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L? estimates for the Stokes system

MARiko GiGA, YOSHIKAZU GIGaA
AND HERMANN SOHR

1. Introduction.

This paper investigates the fractional powers (44 B)*, 0 < « < 1 of the sum A+ B
of two closed (resolvent commuting) operators A and B in a (-convex Banach space X.
We compare the domain D((A + B)*) of (A + B)* with the domain D(4* + B*) =
D(A*) N D(B*) of the sum A% + B* and show in particular the relation

a1y D((A + B)*) = D(4%) n D(B%)

with equivalent norms ||(4 + B)*u|| and ||A%u|| + || B*u]|, under some assumptions on
the pure imaginary powers of A and B. ' '

Our results will be applied to L? estimates for (generalized) solutions of the evolution
equation

(1.2) Z4du=f in (0,T), 0<T<oo, u(0)=0.

Here we restrict ourselves to the Stokes operator A = A,. Formally, we get such an
equation if we apply the L? Helmholtz projection P, to the Stokes system

(1.3) %—:-‘-—Au+Vp=f, dive=0in Q x (0,T)

uloga =0 on 8Q x (0,7), u=0 on Q at t =0,

where {2 is a domain in R™ with smooth boundary 0 and 1 < g < oo; see e.g. [GS1,2]
for notations.

Our perturbation result is based on a theory recently developed by Dore and Venni
[DV] which has been extended by Giga and Sohr [GS2] to the case that the inverse
operators A~! and B~' need not be bounded. See also [PS] for another proof. The
original theory of Dore and Venni is applicable to the evolution equation (1.2) only for
a finite interval [0,T); it yields a constant C = C(,7,q,T) > 0 such that

T du T T
(1.4 G+ [ g <o [ s,
0 0 0

where 1 < 7, ¢ < oo and || - ||; denotes the L9(Q)-norm. The extension by [GS2]
strengthens the estimate (1.4) so that A;? is allowed to be unbounded and that C may
be chosen independently of T'. Therefore, one may take 7' = co in (1.4) which yields
asymptotic properties of the solution u of (1.3) as ¢ — oo even when Q need not be
bounded [GS2]. In [GS2] the estimates applied to the nonlinear Navier-Stokes system.
In [GGS] the estimate (1.4) has been extended to the case that 4 = A(t) in (1.2)
depends on ¢, and in [GS2] and [GGS] non zero initial values u(0) = ug are treated.



Recently Dore and Venni [DV2] applied their theory to get higher derivative estimates
for solutions of (1.2).

The application of our abstract result (1.1) on fractional powers (4 + B)* to the
evolution equation (1.2) yields now estimates of the form

7 T 4 . T . T '
s [ngraas [ naeuge<c [ iagesne

with C independent of f and T, and 0 < @ < 1. Here u is a generalized solution of
(1.2) and f may be a distribution which is regula.nzed by A7*. The case a = 1/2 is
especially important because (1.5) yields an a priori estlma,te

d r T L T L4
(16) [ gy [“ivena < [“uera
0 o 0

for solutions of (1.3) when f = div F; here we restrict » > 3 and n/(n~-1) < g < n
when (2 is an exterior domain. This estimate is considered as a nonsta.tlonary version
of Cattabriga’s estimate (see e.g. [BM]).

The class BIP(a, K) of operators we consider here consists of nonnegative closed
operators A in X which satisfy the estimate |[A¥u||x < Ke®l||u||x for all s € R
where K >land 0<a<w (mdependent of u and s). The well known application of
this estimate of the pure imaginary powers A is the identification

[X, D(4))a = D(A%),

where [X, D(A)]. is the complex interpolation space; see e.g. [T¥]. The Dore-Venni
theory gives now another important application of the above estimate. This theory
requires the {-convexity of the Banach space. For various properties of (-convex space
we refer to the nice review article [B]. For the theory of complex powers A%, z € C we
refer to the comprehensive article [Ko).

Our main abstract result is given in Section 3; Section 2 contains preliminary lemmas
and Section 4 is devoted to the application to the Stokes system.

2. Sum of operators with bounded imaginary powers.

Let A be a closed linear operator with dense domain D(4) in a Banach space X
equipped with norm || - ||. We say A is nonnegative if its resolvent set contains all
negative real numbers and ’

supt[|(t + 4) 7| < oo,

where ||-|| denotes the operator norm in £(X), the space of all bounded linear operators.
If a nonnegative operator has a dense range R(4) in X, one can define its complex power
A? for every z € C as a densely defined closed operator in X. (cf. [Ko]). Fora > 0
and K > 1 we say a nonnegative operator A belongs to BIP(a; K) if A € £(X) and
is estimated as

l4%]| < Ke?l’l, seR

where D(4) and R(A) are assumed to be dense in X. Let BIP(a) denote the union of
BIP(a,K) for K > 1.



2.1. FUNDAMENTAL LEMMA. (i) If A € BIP(a;K), then A* € BIP(ac; K) for 0 <

a<l.
(ii) If A € BIP(a), 0 < a < =, then for each § > 0 with § < x — a there is a constant
Mjs independent of A such that :

A+ 47 < Me/|A), Jarg A/ <w—a—5, 0#2€C.

In particular, ifa < 7/2, then —A generates an analytic semigroup e~*4 in X.

PROOF: (i) As well known, if 4 is nonnegative sois A% (0 < a < 1); see e.g. [Kr, p.119,
(5.25)] or [Ka]. If A € BIP(a), then A* € BIP(ac) since :

A=Yl = [lAfe]] < Keoae,

Here we use the property (A%)* = A*** which can be shown as follows. First we prove
this property with A replaced by (e +A4)~?, ¢ > 0; here we use the well known Dunford
integral calculus. Then the assertion follows by letting £ — 0 and using [PS, Theorem
3.

(ii) See [PS, Theorem 2).

2.2. SUMMATION LEMMA. Let X be a (-convex Banach space. Let A and B be-
long to BIP(a,K) and BIP(b, K), respectively. Suppose that A and B are resolvent

commuting, i.e.,
(t+A)"'(t+B) = (t+B)"Y(t+A)"! forall ¢>0.

Then A+ B € BIP(aV b,K') provided that a # b, where a V b = mé.x(a.,b) and
K' = K'(a,b, K, X).

This is Theorem 5 in [PS], where the dependence of constants is not explicitly stated.
For various properties of (-convex spaces there is the nice review article by Burkholder
[B] so we do not touch them here.

We next recall the Dore-Venni theory [DV] on the inverse of A + B. Let T be an
injective closed linear operator in a Banach space X. Let f)(T) be the completion of
D(T) in the norm ||Tu||. Since T may not have a bounded inverse, D(T) may not be
a subspace of X. The element Tv € X for v € ﬁ(T) is defined by Tv = Hmj_, . Tv;,
where {v;} is 2 Cauchy sequence converging to v in D(T). The norm of v in D(T) is
defined by

lollpery = lITell = lim [[Tv]].

Let T' be another injective closed linear operator in X. Let T + T" be the operator
defined on D(T +T') = D(T) N D(T"). By D(T + T* )" we represent the completion
of D(T'+T") in the norm ||Tu|| + ||T"u||. Clearly, this space is continuously embedded
in D(T) and D(T"). However, the intersection D(T') N D(T") is not meaningful unless
the norms ||T'|| and ||T"v|| are consistent in the sense of the interpolation theory [RS,
p-35]. Note that D(T + T')* need not be equal to D(T +1).



2.3. THEOREM ON INVERSES. Let X be (-convex. Suppose that A € BIP(a; K) and
B € BIP(b; K) are resolvent commuting and that a + b < x. Then the operator
A+ B : D(A+ B)* — X is bijective and boundedly invertible. Moreover there is
C = C(a,b, K, X) such that

lA(4+ B)7YI < G, |IB(A+ B) || < C.

REMARK: Observe asa consequence that ||Au||+ || Bu|| and [|(A + B)u|| are equivalent
norms on D(A4) N D(B) so that D(A + B)* = D(4 + B).

This result was first proved by Dore and Venni [DV] under the assumption that
both A and B have bounded inverses. The key observation is the following integral
representation

etico g—zpz-1
(A + B)_1 = -2-];.- é_i_

- dz, 0<ec<l.
t Je—ico SinTz
It turns out that the assumptions A~! and B~! € £(X) can be removed. The first
proof is given by Y. Giga and Sohr [GS2] by introducing appropriate dense subspaces
of X so that the argument in [DV] can be justified without A~1, B~ € £(X). Another
proof is given by Priiss and Sohr [PS]. They established a functional calculus generated
by the group A and proved that 4 € BIP(a) implies A, = ¢I + A € BIP(a; L) with
L independent of € > 0. This is considered as a special case of the summation lemma.
Since A, has a bounded inverse, they applied the Dore-Venni estimate to A, and sent
€ — 0 to get the desired estimates in Theorem 2.3. The first proof is more direct because
it does not use the approximated operator A,.

The injectivity of the operators A, B is not explicitly assumed. It follows from the
fact that these operators are nonnegative and have dense ranges; see [Ko, Theorem 3.2
and 3.7]. Indeed Au = 0 implies u = ¢(t + A)~1u, so letting ¢ — 0 yields u = 0.

It is convenient to consider appropriate dense subspaces in X as in [GS2]. For ¢ =
(¢,m) and A = (h, j,k,{) with nonnegative integers k, j, k, £ we set

() = L(1)T4(r) 5 (s)Th(e)g, g€ X
¢=(t7Y), n=(s,07%), t,7,8,0 >0
with I4(¢) = A(t + A)~? and J4(7) = v(7 + A)~1. We introduce the subspace
Gp =linear hull of {ga(£);g € X, ¢ = (t,771,5,071),¢,7,8,0 > 0}.

2.4. DENSITY LEMMA. Suppose that A and B are nonnegative and resolvent commui-

ing with dense ranges and domains in X. Then G, is dense in X. Moreover G, is dense
in D(A) N D(B) under the norm ||Av|| + || Bv]|. :

Proor: By a standard argument [Ko] we see ga(¢) — g, Aga(¢) — Ag, Bga(¢) — Bg
in X as { — 0, which proves the lemma. We give a proof for completeness. Since A is
nonnegative, one observes

H(t+ A" =t(A(t+A)u) >0 as t—0
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for f = AuAGI R(A) Since R(A) is dense in X and sup, ||I4(¢)|| < oo, we conclude
If(t)f =f in X as t—0.

A similar observation shows
Ja(r)f = f in X as r—o0

and the same for B. Since all I,(t), Is(s), Ja(t), Ja(s) are bounded in £(X), these
convergences for A and B imply that gx(¢) — gin X as ¢ — 0. The proofs of Agy(¢) —
Ag and Bgy(€) — Bg under g € D(4) N D(B) are parallel, so they are omitted.

2.5. COMMUTATIVITY LEMMA. Suppose that A and B are nonnegative and resolvent
commuting with dense domains and ranges in X. Then

A*BYA*B'f = BYA***B"f for fe€ Gy
with z,w,%,v € C and A = (k, j, k,£)

provided that h, j, k, { are sufficiently large and the largeness only depends on the
modulus of the real parts of z, w, u, v.

For the proof we use an integral representation of the complex powers of A and B by
their resolvents [Ko, (1.3) and (4.11)]. Since A and B are resolvent commuting, it is
not difficult to prove

(t+A4) (s+B) '=(s+B)"}(t+4), ¢s>0.

Applying this commutativity to the integral representation yields the commutativity of
complex powers on G. The proof is straightforward, so we omit the details.

2.6. COROLLARY TO THE THEOREM ON INVERSES. Assume the hypotheses of the
theorem. on inverses. Let m be a positive integer. Then

A™(A+B)™ = (A(A+ B)‘l\)m
B™(A+ B)™™ = (B(A+ B)")™

on an appropriate dense subspace of X. In particular, A™(A+B)~™ and B™(A+B)~™
can be extended to bounded linear operators on X with a bound depending only on a,

b, K, m, X.

PROOF: We give a proof for m = 2; the proof for general m > 3 is parallel, so it is
omitted. We use the Dore-Venni representation of (4 + B)~1. Formally for z € C,
Re z=cwith0<e<1 ‘

et+ioo f—w puw-1
AB"l(A+B)"1f=AB’"1/ ABS

e—ioo

= B*~14(A + B)"1f.

21 sin 7w



This calculation is justified by the commutativity lemma for f € G4, A = (hydr Ky £)
with h, j, k, { sufficiently large. We thus observe

etico A-zABz—l(A+B)—1fdz
emico 2isinwz

= A(A+ B)"'A(A+ B)"'f.

AYA+B)?f=4A

Since G, is dense in X and A(A+ B)~! is bounded by the theorem on inverses, A2(A+
B)~? can be extended to a bounded linear operator (A(A+B)~1)?. The same argument
applies to B2(4 + B)~2,

3. Spaces of fractional powers

For A € BIP(a) let D(A*) be the completion of the domain D(A*) in the norm
|[A%u||, where 0 < a < 1. The space D(A%) can be characterized by a complex
interpolation space, namely :

D(A*) = [X, D(4))..

This follows from the general interpolation theory (see e.g. [Tx], [BB]). For the proof
see e.g. [GS1, Proposition 6.1] or [BM]. In this section we compare various norms on
D(A)ND(B).

3.1. MAIN THEOREM. Suppose that X is (-convex. Suppose that A € BIP(a,K) and
B € BIP(b, K) are resolvent commuting and that a+b < x. Then for 0 < <1

D(A%) N D(B*) = D((A + B)%),
D(4% + B®) = D(A* + B*)* = D((A+ B)*) = [X, D(A + B)].

and there are constants C; = Cj(a,b,a, K, X) > 0, j =1,2,3,4 such that

14| + B4l < Gil|(4% + BYu] < Cal|(4+ B)*ul| <
< Gallullix,poas sy, < Ca(llA%u]] + [|B=])

for all u € D(A*) N D(B*).

PRroOF: Since the summation lemma implies A+ B € BIP(aV b+ 6, K"), § > 0 with
some K' > 1, it follows the identity

D((A+B)*) =[X,D(4 + B)la
with equivalent norms
I(A + B)*«|| and lullix, 50448 -

Furthermore, since A* € BIP(ae,K), B* € BIP(ba,K) and aa + ba < , by the
theorem on inverses we observe that the norms

l4%u]| +||B%u|| and [|(4% + B*)x|]
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are equivalent on D(A*) N D(B*).
It remains to prove that D(A* + B®) = D((A + B)*) and

(3.1) I(4 + B)*«|| < ClI(A* + B=)«]l,
(3.2) (4% + B*)x|| < C'|(A + B)>«||

for all € D(A* + B*) = D(A*) N D(B®). Let us show the first inequality (3.1). To
prove (3.1) it suffices to show that

(3-3) lI(4 + B)*(4% + B*) || < Cljo|

for all v belonging to an appropriate dense subspace of X. Let G be asin the density
lemma with A = (h, j, k, £). For sufficiently large A, j, k, £ the function

F(z)=e*" (A + B)*(A* + B*)"*2y, ve Gy

is holomorphic in a neighborhood of 0 < Re z < 1. Since A+ B € BIP(aVb+4,K')
and A% + B* € BIP((aVb+6)e, K") for all § > 0 with K', K" depending on K, a, b,

6, a, X, estimating F on the imaginary axis yields

PG < e KU ReAeANaoll, o= avbes
< Mo|lv|| with Mo = sup KK" exp(p|s|(1 + 1/a) — 5?) < oo,
IER

where 6 is now a fixed sufficiently small number. Similarly,
IFQ1+is)l| = 1= ||(A+ BY'*(4 + B)(A* + B*)~Y/=(4= + B) "/
< el—-,’KlKuepla]epM/a”(A + B)(Aa + Ba)—l/a” ”,v”
< eMo||(4 + B)(A™ + B=)~H=|| ||v]].

If A(A* + B*)~'/* and B(A* 4+ B*)~1/* can be extended to bounded operators in X
with

(34) AT +Bo) Ve <o, |[B(A® + B2) || <,

then
|F(1+1s)|| < My||v|l, M= 2eMqe.

Applying the three line theorem [RS, p.33] yields
IF (Il < Mg~ M |oll, v € Ga.

This deduces (3.3), D(4* + B*) C D((A + B)*) and (3.1) with C = e""‘zMo_“Mf‘
since G4 is dense in X. The inequalities (3.4) are proved in the next lemma.

To prove the converse direction (3.2) we need that A%(4 + B)~* and B*(A+ B)~«
extend to bounded operators in X, this is also proved in the next lemma. Similarly as
above we then obtain D((4 + B)*) C D(A* + B*),

4%l + || B*u|| < ClI(A + B)=u|l, w € D((A+ B)*);
this implies (3.2) and the proof is complete.

7



3.2. LEMMA. Assume the hypotheses of the theorem on inverses.

(i) For o > 0 the operators A”(A+B)~ and B°(A+B)~? can be extended to bounded
linear operators in X with a bound depending only on a, b, K, o, X.

(ii) For 0 < a <1 the operators A(A*+ B*)~/= and B(A*+ B*)~1/« can be extended
to bounded linear operators in X with a bound depending only on a, b, K, a, X. '

ProoF: Part (ii) follows from (i) by setting A = A%, B = B%, o = 1/« so it remains
to prove (i). In the corollary to the theorem on inverses, we have proved (i) when o is
a positive integer. For general o we again appeal to the three line theorem. Let m be
a nonnegative integer. If we take an appropriate dense subspace G4 of X, the function

H(z) = e A™*(A+ B)"(m+5)y, ye Gy

is holomorphic in a neighborhood of 0 < Re z < 1. Since A+B € BIP(aVb+6, K') for
all § > 0 with some K' = K'(K,a,b,§, @, X), estimating on the imaginary axis yields

| H (is)l] < e Ketll||A™(A + B)~™|| K'erll| o]

with p = a Vb+§, where § is a fixed sufficiently small number. By the corollary to the
theorem on inverses, ||A™(A + B)~™|| is bounded by ¢,,; we now observe

IE(is)l| < emLlo]l, L= SEEKK' exp(—s® + (a + p)ls]) < co.

Simila.ﬂy, on Rez =1 we have
[H(1 +is)|| < em+1Lev]].
Applying the three line theorem yields
IEG < Mlbll, M = ei7eh e L <0, € Ga.
Sin;:e GA. is dense in X, we now obtain
[A™+7(A 4+ B)"("+7)|| < e~ M, 0<7<]1.

The proof for B7(A + B)~7 is parallel, so is omitted.

4. Application to the Stokes system.

Although our abstract result applies to a very general class of evolution equations
(1.2), we consider here as an example only the Stokes system (1.3) on some domain £
in R™.

Assumptions on the domain Q.
In the following let & C R™ (n > 2) be either the whole space R™, a bounded domain,
a halfspace or an exterior domain. The boundary 09 is always assumed at least of class
C?*t* with 0 < p < 1. If Q is an exterior domain we suppose n > 3.



Stokes operator.
For 1 < g < oo let L denote the L? closure of the space Coo of all smooth divergence-
free vector fields with compact support in 2. Let P = P, denote the projection operator
from L? = (L9(Q))" to L associated with the Helmholtz decomposition. The Stokes
operator A, is defined in L2 by A, = —PA with the dense domain

D(Aq) = {u € Lg; Vzu S Lq, ‘lLlan = 0},

where A denotes the Laplacian and V2« denotes the tensor of all second order deriva-
tives. In [G] and [GS1] it is shown that for all 0 < a < x/2, 4, € BIP(a,K) with
K depending on a. For more information on the Stokes operator and the Helmholtz
decomposition we refer to [GS1, 2] and [BM] and the references cited there.

Evolution equation.
Applying the projection P, to the Stokes system (1.3), one formally obtains its abstract
form

(4.1) % +Agqu=F in (0,T), u(0)=0.

For1 < < 00, 0 < T < oo let B denote the derivative operator on X = L7 (0,T; L)
defined by B = d/dt (weak derivative) with

D(B) = {u € X;du/dt € X,u(0) = 0}.
The operator A in X is defined by (Au)(t) = Aqu(t) for a.e. t € (0,T) where
v € D(A) = {u € X;u(t) € D(4,) fora.e. t € (0,T)
and /0 A0l < o).
Using A and B we may rewrite (4.1) as
(4.2) Bu+ Au=f.

The space X is (-convex because L? is (-convex; see [GS2] and the references cited
there. As shown in [DV] for each § > 0 the operator B € BIP(x/2 + 6, K) with K
depending on § but independent of T', 0 < T' < co. The property A; € BIP(a,K)
yields A € BIP(a,K), where a is arbitrary 0 < a < #/2 and K depends on a but is
independent of T'. Clearly, A and B are resolvent commuting. Applying the extended
Dore-Venni theorem in [GS2] one observes that there is a unique solution » € D(A+ B)*
of (4.2) for each f € X. If T' < 00, B~1! exists as a bounded operator so that

D(A + B)* = D(4) N D(B).

For 0 <T < co wecall u:(0,T) — LI a strong solution of (4.2) if it satisfies (4.2) with
v € D(A) N D(B). In case T = oo we call u : (0,00) — L2 a strong solution if so is u

9



on each finite time interval (0, T’).

Generalized solutions.
In order to apply our abstract Theorem 3.1 to (4.2) we have to consider generalized
solutions  of (4.1) for a class of distributions f. This is caused by the fractional powers
(B + A)*. For simplicity we will avoid here the definition via test functions and prefer
the definition via regularization. Roughly speaking, « is a generalized solution of (4.1)
if the “regularization” A;%u is a strong solution of (4.1) with f replaced by A %u.

Let us give a precise definition. For 0 < « < 1 the space D(A;%) = R(AJ) is
equipped with the norm ||A7%u||, and .ﬁ(A; “) denotes the completion of D(A;%)
under this norm. For v = (v;){2; € D(A;*) we define A7® = (A;%v;) and get
A7%v € L3 for each v € D(A“'),A"‘"'v is called the regula.nzatlon of v € D(A“")
In the case T' < oo we say u € L” (0 T;D(A;%)) is a generalized solution of (4 1)
with f € L*(0,T; D(A"“)) if A7 %u solves (4.2) as a strong solution with f replaced by
A72fel’(0,T508). Hu: (0 oo) — D(AL~) is a generalized solution of (4.1) on each

ﬁmte time interval (0,7’), u is called a generahzed solution in case T = co.

4.1. UNIQUE EXISTENCE OF GENERALIZED SOLUTIONS. Let § be as above, 0 < T' < oo,
1<7<00,1<¢<00,0<a<]l Suppose f € L"(0,T; D(A;%)). Then there exists
a unique generalized solution u € L’ (0, T; D(AL~%)) of (4.1). Moreover, w € D(B'~%)

and

T d . T T
@9 [ [ iarena <o [ 1agenna

with C = C(,g,r, &) > 0 independent of T and f where (d/dt)'~* = Bl-=,

REMARKS: a) The condition %(0) = 0 is implicitly contained in » € D(B!~%) for
small « (i.e. 0 < @ <1-1/7) while no condition is imposed on u(0) for large a (i.e.
1-1/r<a<l).

b) The case T' = oo can be admitted in Theorem 4.1 if we replace D(4;™*) by D(Al“")
and D(B*~%) by D(B'-2). In this case (4.3) is

= d - L * - ® - L
gy [T 4z euga < [T llag= sl

which yields asymptotic properties of u as ¢t — oo.

c) Of course, this theorem extends to the class of all evolution equations for which
Theorem 3.1 is applicable.

Proor: We apply the extended Dore-Venni theorem in [GS2] to A7*f € X and obtain
a unique solution v € D(B) N D(A) of Bv+ Av = A7%f. The functlon u = Afv is
a generalized solution of (4.1) since A %u is a strong solution; the uniqueness of u is
obvious.
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To prove (4.3) we use the Yosida approximation J,, = J a(m) = m(m + 4)7! in
Section 2 and obtain

BA™*Jpu+ AA™*Jpu = A~(BJpu+ Alpu) = A=, f
BImu+ AJmu = Jp 1.

Here J,, f is defined in the same way as A7%f. We know that lim,, o Jin2 = u in
X = I7(0,T; LZ). Setting wm = Jmnu, w = up, — u; and applying Theorem 3.1 yields

IB*~%w||x + ||4**w||x < C||(B + 4)'~*w||x
= C||(B+ A)™%(B + A)v||lx = C||A%(B + A)~*(Jm — J)A~%f||x
SO (Jm = T)A%F||x;

here we used the fact that A%(B + A)~* is bounded by Lemma 3.2. From this estimate
we conclude » € D(B'~*) N D(A~%) since B1=* and A1~% are closed and v € X. The
same estimate with w replaced by u, yields (4.3) by letting m — co. This proves 4.1.

We next consider some concrete cases of distributions f in Theorem 4.1. In case a)
of the following Corollary we consider a distribution of the form f=3,-10.f with
fv € X and 8§, = §/0z, and in b) we let f € L"(0,T;L7) with some exponent 7
different from gq. :

4.2. COROLLARY. Suppose ) as above and 0 < T < 00,1 < g < 00,1 <7< o0.

a) Let f =30 ,0,f, with f, € X = L"(0,T;L3), v=1,-+ ,n. IfQ is unbounded,
suppose additionally g > n/(n —1), n > 3. Then A;"/*f € X, f € L3(0, T; D(A7Y/?)).
There exists a unique generalized solution u € L’(O,T;D(A:lz)) of (4.1) with u €
D(BY/?) and

T T‘ n T
d 4 ’ L L4
wh [ [Ciaae <o Mg

v=1

with C = C(Q,q,r) independent of f and T.

b) For 1 < a <1 let v be defined by 2a + n/q = n/y and f € LI"(0,T; L). IfQ is an
exterior domain, suppose additionally 1 < v < n/2, n > 3. Then A;ef € L(0,T; L2),
fer(o,T; ﬁ(A;"‘)). There exists a unique generalized solution u € L7 (0, T; D(Al~=))
of (4.1) with v € D(B'~%) and

T d X T T
(4.5) [ s+ [ aieuga <o [ s
0 0 0

with C = C(9,q,7, @) independent of f and T.
REMARKS: (i) To prove a) and b) it suffices to prove that f € L7(0,T; D(A7 1 %)) and

142 fllx <€ 115 lIx

v=1
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in a) and that f € L’(O,T;b(A;"‘)) and

T
ll45°51lx < O / £l deyr

in b) respectively with C independent of f and T'.
(ii) The estimate (4.4) yields (1.6) by applying of

1V4ll; < Cl 45/l

which needs additionally the restriction 1 < ¢ < n, n > 8 when Q is an exterior domain

([(BM], [GS1]).
PROOF: a) In [GS1, p.123] it has been shown that C%, C R(4,) if ¢ > n/(n — 2) and
2 is the R™ or an exterior domain; the same proof works also for the half-space and

the restriction becomes ¢ > n/(n — 1) if A, is replaced by All 2 1Qis bounded, no

restriction is needed.

So for each f, (v = 1,2,++-,n) we find a sequence (£i)32 in L7(0,T502) € |
L’(o T D(A_l/z)) with fy = limj—boo fllj in L,(O,T; I’g)- It follows that (fj) _
(X0=1 O fv5) is a sequence in L7 (0, T; D(A; */?)).

We next use the estimate
14712 Vully < Cllullq

(see [BM], [GS1]) which is valid in all cases for 2 but in exterior domains under the re-
striction ¢ > n/(n—1); observe that this estimate is equivalent to || Vu|| < C IIA:./ 2ullge,
where by duality the restriction is now given by 1 < ¢' < n. This leads to

WAZY2(F = Flix = 1D 47226, (Fi = £ui)llx < C Y lIfui = Fusllx
v=1 v=1
which yields f € L7(0,T; D(4;Y ?)). This estimate also yields
147%2fllx < ¢ Y lifIx
v=1

~ so Theorem 4.1 is applicable.
b) Since R(45) C L,, is densein L7, one can choose f; € L*(0,T; D(4;%)),j =1,2,-
with f = hm,_..,o f; in L7(0,T L") Then we use the estimate

”A;a“”q < C“"‘“‘v

in [GS1, p.']:04] which holds for 2a + n/g = n/v; in exterior domains the restriction
1<+ <n/2,n>3is needed. This leads to

T
147%(fi = fHi)llx < C(/o V5 — £l deyr/
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which yields f € L"(0,T; D(A;*)) and

T
1421l < O / 11£lI7deyY,

so Theorem 4.1 is applicable.

Further applications. The estimates above can be applied to weak solutions of the
nonlinear Navier-Stokes equations if we take the nonlinear term to the right hand side
in (4.1). The procedure is completely analogous to that in [GS2].
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