of square masses outside the chain:

COM,L2 [mb] =
⋃

C∈arg minC
∑

B 6∈C(mb(B))2

coCM,L2
[mb].

L1 and L2 global solutions fall in general onto different simplicial components of COM.

Theorem 3: Given a belief function b : 2Θ → [0, 1] with b.p.a. mb, the partial L∞ consonant

approximations of b with maximal chain of focal elements C, calculated in the mass space M,

can form either a simplex:

COCM,L∞ [mb] = Cl
(
~mĀ
L∞ [mb], Ā ∈ C

)
(6)

whose vertices have b.p.a.:

~mĀ
L∞ [mb](A) =


mb(A) + max

B 6∈C
mb(B) A ∈ C, A 6= Ā,

mb(Ā) + max
B 6∈C

mb(B) +
(∑
B 6∈C

mb(B)− nmax
B 6∈C

mb(B)
)

A = Ā,
(7)

when the belief function to approximate is such that:

max
B 6∈C

mb(B) ≥ 1

n

∑
B 6∈C

mb(B), (8)
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or reduce, when the opposite is true, to a single consonant belief function, the barycenter of the

above simplex, located on the partial L2 approximation (and barycenter of the L1 partial approx-

imations) (5). When (8) holds, the global such L∞ consonant approximations are associated with

the maximal chain(s) of focal elements arg minCmaxB 6∈Cmb(B); otherwise they correspond to

the maximal chains arg min
C

∑
B 6∈C

mb(B).

B. Semantics of partial consonant approximations in M

Summarizing, the partial Lp approximations of a mass function mb calculated in M are:

COCM,L1
[mb] = Cl

(
~mĀ
L1

[mb], Ā ∈ C
)

=
{
co ∈ COCM : mco(A) ≥ mb(A) ∀A ∈ C

}
;

coCM,L2
[mb] = coCM,L1

[mb] = co ∈ COCM : mco(A) = mb(A) + 1
n

∑
B 6∈Cmb(B);

COCM,L∞ [mb] = Cl(~mL∞
Ā
, Ā ∈ C)

(9)

if (8) holds, otherwise simply coCM,L∞ [mb] = coCM,L2
[mb] = coCM,L1

[mb]. We can observe that,

for each desired maximal chain of focal elements C:

1) the L1 partial approximations of b are those co.b.f.s whose basic probabilities (not beliefs)

dominates that of b over all the elements of the chain: mco(A) ≥ mb(A) ∀A ∈ C;

2) this set is a fully admissible simplex, whose vertices are obtained by re-assigning all the

mass outside the desired chain to a single focal element of the chain itself (see (4));

3) its barycenter coincides with the L2 partial approximation with the same chain, which

redistributes the original mass of focal elements outside the chain to all the elements of

the chain on an equal basis (5);

4) when the partial L∞ approximation is unique, it coincides with the L2 approximation and

the barycenter of the L1 approximations;

5) otherwise, it is a simplex whose vertices assign to each element of the chain (but one) the

maximal mass outside the chain, and whose barycenter is still the L2 approximation.

Note that the simplex of L∞ partial solutions (point 5)) may fall outside the simplex of consonant

b.f.s with the same chain, therefore some of those approximations can be non-admissible.

As a general trait, approximations in the mass space amount to some redistribution of the

original mass to focal elements of the desired maximal chain: their geometric relationship is

depicted in Figure 2.
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Fig. 2. Graphical representation of the relationships between the different (partial) Lp consonant approximations with desired

maximal chain C, in the related simplex COCM of the consonant complex CO.

C. Interpretation, computability and admissibility of global solutions

As far as global solutions are concerned, we can observe the following facts:

• in the L1 case, the optimal chain(s) are arg minC
∑

B 6∈Cmb(B) = arg maxC
∑

A∈Cmb(A);

• in the L2 case, these are arg minC
∑

B 6∈C(mb(B))2;

• in the L∞ case, the optimal chain(s) are arg minCmaxB 6∈Cmb(B) unless the approximation

is unique, in which case the optimal chains are as in the L1 case.

While the L2 global approximation is of difficult interpretation, both the L1 and L∞ solutions

are supported by an intuitive rationale, as they are associated with the chains which minimize

the total/maximal mass originally outside the desired maximal chain.

1) Admissibility of partial and global solutions: we know that all L1/L2 partial solutions are

always admissible. As for the L∞ case, not even global solutions are guaranteed to have all

admissible vertices (7): indeed, ∆ =
∑

B 6∈Cmb(B) − n · maxB 6∈Cmb(B) ≤ 0 as we are under

condition (8), therefore ~mĀ
L∞ [mb](Ā) can be negative. The computation of the admissible part

of this set of solutions is not trivial, and is left to future work.

2) Computational complexity of global solutions: in terms of computability, finding the global

L1/L2 approximations involves therefore finding the maximal mass/square mass chain(s). This is

expensive, as we have to examine all n! of them. The most favorable case in terms of complexity

is the L∞ one (unless (8) does not hold), as all the chains not containing the maximal mass

element(s) are optimal. Looking for the maximal mass focal elements requires a single pass

of the list of focal elements, with complexity O(2n) rather than O(n!). On the other hand, in

this case the global consonant approximations are spread over a potentially large number of

simplicial components of CO, and are therefore less informative.
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3) Comparison with generalized isopignistic, contour-based approximations: this behavior

compares rather unfavorably with that of (the generalization of) two classical approximations.

Definition 1: Given a belief function b : 2Θ → [0, 1], its isopignistic consonant approximation

[16] is defined as the unique consonant b.f. coiso[b] such that BetP [coiso[b]] = BetP [b], where

BetP [.] is the pignistic transform mapping each belief function b to the pignistic probability

function: BetP [b](x) =
∑

A⊇x
mb(A)
|A| . Its contour function is:

plcoiso[b](x) =
∑
x′∈Θ

min
{
BetP [b](x), BetP [b](x′)

}
. (10)

It is well known that, given the contour function plb of a consistent belief function b : 2Θ → [0, 1]

(a b.f. such that maxx plb(x) = 1) we can obtain the unique consonant b.f. which has plb as

contour function via the following formulae:

mco(Ai) = plb(xi)− plb(xi+1) ∀i = 1, ..., n− 1; mco(An) = plb(xn), (11)

where x1, ..., xn are the singletons of Θ sorted by plausibility value, and Ai = {x1, ..., xi} for all

i = 1, ..., n. Such a unique transformation is not in general feasible for arbitrary belief functions.

The isopignistic transform builds a contour function (possibility distribution) from the pignistic

values of the singletons. Given the list of singletons x1, ..., xn ordered by pignistic value, (10)

reads as: plcoiso[b](xi) = 1 −
∑i−1

j=1

(
BetP [b](xj) − BetP [b](xi)

)
=
∑n

j=iBetP [b](xj) + (i −

1)BetP [b](xi). By applying (11) we obtain mcoiso[b](An) = n ·BetP [b](xn), and:

mcoiso[b](Ai) = i ·
(
BetP [b](xi)−BetP [b](xi+1)

)
, i = 1, ..., n− 1. (12)

If we apply (12) to an arbitrary ordering of the singletons, we obtain what is in general not

guaranteed to be a proper consonant belief function (as it can have negative masses): we call it

the generalized isopignistic function of b.

The mapping (11) can be used to define another interesting approximation, as follows.

Definition 2: Given a b.f. b : 2Θ → [0, 1], its generalized contour-based consonant approxi-

mation with maximal chain of non-empty f.e.s C = {A1 ⊂ · · · ⊂ An, |Ai| = i} has b.p.a.:

mcoCcon[b](Ai) =


1− plb(x2) i = 1,

plb(xi)− plb(xi+1) i = 2, ..., n− 1,

plb(xn) i = n,

(13)

where {x1} = A1, {xi}
.
= Ai \ Ai−1 for all i = 2, ..., n.

We call such approximation “generalized” as it uses the (unnormalized) contour function of an
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arbitrary b.f. b as if it was a possibility distribution, by replacing the plausibility of the maximal

element with 1, and applies the mapping (11) to an arbitrary ordering of the singletons (instead

of the one induced by plausibility), represented by an arbitrary chain of focal elements C.

To be admissible, (13) requires sorting the plausibility values of the singletons (complexity

O(n log n)), while the isopignistic one requires n · (n− 1) comparisons as we need to compare

BetP [b](x) with BetP [b](x′), ∀ x, x′ ∈ Θ via (10). One must add also the complexity of actually

computing the value of BetP [b](x) (plb(x)) from a mass vector, which requires n scans (one

for each singleton x) with an overall complexity of n · 2n.

D. Relation with outer consonant approximations

Proposition 1: [18] Given a b.f. b : 2Θ → [0, 1] with b.p.a. mb, the set of partial outer

consonant approximation of b with maximal chain of non-empty focal elements C = {A1 ⊂

· · · ⊂ An, |Ai| = i} is the convex closure OCC[b] = Cl(coC~B[b],∀ ~B) of the co.b.f.s with b.p.a.:

mcoC
~B

[b](Ai) =
∑

A⊆Θ: ~B(A)=Ai

mb(A) ∀i = 1, ..., n, (14)

each associated with an “assignment function” ~B : 2Θ → C, A 7→ ~B(A) ⊇ A mapping each

focal element A to one of the elements of the chain containing it. Note that the points (14) are

not all guaranteed to be proper vertices of the polytope OCC[b], as some of them can be obtained

via convex combinations of others.

The outer approximation produced by the permutation ρ = {xρ(1), · · · , xρ(n)} of singletons of Θ

which generates the desired maximal chain of focal elements via Ai = {xρ(1), · · · , xρ(i)}, i.e.,

mcoCmax[b](Ai) =
∑

B⊆Ai,B 6⊂Ai−1

mb(B) = b(Ai)− b(Ai−1) ∀i = 1, ..., n, (15)

is an actual vertex of OCC[b], and the maximal outer consonant approximation of b with max-

imal chain C. Indeed, an interesting relationship between outer consonant and L1 consonant

approximation in the mass space can be proven.

Theorem 4: Given a belief function b : 2Θ → [0, 1], the set of partial L1 consonant approx-

imations COCM,L1
[mb] with maximal chain of focal elements C, calculated in the mass space

M, and the set OCC[b] of its partial outer consonant approximations with the same chain have

non-empty intersection. This intersection contains at least the convex closure of the candidate

vertices (14) of OCC[b] whose assignment functions are such that ~B(Ai) = Ai for all i = 1, ..., n.
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Proof. Clearly if ~B(Ai) = Ai for all i = 1, ..., n, then the mass mb(Ai) is re-assigned to Ai

itself for each element Ai of the chain. Hence mco(Ai) ≥ mb(Ai), and the co.b.f. belongs to

COCM,L1
[mb] (see Equation (9)). �

In particular, coCmax[b] (15) and the outer approximation which reassigns all the mass to Θ:

mco(A) = mb(A) ∀A ∈ C, A 6= Θ; mco(Θ) = mb(Θ) +
∑
B 6∈C

mb(B) (16)

both belong to both (partial) outer and L1,M consonant approximations. Approximation (16)

is generated by the trivial assignment function: ~B(B) = Θ for all B 6∈ C.

A negative result can, on the other hand, be proven for L∞ approximations: given a belief

function b and a maximal chain C, (partial) outer consonant approximations OCC[b] and partial

L∞ approximations COCM,L∞ [mb] in M are not guaranteed to have non-empty intersection. Let

us rewrite the set of constraints for L∞ approximations in M under condition (8) as: mco(A)−mb(A) ≤ maxB 6∈Cmb(B) A ∈ C, A 6= Θ,∑
A∈C,A 6=Θ

(
mco(A)−mb(A)

)
≥
(∑

B 6∈Cmb(B)−maxB 6∈Cmb(B)
)
.

(17)

Indeed, when (8) does not hold, coCM,L∞ [mb] = coCM,L2
[mb] which is in general outside OCC[b].

To be a pseudo vertex of the set of partial outer approximations, a co.b.f. co must be the result

of re-assigning the mass of each focal element to an element of the chain which contains it.

Imagine that all the focal elements not in the desired chain C have the same mass: mb(B) = const

for all B 6∈ C. Only up to n − 1 of them can be reassigned to elements of the chain different

from Θ. As a matter of fact, if you reassigned n outside focal elements to such elements of

the chain, in absence of mass redistribution internal to the chain, some element A ∈ C of the

chain would surely violate the first constraint in (17), as it should receive mass from at least

two outside f.e.s, yielding mco(A)−mb(A) ≥ 2 maxB 6∈Cmb(B) > maxB 6∈Cmb(B).

Indeed, this is true even if mass redistribution happens within the chain. Imagine that some mass

mb(A), A ∈ C is reassigned to some other A′ ∈ C. By the first constraint in (17), this is allowed

only if mb(A) ≤ maxB 6∈Cmb(B). Therefore the mass of just one outside focal element can still

be reassigned to A, while now none can be reassigned to A′. In both cases, since the number of

elements outside the chain m = 2n− 1−n is greater than n (unless n ≤ 2) the second equation

of (17) implies (n− 1) maxB 6∈Cmb(B) ≥ (m− 1) maxB 6∈Cmb(B) which cannot hold under (8).

In particular, coCmax[b] is not necessarily an L∞,M approximation of b.
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E. Ternary example

It can be useful to compare the different approximations in the toy case of a ternary frame,

Θ = {x, y, z}. Let the desired consonant approximation(s) have maximal chain C = {{x} ⊂

{x, y} ⊂ Θ}. Figure 3 illustrates the different partial Lp consonant approximations in M in the

simplex of consonant belief functions with chain C, for a b.f. b with masses:

mb(x) = 0.2, mb(y) = 0.3, mb(x, z) = 0.5. (18)

According to the formulae at page 8 of [43], the set of partial outer consonant approximations

of (18) with chain {{x} ⊂ {x, y} ⊂ Θ} is the convex closure of the candidate vertices:

~mB1/B2 = [mb(x),mb(y), 1−mb(x)−mb(y)]′, ~mB7/B8 = [0,mb(x), 1−mb(x)]′,

~mB3/B4 = [mb(x), 0, 1−mb(x)]′, ~mB9/B10 = [0,mb(y), 1−mb(y)]′,

~mB5/B6 = [0,mb(x) +mb(y), 1−mb(x)−mb(y)]′, ~mB11/B12 = [0, 0, 1]′,
(19)

plotted in Figure 3 as empty squares. Note that, by Theorem 4, both coCmax[b] (15) (yellow square)

and (16) belong to the intersection of (partial) outer and L1,M consonant approximations, and

that the L2,M partial approximation is not a (partial) outer consonant approximation.

Fig. 3. The simplex COC in the mass space of consonant belief functions with maximal chain C = {{x} ⊂ {x, y} ⊂ Θ}

defined on Θ = {x, y, z}, and the Lp partial consonant approximations in M of the belief function with basic probabilities

(18). The L2,M approximation is plotted as a red square, as the barycenter of both the sets of L1,M (blue triangle) and

L∞,M (green triangle) approximations. The maximal outer approximation is denoted by a yellow square, the contour-based

approximation is a vertex of the triangle L∞,M. The related set OCC [b] of partial outer consonant approximations (19) is also

shown for comparison (light yellow), while the isopignistic function is represented by a star.

As for the isopignistic and the contour-based approximations, they are in this case

~miso = [0.15, 0.1, 0.75]′, ~mcon = [1− plb(y), plb(y)− plb(z), plb(z)]′ = [0.7,−0.2, 0.5]′.
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The pignistic values of the elements in this example are BetP [b](x) = 0.45, BetP [b](y) = 0.3,

BetP [b](z) = 0.25 so that the chain associated with the isopignistic approximation is indeed

C = {{x}, {x, y},Θ}. Notice, though, that generalized isopignistic approximations (i.e., pseudo

consonant belief functions computed via (12) whose mass values, though, are not guaranteed to

be positive) can be computed for all the chains via Equation (12). The generalized contour-based

approximation coCcon[b] is not admissible in this case, as the orderings of the singletons induced

by plausibility and pignistic values are different.

F. Relation with contour and isopignistic approximations

It is worth to formally study the relationships of the Lp,M approximations with the contour-

based and the isopignistic approximations as well.

1) Generalized contour-based approximation: From the (counter)-example of Figure 3 it fol-

lows that there exist belief functions for which the generalized contour-based approximation (13)

is neither an outer consonant approximation (coCcon[b] 6∈ OCC[b]) nor an L1,M approximation,

and that in general it is distinct from the unique L2,M approximation.

On the other hand, Figure 3 seems to suggest that coCcon[b] could be one of the vertices of the

simplex of L∞,M approximations. Indeed, we can show that there exist belief functions for

which the generalized contour-based approximation even falls outside this simplex.

The latter is determined by the system of constraints (17). On the other hand, by (13):

mcoCcon[b](A1) =
∑
A 63x2

mb(A) = mb(A1) +
∑

∅(B⊆Ac
2

mb(A1 ∪B),

so that mcoCcon[b](A1)−mb(A1) =
∑

A){x1},A 63x2
mb(A). Now, if b is such that arg maxB∈Cmb(B)

also contains x1 but not x2, and there are other such subsets with non-zero mass, the first

constraint in (17) is not met. Hence, coCcon[b] is not a partial L∞ approximation in M.

2) Generalized isopignistic approximation: as for the (generalized) isopignistic approxima-

tion, the example shows that there are belief functions (such as (18)) for which such approxima-

tion (12) does not belong to either the set of L1,M partial approximations nor the set of L∞,M

partial approximations, and it is distinct from the unique L2,M approximation, for any choice

of the coordinate chart. On the other hand, the example suggests that coiso[b] could be always an

outer consonant approximation. On the contrary, a simple counterexample shows that this is not

so. Let Θ = {x, y, z} and b a belief function such that BetP [b](x) ≥ BetP [b](y) ≥ BetP [b](z).
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The isopignistic approximation will then have as chain of focal elements: {x} ⊂ {x, y} ⊂ Θ.

By (12) the isopignistic function has mass of A1 = {x} equal to:

mcoiso[b](A1 = x) = BetP [b](x)−BetP [b](y) = mb(x)−mb(y) +
mb(x, z)−mb(y, z)

2
.

But if b is s.t. mb(y) = mb(y, z) = 0, mb(x, z) 6= 0 we have that coiso[b](x) = mcoiso[b](x) =

mb(x) + mb(x,z)
2

> mb(x) = b(x), i.e., the isopignistic is not an outer approximation.

IV. CONSONANT APPROXIMATION IN THE BELIEF SPACE

Consonant approximations in the mass space have quite natural semantics in terms of mass

redistributions. As we see in this Section, instead, (partial) Lp approximations in the belief space

are closely associated with lists of belief values determined by the desired maximal chain, and

through them to the maximal outer approximation (15), as we will understand in Section IV-D.

A. L1 approximation

Theorem 5: Given a belief function b : 2Θ → [0, 1], and a maximal chain of non-empty

focal elements C = {A1 ⊂ · · · ⊂ An, |Ai| = i} in Θ, the partial L1 consonant approximations

COCB,L1
[b] in B with maximal chain C have mass vectors forming the convex closure:

Cl
([
b1, b2 − b1, · · · , bi − bi−1, · · · , 1− bn−1

]′
, bi ∈

{
λiint1, λ

i
int2

}
∀i = 1, ..., n− 1

)
, (20)

where, ∀ i = 1, ..., n− 1, λiint1, λ
i
int2 are the median elements of the list of belief values:

Li =
{
b(A), A ⊇ Ai, A 6⊇ Ai+1

}
. (21)

In particular, bn−1 = λn−1
int1 = λn−1

int2 = b(An−1). As a result, (20) is a polytope with 2n−2 vertices.

Note that, even though the approximation is computed in B, we present the result in terms of

mass assignments as they are easier to interpret. The same holds for the other Lp approximations

in B. Due to the nature of partially ordered set of 2Θ, the median values of the above lists (21)

cannot be analytically identified in full generality (even though they can be easily computed

numerically), but in some special cases (see Section IV-E).

By (20), the barycenter of the set of partial L1 consonant approximations in B has mass vector:

mcoCB,L1
[b] =

[
λ1
int1 + λ1

int2

2
,
λ2
int1 + λ2

int2

2
− λ1

int1 + λ1
int2

2
, · · · , 1− b(An−1)

]′
. (22)
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Theorem 6: Given a belief function b : 2Θ → [0, 1], its global L1 consonant approximations

COB,L1 [b] in B live in the collection of partial such approximations associated with maximal

chain(s) which maximize the cumulative lower halves of the n− 1 lists of belief values Li (21):

arg max
C

n−1∑
i

∑
b(A)∈Li,b(A)≤λi

int1

b(A).

B. (Partial) L2 approximation

To find the partial consonant approximation(s) at minimal L2 distance from b in B we need

to impose the orthogonality of the difference vector ~b− ~co with respect to any given simplicial

component COCB of the complex COB:

〈~b− ~co,~bAi
−~bΘ〉 = 〈~b− ~co,~bAi

〉 = 0 ∀Ai ∈ C, i = 1, ..., n− 1, (23)

as ~bΘ = ~0 is the origin of the Cartesian space in B, and ~bAi
−~bΘ for i = 1, ..., n − 1 are the

generators of the component COCB. Plugging the expression

~b− ~co =
∑
A 6∈C

mb(A)~bA +
∑

A∈C,A 6=Θ

(
mb(A)−mco(A)

)
~bA

of the difference vector in the base {~bA} (rather than the base {~vA}) into the orthogonality

condition (23) yields the following linear system of equations:{∑
A 6∈C

mb(A)〈~bA,~bAi
〉+

∑
A∈C,A 6=Θ

(
mb(A)−mco(A)

)
〈~bA,~bAi

〉 = 0, ∀i = 1, ..., n− 1. (24)

This is a linear system in n− 1 unknowns mco(Ai), i = 1, ..., n− 1 and n− 1 equations.

Let us extend the definition of Li by setting L0
.
= {b(∅) = 0}, Ln

.
= {b(Θ) = 1}: once again,

the L2 partial approximation of b is a function of the list of belief values (21).

Theorem 7: Given a belief function b : 2Θ → [0, 1], its partial L2 consonant approximation

coCB,L2
[b] in B with maximal chain C = {A1 ⊂ · · · ⊂ An, |Ai| = i} is unique, and has b.p.a.:

mcoCB,L2
[b](Ai) = ave(Li)− ave(Li−1) ∀i = 1, ..., n, (25)

where ave(Li) is the average of the list of belief values Li, which for (21) reads as:

ave(Li) =
1

2|A
c
i+1|

∑
A⊇Ai,A 6⊇Ai+1

b(A) ∀i = 1, ..., n− 1. (26)

The computation of the global L2 approximation(s) is rather involved, and not addressed here.
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C. L∞ approximation

Partial L∞ approximations in B also form a polytope, with this time 2n−1 vertices.

Theorem 8: Given a belief function b : 2Θ → [0, 1], its partial L∞ consonant approximations

in the belief space COCB,L∞ [b] with maximal chain of non-empty focal elements C = {A1 ⊂ · · · ⊂

An, |Ai| = i} have mass vectors which live in the following convex closure of 2n−1 vertices:

Cl

( [
b1, b2 − b1, · · · , bi − bi−1, · · · , 1− bn−1

]′ ∣∣∣∣ ∀i = 1, ..., n− 1

bi ∈
{
− b(Ac1) +

b(Ai) + b({xi+1}c)
2

, b(Ac1) +
b(Ai) + b({xi+1}c)

2

})
.

(27)

The barycenter coCB,L∞ [b] of this set has mass assignment mcoCB,L∞ [b](An) = 1− b(An−1), and:

mcoCB,L∞ [b](Ai) =


b(A1) + b({x2}c)

2
i = 1,

b(Ai)− b(Ai−1)

2
+
plb({xi})− plb({xi+1})

2
i = 2, ..., n− 1,

(28)

Note that, since b(Ac1) = 1 − plb(A1) = 1 − plb(x1), the size of the polytope (27) of partial

L1 approximations of b is a function of the plausibility of the smallest focal element A1 of the

desired maximal chain only. As expected, it reduces to zero only when the b is consistent (the

intersection of all its focal elements is non-empty [26]) and A1 = {x1} has plausibility 1.

A straightforward interpretation of the barycenter of the partial L∞ approximations in B in

terms of degrees of belief is possible when we notice that, for all i = 1, ..., n

mcoCB,L∞ [b](Ai) = (mcoCmax[b](Ai) +mcoCcon[b](Ai))/2

(recall Equations (15) and (13)), i.e., the barycenter is the average of the maximal outer consonant

approximation and what we called “contour-based” consonant approximation.

To compute the global L∞ approximation of the original belief function b in B, we need

to locate as usual the partial solution whose L∞ distance from b is the smallest. Given the

expression (43) of the L∞ norm of the difference vector (see the proof of Theorem 8), such

partial distance is (for each maximal chain C = {A1 ⊂ · · · ⊂ An, |Ai| = i}) equal to b(Ac1).

Therefore the global L∞ consonant approximations of b in the belief space are associated with

the chains of focal elements: arg minC b(A
c
1) = arg minC(1− plb(A1)) = arg maxC plb(A1).

Theorem 9: Given a belief function b : 2Θ → [0, 1], the set of global L∞ consonant approxi-

mations of b in the belief space is the collection of partial L∞ approximations (27) associated

with maximal chains whose non-empty smallest focal element is associated with the maximal

plausibility singleton: COB,L∞ [b] =
⋃
C:A1={arg maxx plb(x)} CO

C
B,L∞ [b].
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D. Approximations in B as generalized maximal outer approximations

From Theorems 5, 7 and 8, a comprehensive view of the results of this Section can be given

in terms of the lists of belief values L0
.
= {b(∅) = 0}, Li

.
=
{
b(A), A ⊇ Ai, A 6⊇ Ai+1

}
∀i = 1, ..., n− 1, and Ln

.
= {b(Θ) = 1}. The b.p.a.s of all the Lp partial approximations in the

belief space are differences of simple functions of belief values taken from these lists (which are

uniquely determined by the desired chain of non-empty focal elements A1 ⊂ · · · ⊂ An), as

mcoCmax[b](Ai) = min(Li)−min(Li−1); mcoCcon[b](Ai) = max(Li)−max(Li−1);

mcoCB,L1
[b](Ai) = int1(Li)+int2(Li)

2
− int1(Li−1)+int2(Li−1)

2
; mcoCB,L2

[b](Ai) = ave(Li)− ave(Li−1);

mcoCB,L∞ [b](Ai) = max(Li)+min(Li)
2

− max(Li−1)+min(Li−1)
2

,
(29)

∀i = 1, ..., n, where the b.p.a. of coCB,L∞ [b] comes from (28). For each vertex of the L1 polytope,

either int1(Li) or int2(Li) is picked from the list Li for each element Ai of the chain: mco(Ai) =

int1(Li)/int2(Li)− int1(Li−1)/int2(Li−1). For each vertex of the L∞ polytope, either max(Li)

or min(Li) is picked: mco(Ai) = max(Li)/min(Li)−max(Li−1)/min(Li−1).

The different approximations in B (29) correspond therefore to different choices of a repre-

sentative for the lists Li. The maximal outer approximation coCmax[b] is obtained by picking as

representative min(Li), coCcon[b] amounts to picking max(Li), the barycenter of the L1 approxima-

tions to choosing the average innermost (median) value, the barycenter of the L∞ approximations

to the average outermost value, the L2 solution to picking the overall average value of the list.

Each vertex of the L1 solution set amounts to selecting, for each component, either one of the

innermost values; each vertex of the L∞ polytope, either one of the outermost values.

1) Interpretation of the list Li: belief functions are defined on a partially ordered set, the

power set 2Θ = {A ⊆ Θ}, of which a maximal chain is a maximal totally ordered subset.

Therefore, given two elements of the chain Ai ⊂ Ai+1, there is a number of “intermediate” focal

elements A which contain the former but not the latter. If 2Θ was to be a totally ordered set, the

list Li would contain a single element b(Ai) and all the Lp approximations (29) would reduce to

the maximal outer consonant approximation coCmax[b], with b.p.a. mcoCmax[b](Ai) = b(Ai)−b(Ai−1).

The diversity of Lp approximations in B is therefore a consequence of belief functions being

defined on partially ordered sets: together with the contour-based approximation (13), they can

all be seen as member of a coherent family of approximations.
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2) Admissibility: as it is clear from the table of Equation (29), the b.p.a.s of all the Lp

approximations in the belief space are differences of vectors of all positive values; indeed,

differences of shifted version of the same positive vector. As such vectors
[
int1(Li)+int2(Li)

2
, i =

1, ..., n
]′

,
[

max(Li)+min(Li)
2

, i = 1, ..., n
]′

, [ave(Li), i = 1, ..., n]′ are not guaranteed to be mono-

tonically increasing for any arbitrary maximal chain C, none of the related partial approximations

are guaranteed to be entirely admissible. However, sufficient conditions under which they are

admissible can be worked out by studying the structure of the list of belief values (21). Let us

first consider coCmax and coCcon. As min(Li−1) = b(Ai−1) ≤ b(Ai) = min(Li) ∀i = 2, ..., n, the

maximal partial outer approximation is admissible for all maximal chains C. As for the contour-

based approximation, max(Li) = b(Ai ∪ Aci+1) = b(xci+1) = 1 − plb(xi+1) ∀i = 1, ..., n − 1,

max(Li−1) = 1 − plb(xi) ∀i = 2, ..., n, so that max(Li) − max(Li−1) = plb(xi) − plb(xi+1)

∀i = 2, ..., n − 1. This difference is guaranteed non-negative if the chain C is generated by

singletons sorted by their plausibility values. As a consequence, as

mcoCB,L∞ [b](Ai) =
max(Li)−max(Li−1)

2
+

min(Li)−min(Li−1)

2
,

the barycenter of the set of L∞,B approximations is also admissible on the same chain(s).

E. Graphical comparison in a ternary example

As we did in the mass space analysis, it can be helpful to visualize the different Lp con-

sonant approximations in the belief space when Θ = {x, y, z}, and compare them with the

approximations in the mass space on the same example of Section III-E (Figure 4).

To obtain a homogeneous comparison, we plot both sets of approximations (in the belief and

in the mass space) as vectors of mass values. When Θ = {x, y, z} and A1 = {x}, A2 = {x, y},

A3 = {x, y, z} the relevant lists of belief values are L1 = {b(x), b(x, z)} and L2 = {b(x, y)},

so that min(L1) = int1(L1) = b(x), max(L1) = int2(L1) = b(x, z), ave(L1) = b(x)+b(x,z)
2

;

min(L2) = int1(L2) = max(L2) = int2(L2) = ave(L2) = b(x, y). Therefore, the set of L1

partial consonant approximations is, by Equation (20), the segment Cl(~m1
L1
, ~m2

L1
) with vertices:

~m1
L1

=
[
b(x), b(x, y)− b(x), 1− b(x, y)

]′
, ~m2

L1
=
[
b(x, z), b(x, y)− b(x, z), 1− b(x, y)

]′ (30)

(see Figure 4). Note that this set is not entirely admissible, not even in the ternary case. We also

know that the maximal partial outer approximation (15) is not in general a vertex of the polygon
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Fig. 4. Comparison between Lp partial consonant approximations in the mass M and belief B spaces for the belief function

with basic probabilities (18) on Θ = {x, y, z}. The L2,B approximation is plotted as a red square, as the barycenter of both the

sets of L1,B (blue segment) and L∞,B (green quadrangle) approximations. Contour-based and maximal outer approximations

are in this example the extreme of the segment L1,B (blue squares). The polytope of partial outer consonant approximations

(yellow), the isopignistic approximation (star) and the various Lp partial approximations in M (in gray levels) are also drawn.

of L1 partial approximations in B, unlike what the ternary example (for which int1(L1) = b(x))

suggests. The partial L2 approximation in B is, by Equation (29), unique, with mass vector:

~mcoB,L2
[b] = ~mcoB,L∞ [b] =

[
b(x) + b(x, z)

2
, b(x, y)− b(x) + b(x, z)

2
, 1− b(x, y)

]′
, (31)

and coincides with the barycenter of the set of partial L∞ approximations (note that this is not

so in the general case). As for the full set of partial L∞ approximations, this has vertices (27):

~m1
L∞ =

[
b(x)+b(x,z)

2
− b(y, z), b(x, y)− b(x)+b(x,z)

2
, 1− b(x, y) + b(y, z)

]′
;

~m2
L∞ =

[
b(x)+b(x,z)

2
− b(y, z), b(x, y)− b(x)+b(x,z)

2
+ 2b(y, z), 1− b(x, y)− b(y, z)

]′
;

~m3
L∞ =

[
b(x)+b(x,z)

2
+ b(y, z), b(x, y)− b(x)+b(x,z)

2
− 2b(y, z), 1− b(x, y) + b(y, z)

]′
;

~m4
L∞ =

[
b(x)+b(x,z)

2
+ b(y, z), b(x, y)− b(x)+b(x,z)

2
, 1− b(x, y)− b(y, z)

]′
,

which as expected are not all admissible (see Figure 4 again).

F. Belief versus mass space approximations

We can draw some conclusions by comparing the results of Section III and Section IV:

• Lp consonant approximations in the mass space are basically associated with different but

related mass redistribution processes: the mass outside the desired chain of focal elements

is re-assigned in some way to the elements of the chain;
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• their relationships with classical outer approximations (on one hand) and approximations

based on the pignistic transform (on the other) are rather weak;

• the different Lp approximations in M are characterized by natural geometric relations;

• consonant approximation in the belief space is inherently linked to the lists of belief values

of focal elements “intermediate” between each pair of elements of the desired chain;

• the classical outer consonant approximations and the contour-based approximation are also

approximations of the same type: indeed, the latter and the Lp approximations in the belief

space can be seen as different generalizations of the maximal outer approximation, induced

by the nature of partially ordered set of the power set;

• in the mass space, some partial approximations are always entirely admissible and should

be preferred (this is the case for the L1 and L2 approximations inM), some others are not;

• as for the belief case, even though all partial Lp approximations are differences between

shifted versions of the same positive vector, admissibility is not guaranteed for all maximal

chains; however, sufficient conditions exist.

Table (I) illustrates the behavior of the different geometric consonant approximations explored

in this paper, in terms of multiplicity/admissibility/global solutions.

multiplicity admissibility global solution(s)

L1,M simplex entirely arg minC
∑

B 6∈C mb(B)

L2,M point, barycenter of L1,M yes arg minC
∑

B 6∈C(mb(B))2

L∞,M point / simplex yes / not entirely
arg minC

∑
B 6∈C mb(B)

/ arg minC maxB 6∈C mb(B)

L1,B polytope not guaranteed not easy to interpret

L2,B point not guaranteed not known

L∞,B polytope
depending on plausibilities

of singletons
arg maxC pl(A1)

TABLE I

PROPERTIES OF THE GEOMETRIC CONSONANT APPROXIMATIONS STUDIED HERE, IN TERMS OF MULTIPLICITY AND

ADMISSIBILITY OF PARTIAL SOLUTIONS, AND THE RELATED GLOBAL SOLUTIONS.

1) On the links between approximations in M and B: approximations in B and approxima-

tions in M do not coincide. This is a direct consequence of the fact that Moebius inversion
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does not preserve either Lp norms or the ordering induced by them, as it was clear from the

counterexamples discussed in Section II-B.4. Though they are distinct, there can in principle still

be links of some sort between Lp approximations in the two spaces. Let us consider, in particular,

partial approximations. The ternary example of Figure 4 suggests the following conjectures:

1) the L2 partial approximation in B is one of the L1 partial approximations in M;

2) the L2 partial approximation in B is one of the L∞ partial approximations in M, and

possibly belongs to the border of the simplex (6);

3) the L1 partial approximation in B is also an element of (6).

Unfortunately, counterexamples can be provided in all these cases. Let us express mcoCB,L2
[b](Ai)

(25) as a function of the masses of the original b.f. b. For all i = 1, ..., n− 1:

ave(Li) =
1

2|A
c
i+1|

∑
A⊇Ai,A 6⊇Ai+1

b(A) =
1

2|A
c
i+1|

∑
A⊇Ai,A 6⊇Ai+1

∑
∅6=B⊆A

mb(B)

=
1

2|A
c
i+1|

∑
B 6⊇{xi+1}

mb(B) ·
∣∣∣{A = Ai ∪ C : ∅ ⊆ C ⊆ Aci+1, A ⊇ B}

∣∣∣
=

1

2|A
c
i+1|

∑
B 6⊇{xi+1}

mb(B) · 2|Ac
i+1\(B∩Ac

i+1)| =
∑

B 6⊇{xi+1}

mb(B)

2|B∩A
c
i+1|

so that, for all i = 2, ..., n− 1: mcoCB,L2
[b](Ai) = ave(Li)− ave(Li−1) =∑

B 6⊇{xi+1}

mb(B)

2|B∩A
c
i+1|
−
∑

B 6⊇{xi}

mb(B)

2|B∩A
c
i |

=
∑

B⊇{xi},B 6⊇{xi+1}

mb(B)

2|B∩A
c
i+1|
−

∑
B⊇{xi+1},B 6⊇{xi}

mb(B)

2|B∩A
c
i |
. (32)

Note that mb(Ai) is one of the terms of the first summation. Now, conjecture (1) requires the

above mass to be greater than or equal to mb(Ai) for all i (Theorem 1): clearly though, by (32),

the difference mcoCB,L2
[b](Ai)−mb(Ai) is not guaranteed to be positive.

As for conjecture 2), the set of L∞,M partial approximations is determined, once again, by

the constraints (17). Now, suppose that b is such that mb(B) = 0 for all B ⊇ {xi+1}, B 6⊇

{xi}. Then mcoCB,L2
[b](Ai) =

∑
B⊇{xi},B 6⊇{xi+1}

mb(B)

2
|B∩Ac

i+1
| which contains, among other addenda,∑

B⊆Ai,B⊇{xi}mb(B) (for if B ⊆ Ai we have 2|B∩A
c
i+1| = 2|∅| = 1). Clearly, if arg maxB 6∈Cmb(B)

is a proper subset of Ai containing {xi}, and other subsets B ⊇ {xi}, B 6⊇ {xi+1} distinct from

the latter and Ai have non-zero mass, the first constraint of (17) is not met.

Finally, consider conjecture 3). By Theorem 5, all the vertices of the set of L1,B partial

approximations have as mass mco(A1) either one of the median elements of the list L1 =
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{b(A) : A ⊇ A1, 6⊇ A2}. These median elements are of the form b(A1 ∪ C), for some C ⊆ Ac2

b(A1 ∪ C) = mb(A1) +
∑

B⊆A1∪C,C⊆Ac
2,B 6=A1

mb(B),

so that mco(A1)−mb(A1) =
∑

B⊆A1∪C,C⊆Ac
2,B 6=A1

mb(B).

Once again, if b is such that arg maxB 6∈Cmb(A) is one of these subsets B ⊆ A1∪C, C ⊆ Ac2 and

it is not the only one with non-zero mass, the first constrain in (17) is not met for A = A1 by

any of the vertices of the set of L1,B approximations. Hence, the latter has empty intersection

with the set of L∞,M partial approximations.

In conclusion, not only approximations inM and B are distinct, due to the properties of Moebius

inversion, but they are not related in a straightforward way either.

2) Three families of consonant approximations: indeed, approximations in the mass and the

belief space turn out to be inherently related to completely different philosophies to the consonant

approximation problem: mass redistribution versus generalized maximal outer approximation.

While mass space proxies correspond to different mass redistribution processes, Lp consonant

approximation in the belief space amounts to generalizing in different but related ways the

classical approach incarnated by the maximal outer approximation (15). The latter, together with

the contour-based approximation (13) form therefore a different, coherent family of consonant

approximations. As for the isopignistic approximation, it seems to be completely unrelated to

approximations in both the mass and the belief space, as it naturally fits in the context of

the Transferable Belief Model and the use of the pignistic function. Isopignistic, mass-space

and belief-space consonant approximations form three distinct families of approximations, with

fundamentally different rationales: which approach to use will therefore vary according to the

chosen framework, and the problem at hand.

V. CONCLUSIONS

In this paper we studied all the consonant approximations of belief functions induced by

minimizing Lp distances to the consonant complex, in both the mass space of basic probability

vectors and the belief space of belief vectors. While interpretations for such approximations in the

mass space are rather natural in terms of mass redistribution, approximations in the belief space

are generalizations of the maximal outer and the contour-based approximations. We compared all

these Lp approximations with each other and with other classical consonant approximations, and
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illustrated them with the help of a running example. The rationale for this work comes from the

potential utility of possibility transforms as a tool to reduce the inherent exponential complexity

of belief calculus. The analysis conducted here is just a first step in a wider programme of work,

whose prosecution will likely involve the analysis of other types of distances between belief

functions, the existence of norms preserved under Moebius inversion, and the empirical testing

of these and other approximations in challenging, real-world setups.

APPENDIX

Proof of Theorem 1: the L1 norm of the difference vector (3) is:

‖~mb − ~mco‖L1 =
∑
A∈C

|mb(A)−mco(A)|+
∑
B 6∈C

mb(B) =
∑
A∈C

|β(A)|+
∑
B 6∈C

mb(B),

expressed as a function of the variables {β(A)
.
= mb(A)−mco(A), A ∈ C, A 6= Θ}. As∑

A∈C

β(A) =
∑
A∈C

(
mb(A)−mco(A)

)
=
∑
A∈C

mb(A)− 1 = −
∑
B 6∈C

mb(B),

we have that: β(Θ) = −
∑
B 6∈C

mb(B)−
∑

A∈C,A 6=Θ

β(A). Therefore, the above norm reads as:

‖~mb − ~mco‖L1 =

∣∣∣∣−∑
B 6∈C

mb(B)−
∑

A∈C,A 6=Θ

β(A)

∣∣∣∣+
∑

A∈C,A 6=Θ

|β(A)|+
∑
B 6∈C

mb(B). (33)

The norm (33) is a function of the form
∑
i

|xi| +
∣∣∣−∑

i

xi − k
∣∣∣, k ≥ 0, which has an entire

simplex of minima, namely: xi ≤ 0 ∀i,
∑

i xi ≥ −k. The minima of the L1 norm (33) are

therefore the solutions to the following system of constraints:{
β(A) ≤ 0 ∀A ∈ C, A 6= Θ;

∑
A∈C,A 6=Θ

β(A) ≥ −
∑
B 6∈C

mb(B). (34)

This reads, in terms of the mass assignment mco of the desired consonant approximation, as:
mco(A) ≥ mb(A) ∀A ∈ C, A 6= Θ,∑
A∈C,A 6=Θ

(
mb(A)−mco(A)

)
≥ −

∑
B 6∈C

mb(B).
(35)

Note that the last constraint reduces to∑
A∈C,A 6=Θ

(
mb(A)−mco(A)

)
=

∑
A∈C,A 6=Θ

mb(A)− 1 +mco(Θ) ≥
∑
A∈C

mb(A)− 1,

i.e., mco(Θ) ≥ mb(Θ). Therefore the partial L1 approximations in M are those consonant b.f.s

co s.t. mco(A) ≥ mb(A) ∀A ∈ C. The vertices of the set of partial approximations (34) are given
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by the vectors of variables {~βĀ, Ā ∈ C} such that: ~βĀ(Ā) = mb(B), for ~βĀ(A) = 0 for A 6= Ā

whenever Ā 6= Θ, while ~βΘ = ~0. Immediately, in terms of masses the vertices of the set of

partial L1 approximations have b.p.a. (4) and barycenter (5). To find the global L1 consonant

approximation(s) over the whole consonant complex, we need to locate the component COCM at

minimal L1 distance from ~mb. All the partial approximations (35) onto COCM have L1 distance

from ~mb equal to 2
∑

B 6∈Cmb(B). Therefore, the minimal distance component(s) of the complex

are those associated with maximal chains that originally have maximal mass with respect to mb.

Proof of Theorem 2: we can pick as generators of COCM the vectors {~mA − ~mΘ, A ∈ C, A 6=

Θ}. The orthogonality condition translates as: 〈~mb− ~mco, ~mA− ~mΘ〉 = 0 for all A ∈ C, A 6= Θ.

The vector ~mA − ~mΘ is such that: ~mA − ~mΘ(B) = 1 if B = A, -1 if B = Θ, 0 if B 6= A,Θ.

Hence, the orthogonality condition becomes β(A) − β(Θ) = 0 for all A ∈ C, A 6= Θ, where

again β(A) = mb(A)−mco(A). As β(Θ) = −
∑

B 6∈Cmb(B)−
∑

A∈C,A 6=Θ β(A) (see the proof of

Theorem 1), the orthogonality condition becomes 2β(A)+
∑

B 6∈Cmb(B)+
∑

B∈C,B 6=A,Θ β(B) = 0

for all A ∈ C, A 6= Θ. Its solution is β(A) =
−

∑
B 6∈Cmb(B)

n
∀A ∈ C, A 6= Θ, as by substitution

− 2
n

∑
B 6∈Cmb(B) +

∑
B 6∈Cmb(B)− n−2

n

∑
B 6∈Cmb(B) = 0, i.e., (5).

To find the global L2 approximation(s), we need to compute the L2 distance of ~mb from the

closest such partial solution. We have: ‖~mb − ~mco‖2
L2

=
∑

A⊆Θ(mb(A)−mco(A))2 =

=
∑
A∈C

(∑
B 6∈Cmb(B)

n

)2

+
∑
B 6∈C

(mb(B))2 =

(∑
B 6∈Cmb(B)

)2

n
+
∑
B 6∈C

(mb(B))2,

which is minimized by the component COCM that minimizes
∑

B 6∈C(mb(B))2.

Proof of Theorem 3: the L∞ norm of the difference vector is equal to: ‖~mb − ~mco‖L∞ =

max
{

max
A∈C
|β(A)|,max

B 6∈C
mb(B)

}
. As β(Θ) =

∑
B∈Cmb(B)−1−

∑
B∈C,B 6=Θ β(B), we have that

|β(Θ)| = |
∑

B 6∈Cmb(B) +
∑

B∈C,B 6=Θ β(B)| and the norm to minimize becomes:

‖~mb − ~mco‖L∞ = max

{
max

A∈C,A 6=Θ
|β(A)|,

∣∣∣∣∑
B 6∈C

mb(B) +
∑

B∈C,B 6=Θ

β(B)

∣∣∣∣,max
B 6∈C

mb(B)

}
. (36)

This is a function of the form:

max
{
|x1|, |x2|, |x1 + x2 + k1|, k2

}
, 0 ≤ k2 ≤ k1 ≤ 1. (37)

Such a function has two possible behaviors in terms of its minimal points in the plane x1, x2.

Case 1. If k1 ≤ 3k2 its contour function has the form rendered in Figure 5-left. The set of

minimal points is given by xi ≥ −k2, x1+x2 ≤ k2−k1. In the general case of an arbitrary number
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m−1 of variables x1, ..., xm−1 such that xi ≥ −k2,
∑

i xi ≤ k2−k1, the set of minimal points is a

simplex with m vertices: each vertex vi is such that vi(j) = −k2 ∀j 6= i; vi(i) = −k1+(m−1)k2

(obviously vm = [−k2, · · · ,−k2]). For (36), in the first case
(

max
B 6∈C

mb(B) ≥ 1

n

∑
B 6∈C

mb(B)
)

the

set of partial L∞ approximations is given by the following system of inequalities:{
β(A) ≥ −max

B 6∈C
mb(B) ∀A ∈ C, A 6= Θ;

∑
B∈C,B 6=Θ

β(B) ≤ max
B 6∈C

mb(B)−
∑
B 6∈C

mb(B).

This determines a simplex of solutions Cl(~mĀ
L∞ [mb], Ā ∈ C) with vertices:{

βĀ(A) = −max
B 6∈C

mb(B) ∀A ∈ C, A 6= Ā; βĀ(Ā) = −
∑
B 6∈C

mb(B) + (n− 1) max
B 6∈C

mb(B),

or, in terms of their basic probability assignments, (7). Its barycenter is given by:

1

n

∑
Ā∈C

~mĀ
L∞ [mb](A) =

1

n

(
n ·mb(A) +

∑
B 6∈C

mb(B)
)

= mb(A) +
1

n

∑
B 6∈C

mb(B),

i.e., the L2 partial approximation (5). The corresponding minimal L∞ norm of the difference

vector is, according to (36), equal to maxB 6∈Cmb(B).

Fig. 5. Left: contour function (level sets) and minimal points (white triangle) of a function of the form (37), when k1 ≤ 3k2. In

the example k2 = 0.4 and k1 = 0.5. Right: contour function and minimal point of a function of the form (37), when k1 ≥ 3k2.

In this example k2 = 0.1 and k1 = 0.5.

Case 2. In the second case k1 > 3k2, i.e., for the norm (36), max
B 6∈C

mb(B) <
1

n

∑
B 6∈C

mb(B),

the contour function of (37) is as in Figure 5-right. There is a single minimal point, lo-

cated in [−1/3k1,−1/3k1]. For an arbitrary number m − 1 of variables the minimal point is

[(−1/m)k1, · · · , (−1/m)k1]′, i.e., for system (36), β(A) = − 1
n

∑
B 6∈Cmb(B) for all A ∈ C, A 6=

Θ or, in terms of basic probability assignments, (5) (the mass of Θ is obtained by normalization).

The corresponding minimal L∞ norm of the difference vector is 1
n

∑
B 6∈Cmb(B).
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Lemma 1: Given a belief function b : 2Θ → [0, 1] and an arbitrary consonant b.f. co defined on

the same frame with maximal chain of non-empty focal elements C = {A1 ⊂ · · · ⊂ An, |Ai| = i},

the difference between the corresponding vectors in the belief space is:

~b− ~co =
∑
A 6⊃A1

b(A)~vA +
n−1∑
i=1

∑
A⊇Ai,A 6⊃Ai+1

~vA

[
γ(Ai) + b(A)−

i∑
j=1

mb(Aj)

]
, (38)

where γ(A) =
∑

B⊆A,B∈C(mb(B)−mco(B)).

Proof of Lemma 1: in the belief space the original b.f. and the desired consonant approximation

are written as ~b =
∑
∅(A(Θ

b(A)~vA, ~co =
∑
A⊇A1

( ∑
B⊆A,B∈C

mco(B)
)
~vA. Their difference vector is:

~b− ~co =
∑
A 6⊇A1

b(A)~vA +
∑
A⊇A1

~vA

[
b(A)−

∑
B⊆A,B∈C

mco(B)

]
=

∑
A 6⊇A1

b(A)~vA +
∑
A⊇A1

~vA

[ ∑
∅(B⊆A

mb(B)−
∑

B⊆A,B∈C

mco(B)

]
=

∑
A 6⊇A1

b(A)~vA +
∑
A⊇A1

~vA

[ ∑
B⊆A,B∈C

(mb(B)−mco(B)) +
∑

B⊆A,B 6∈C

mb(B)

]
=

∑
A 6⊇A1

b(A)~vA +
∑
A⊇A1

~vA

[
γ(A) + b(A)−

∑
Aj∈C,Aj⊆A

mb(Aj)

]
,

(39)

after introducing the auxiliary variables γ(A) =
∑

B⊆A,B∈C(mb(B)−mco(B)). All the terms in

(39) associated with subsets A ⊇ Ai, A 6⊇ Ai+1 depend on the same auxiliary variable γ(Ai),

while the difference in the component ~vΘ is trivially 1− 1 = 0. Therefore, we obtain (38).

Proof of Theorem 5: after recalling the expression (38) of the difference vector ~b− ~co in the

belief space, the latter’s L1 norm reads as:

‖~b− ~co‖L1 =
n−1∑
i=1

∑
A⊇Ai,A 6⊇Ai+1

∣∣∣∣γ(Ai) + b(A)−
i∑

j=1

mb(Aj)

∣∣∣∣+
∑
A6⊇A1

|b(A)|. (40)

The norm (40) can be decomposed into a number of summations which depend on a single

auxiliary variable γ(Ai). Such components are of the form |x + x1| + ... + |x + xn|, with an

even number of ”nodes” −xi. Let us consider the simple function of Figure 6-left: it is easy to

see that similar functions are minimized by the interval of values comprised between their two

innermost nodes, i.e., in the case of norm (40):
i∑

j=1

mb(Aj)−λiint1 ≤ γ(Ai) ≤
i∑

j=1

mb(Aj)−λiint2

∀i = 1, ..., n − 1, i.e.,
i∑

j=1

mb(Aj) − λiint2 ≤
i∑

j=1

(mb(Aj) − mco(Aj)) ≤
i∑

j=1

mb(Aj) − λiint2
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∀i = 1, ..., n − 2. This is equivalent to λiint1 ≤
i∑

j=1

mco(Aj) ≤ λiint2 ∀i = 1, ..., n − 2, while

mco(An−1) = b(An−1), as by definition (21) λn−1
int1 = λn−1

int2 = b(An−1).

This is a set of constraints of the form l1 ≤ x ≤ u1, l2 ≤ x + y ≤ u2, l3 ≤ x + y + z ≤ u3,

also expressed as l1 ≤ x ≤ u1, l2 − x ≤ y ≤ u2 − x, l3 − (x + y) ≤ z ≤ u3 − (x + y). This is

a polytope whose 2n−2 vertices are obtained by assigning to x, x+ y, x+ y + z etcetera either

their lower or their upper bound. For the specific set above this yields exactly (20).

Fig. 6. Left: the minimization of the L1 distance from the consonant subspace involves minimizing functions such as the one

depicted above, |x + 1|+ |x + 3|+ |x + 7|+ |x + 8|, which is minimized by 3 ≤ x ≤ 7. Right: the minimization of the L∞

distance from the consonant subspace involves minimizing functions of the form max{|x + x1|, ..., |x + xn|} (in bold).

Proof of Theorem 6: the minimal value of a function of the form |x+ x1|+ ...+ |x+ xn| is∑
i≥int2 xi −

∑
i≤int1 xi. In the case of the L1 norm (40), such minimal attained value is:∑

A:A⊇Ai,A 6⊇Ai+1,b(A)≥λi
int2

b(A)−
∑

A:A⊇Ai,A 6⊇Ai+1,b(A)≤λi
int1

b(A),

since in the difference the addenda
∑i

j=1 mb(Aj) disappear. Overall the minimal L1 norm is:
n−2∑
i=1

(
∑

A:A⊇Ai,A 6⊇Ai+1,b(A)≥λi
int2

b(A)−
∑

A:A⊇Ai,A 6⊇Ai+1,b(A)≤λi
int1

b(A))+
∑
A 6⊇A1

b(A) =
∑

∅(A(Θ,A 6=An−1

b(A)−

2
n−2∑
i=1

∑
A:A⊇Ai,A 6⊇Ai+1,b(A)≤λi

int1

b(A), which is minimized by arg maxC
∑n−1

i

∑
b(A)∈Li,b(A)≤λi

int1

b(A).

Proof of Theorem 7: by replacing the hypothesized solution (25) for the L2 approximation in

B in the system of constraints (24) we get, for all j = 1, ..., n− 1:{∑
A(Θ

mb(A)〈~bA,~bAj
〉 − ave(Ln−1)〈~bAn−1 ,

~bAn−1〉 −
n−2∑
i=1

ave(Li)
(
〈~bAi

,~bAj
〉 − 〈~bAi+1

,~bAj
〉
)

= 0,

where 〈~bAn−1 ,
~bAn−1〉 = 1 for all j, while (since 〈~bA,~bB〉 = |{C ( Θ : C ⊇ A,B}| = 2|(A∪B)c|−

1): 〈~bAi
,~bAj
〉 − 〈~bAi+1

,~bAj
〉 = 〈~bAj

,~bAj
〉 − 〈~bAj

,~bAj
〉 = 0 whenever i < j, and 〈~bAi

,~bAj
〉 −

〈~bAi+1
,~bAj
〉 =

(
|{A ⊇ Ai, Aj}|−1

)
−
(
|{A ⊇ Ai+1, Aj}|−1

)
= |{A ⊇ Ai}|− |{A ⊇ Ai+1, }| =
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2|A
c
i+1| whenever i ≥ j. Therefore the system of constraints becomes (as 2A

c
n = 2|∅| = 1):{∑

A(Θ

mb(A)〈~bA,~bAj
〉 −

n−1∑
i=j

ave(Li)2|A
c
i+1| = 0 j = 1, ..., n− 1,

which, given the expression (26) for ave(Li), reads as:∑
A(Θ

mb(A)〈~bA,~bAj
〉 −

n−1∑
i=j

∑
A⊇Ai,A 6⊇Ai+1

b(A) = 0. j = 1, ..., n− 1. (41)

Let us study the second addenda of each equation above. We get:
n−1∑
i=j

∑
A⊇Ai,A 6⊇{xi+1}

b(A) =∑
Aj⊆A(Θ

b(A), as any A ⊇ Aj , A 6= Θ is such that A ⊇ Ai and A 6⊇ Ai+1 for some Ai in

the desired maximal chain which contains Aj . Indeed, let us define xi+1 as the lowest index

element (according to the ordering associated with the desired focal chain A1 ⊂ · · · ⊂ An, i.e.,

xj
.
= Aj\Aj−1) among those singletons in Ac. But then, by construction, A ⊇ Ai and A 6⊇ {xi+1}.

Finally:
∑

Aj⊆A(Θ

b(A) =
∑

Aj⊆A(Θ

∑
C⊆A

mb(C) =
∑
C(Θ

mb(C)
∣∣{A : C ⊆ A ( Θ, A ⊇ Aj}

∣∣ where

|{A : C ⊆ A ( Θ, A ⊇ Aj}| = |{A : A ⊇ (C ∪ Aj), A 6= Θ}| = 2|(C∪Aj)c| − 1 = 〈~bC ,~bAj
〉 so

that, summarizing,
n−1∑
i=j

∑
A⊇Ai,A 6⊇{xi+1}

b(A) =
∑
C(Θ

mb(C)〈~bC ,~bAj
〉.

By replacing the latter into (41) we obtain the trivial identity 0 = 0.

Proof of Theorem 8: given the expression (38) for the difference vector of interest in the

belief space, we can compute the explicit form of its L∞ norm as:

‖~b− ~co‖∞ = max

{
max
i

max
A⊇Ai,A 6⊇Ai+1

∣∣∣∣γ(Ai) + b(A)−
i∑

j=1

mb(Aj)

∣∣∣∣, max
A 6⊇A1

∣∣∣∣ ∑
B⊆A

mb(B)

∣∣∣∣}
= max

{
max
i

max
A⊇Ai,A 6⊇Ai+1

∣∣∣∣γ(Ai) + b(A)−
i∑

j=1

mb(Aj)

∣∣∣∣, b(Ac1)

}
,

(42)

as maxA 6⊇A1

∣∣∣∑B⊆Amb(B)
∣∣∣ = b(Ac1). Now, (42) can be minimized separately for each i =

1, ..., n− 1. Clearly, the minimum is attained when the variable elements in (42) are not greater

than the constant element b(Ac1):

max
A⊇Ai,A 6⊇Ai+1

∣∣∣∣γ(Ai) + b(A)−
i∑

j=1

mb(Aj)

∣∣∣∣ ≤ b(Ac1). (43)

The left hand side of (43) is a function of the form max
{
|x + x1|, ..., |x + xn|

}
(see Figure

6-right). Such functions are minimized by x = −xmin+xmax

2
(see Figure 6-right again). In the
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case of (43), such minimum and maximum offset values are, respectively,

λimin = b(Ai)−
i∑

j=1

mb(Aj), λ
i
max = b({xi+1}c)−

i∑
j=1

mb(Aj) = b(Ai ∪ Aci+1)−
i∑

j=1

mb(Aj),

once defined {xi+1} = Ai+1 \ Ai. As for each value of γ, |γ(Ai) + γ| is dominated by either

|γ(Ai) + λimin| or |γ(Ai) + λimax|, the norm of the difference vector is minimized by the values

of γ(Ai) such that: max
{
|γ(Ai) + λimin|, |γ(Ai) + λimax|

}
≤ b(Ac1) ∀i = 1, ..., n − 1, i.e.,

−λ
i
min + λimax

2
− b(Ac1) ≤ γ(Ai) ≤ −

λimin + λimax
2

+ b(Ac1) for i = 1, ..., n− 1.

In terms of mass assignments, this is equivalent to:

−b(Ac1) +
b(Ai) + b({xi+1}c)

2
≤

i∑
j=1

mco(Ai) ≤ b(Ac1) +
b(Ai) + b({xi+1}c)

2
. (44)

Once again this is a set of constraints of the form l1 ≤ x ≤ u1, l2 ≤ x+y ≤ u2, l3 ≤ x+y+z ≤

u3, also expressed as l1 ≤ x ≤ u1, l2− x ≤ y ≤ u2− x, l3− (x+ y) ≤ z ≤ u3− (x+ y), which

is a polytope with vertices obtained by assigning to x, x+y, x+y+z etcetera either their lower

or their upper bound. This generates 2n−1 possible combinations, which for the specific set (44)

yields (see the proof of Theorem 5) Equation (27). As for the barycenter of (27), we have that:

mco(A1) = b(A1)+b({x2}c)
2

mco(Ai) = b(Ai)+b({xi+1}c)
2

− b(Ai−1)+b({xi}c)
2

= b(Ai)−b(Ai−1)
2

+ plb({xi})−plb({xi+1})
2

,

mco(An) = 1−
∑n−1

i=2

[
b(Ai)+b({xi+1}c)

2
− b(Ai−1)+b({xi}c)

2

]
− b(A1)+b({x2}c)

2
= 1− b(An−1).
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