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ABSTRACT.

The goal of this thesis was to isolate classes of bounded linear operators 

in L P(I)  which on the one hand still have some of the well-known and useful 

properties of positive operators, but which on the other hand are large enough 

to include some im portant classes of operators (e.g. the Hilbert transform and 

the singular operators derived from it) that cannot be dominated by positive 

operators.

In Chapter I, we study as a first class of this kind the L p regular op­

erators. By definition such operators map equiintegrable sets in Lp(I)  into 

equiintegrable sets in L P( I ) and sets compact in measure into sets compact in 

measure. We show that with respect to duality and pertubation theory they 

have properties similar to positive operators.

In Chapter II, we study strongly Lp regular operators as the class of op­

erators, which preserves growth restrictions of Lp functions (formulated in 

terms of nonincreasing rearrangements of functions). We show that such op­

erators can be extended to bounded linear operators on certain Lorentz and 

Marcinkiewicz spaces. Many im portant operators in analysis are in this class 

since we can show that all interpolated operators are strongly Lp regular.

Chapter III contains some representation theorems for linear operators in 

Lp( I ) by kernels of distributions, which are motivated by the representation of 

positive operators by stochastic kernels.



INTRODUCTION.

This research is motivated by the following well-known and useful prop­

erties of a regular1̂  operator T  in LP(I),  1 < p < oo:

1) For any 0 < h £ Lp(I),  there exists a 0 < g £ L p( I ) such tha t | / |  < h 

implies \Tf \  < g (cf (S ch a  II)) .

2) There is a density g £ L\ ( I )  such that g~1/pT g 1/p extends to a bounded 

linear operator in L r(gdp) for any 1 < r < oo, i.e. T  can be extrapolated to 

L\ and L ^  spaces (cf [W ei III]).

3) There is a stochastic kernel (p x)xei  ° f signed measures on I  such that for 

all /  € LP(I):

and the modulus |T| : L P(I) LP( I ) of T  is given by

Each of these properties gives a characterisation of regular operators. 

Hence, it is clear that e.g. the Hilbert transform and other singular integral 

operators, which are not regular, cannot have these properties.

In this study, we look for conditions similar to 1), 2 ), 3 ), but somewhat 

less restrictive so that they are satisfied by useful operators like the Hilbert 

transform which do not meet the above conditions.

T  : L p(I)  —■> L P(I)  is called regular if there exists a positive operator S  : 

LP(I)  -> L P{I) with \Tf \  < 5 | / |  for all /  € LP{I).

vi



In Chapter I, we consider the following weaker version of 1) for an operator 

T  : LP(I) -  LP( I ):

1’) If A  C LP(I)  is an equiintegrable subset2), then T(A)  C LP(I)  is equiinte­

grable.

While 1 ’) is a selfdual property, we show in Section 1.2. that T  has 

1 ’) if and only if (iff) its dual T'  : L q{I) —> L q(I),  1 / p +  1 /q = 1, maps 

sets compact in measure into sets compact in measure. Operators with this 

property and 1’) we call L p regular. Then, in Section 1.3., we extend a recent 

result on regular Fredholm pertubations to this much larger class of L p regular 

operators. Indeed, every bounded linear operator T  : LP( I ) —► L P( I ), 1 < 

p <  2, satisfies 1’), and every operator obtained by interpolation is Lp regular 

(Section 1.2.). For p = 1, we get a particularly complete characterisation of Lp 

regular operators in terms of the representation 3) (see Section I.I.).

In order to obtain a version of the extrapolation result 2), we introduce 

strongly Lp regular operators in Chapter II as bounded linear opertators T  : 

Lp(I) -> Lp(I), 1 < p < oo, satisfying:

2 ’) For any 0 < h £ LP(I),  there exists a 0 < g 6 LP( I ) such that /*  < h* 

implies (T f  )* < g* where /*  is the nonincreasing rearrangement3) of / .

This condition is stronger than 1 ’) - in Section II.1. we construct a com­

pact operator without 1’) -, but still weak enough so that interpolated op­

erators and singular integral operators are strongly Lp regular (see Section

II.8.).

2) For the definition of equiintegrable subset in Lp(I),  see Appendix A.

3) For the Definition of the nonincreasing rearrangement, see Appendix B.

vii



In Section H.6., we show that a strongly Lp regular operator extends to a 

bounded operator on appropriately chosen Lorentz and Marcinkievicz spaces, 

i.e. a weaker version of 2) still holds. Further extrapolation results are given 

in Section II.7.

In Chapter III, we give representations of Lp operators resembling 3), 

but with the measures replaced by various kinds of distributions. This 

raises the question whether (strongly) Lp regular operators can be understood 

in terms of the distribution appearing in their representation (just as regular 

operators are singled out by the fact that the are measures) - but this 

question remains open.

We need various auxiliary results on equiintegrable sets, rearrangements 

and regular functions which we collect in the two appendices. For the conve­

nience of the reader, we also include some results on basic sequences in Lp(I).



CHAPTER I.

L p REGULAR OPERATORS.

1. D efin itio n s  a n d  E x am p les .

In this chapter, let I  := (0,1) with (normalized) Lebesque measure p,  and 

assume 1 < p < oo, unless indicated otherwise. As usual, 7̂ +  ^ =  1.

D efin itio n  1.1. A linear and bounded operator T  : L P(I)  —> LP( I ) is

( P i )  T  maps equiintegrable subsets of L p(I)  into equiintegrable sets in L p(I). 

(P 2 ) If A  C L p(I)  is norm-bounded and compact in measure, then T(A)  C 

Lp(I)  is compact in measure.

A non-empty set A  C L p(I)  is called eq u iin te g ra b le  if for any e > 0, 

there exists a c > 0 such tha t

for any f  G A.

A non-empty set A C  L P(I)  is called com pact in m easure if for any 

sequence ( /„ )  C A , there exists a subsequence ( f n j ) C ( /„ )  and a function 

/  6 A  with / n . —*• /  in measure.

If 1 < p < oo, (P 2 ) is equivalent to the following: T  preserves convergence 

in measure, i.e. if (/„  ) C L P(I) is bounded and converges to 0 in measure, then 

(Tf n)  C L p(I) converges to 0 in measure.

called L p re g u la r  if it satisfies the following two conditions:
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Elementary examples for L p regular operators, 1 < p < oo, are finite-

for certain p (see Theorem 2.2.).

The class of Lp regular operators is rather large, as the following examples 

show.

E xam ple 1.2. Every regular operator T  : LP(I)  —► L P(I),  1 < p < oo,

i.e. every operator for which there is a positive operator S  : L p(I) —+ Lp(I) 

with \Tf \  < S f  for all /  £ Lp( I )  (cf §IV.l., p 229 of (Scha II ) ) , in particular 

every positive operator is L p regular. (For p =  1, see Example 1.6.)

Proof: To see that T  satisfies (PI) ,  choose an equiintegrable set M  C 

L P(I).  Then, for all e > 0, there is a 0 < C  < oo such that M  C B e  + 

where B e  '= { /  € Lp(I) : | / |  < C}  and Ul p is the unit ball of L p(I).  Then

where |T| is the modulus of T  (cf § /F .l., p 229 of (S cha  II )) . It follows that 

T( A)  is equiintegrable in L p(I).  That T  also satisfies (P 2 ) , now follows from 

the Duality Theorem 2.1. in the next section, since T'  : L P>(I) —+ LP<(I) is 

also regular.

E x am p le  1.3. The H ilb e r t  t ra n s fo rm  T  : Lp(T) Lp(T), 1 < p < oo, 

is Lp regular. Here we define the Hilbert transform on the unit circle T by

dimensional and compact operators. Also, these properties are always fulfilled

T ( A ) C { f : \ f \ < C \ T \ l }  + e\\T\\ULp,

H r f ( s )  := limi H l f ( s ) ,e—»0-f

where s £  ( — 7r,7r] and
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Since it is well-known (cf Theorem II .2.4-, P 117, and Theorem 2.6., p 118 of 

(T or)) that the Hilbert transform on the unit circle T is a bounded linear op­

erator on £ p (r), 1 < p < oo, it follows from the interpolation result (Theorem 

2.3.) in the next section tha t the Hilbert transform is L p regular. Of course, 

this result implies tha t a large class of singular integral operators are also Lp 

regular.

Next we give some examples of Lp operators which are not Lp regular.

E x am p le  1.4. Let ( rn ) and (/?„) denote the Rademacher functions and 

the Haar system as defined in Appendix A.2. If (h'n) denotes the Haar functions 

normalized in Lp<(I) where 1 < p < 2, then (h'n) forms an unconditional basis 

for Lp>(I) (cf Appendix A.2.). By Lemma A.2. and Khintchine’s Inequality 

(cf Appendix A.2.), we have that

Tf = Y,(j fbM r -

defines a bounded linear operator T  : LP(I) —> Lp(I). Since h'n —> 0 in 

measure and Th'n =  r„ , it is clear that T  violates (P 2). The dual operator 

T' : LP'{I) —> LP'(I) maps rn into h'n for all n, and therefore does not satisfy 

(P I) .

Exam ple 1.5. Denote by F  : L 2{ — oo,oo) —> L 2( — oo,oo) the Fourier 

transform  on the real line ( —00,00), i.e. for /  G L 2(—00,00) fl L j( —00,00), 

let

/
OO

f ( x ) e ~ itxd.x
-O O

(here dx stands for the Lebeque measure) with the isometric extension to all 

of L2( — 00,00) given by Plancherel’s Theorem.



4

Fix /  G L i(—00,00) n i 2 (—00,00), II/II2 =  1, supp /  c  K  where K  C 

( — 00,00) is compact. Set g{i) F f ( i ) for t G ( — 00,00).

Define ( /„ )  C £ j(  —o0 , 00) D £ 2(-o o ,o o ) by /„ ( t)  := / ( t  -  n).  Then 

gn(t) := F f v (t) =  Ff ( i )  e~tn1 t-a.e. (cf §V7.f., p 121 of (K a t)) . Therefore, 

F ~ 1gn =  /„ ,  thus F g „ =  F { F f n ) =  /r> (cf Theorem VL1.11., p 125 of (K a t)) . 

Here, z denotes the complex conjugate to 2.

Observe that \gn\ =  |<7| and | | /7i \ n || —> 0 as 7? —► 00 for any bounded set 

0  C ( — 00,00). Thus (gn ) is equiintegrable in i 2( —00,00), and (/„ )  converges 

to 0 in measure.

Choose (  G Li( —00 , 00), 0 < (  < 00 011 (—00, 00), and consider the 

isometry J  : L2( —00, 00) —> £ 2[( — 00, 00), £</.?] given by /  —» /  o £-1 . Note 

tha t X2[(— 00, 00), (dx) is isomorphic to X2( /)  if I  := (0,1).

Then T  := J F J _i does not have ( P I )  and (P 2 ).

Indeed, for ( /„ )  and (gn ) given by /„  := J f n and gn := J  gn, we see that 

T f n =  9n and Tgn =  /„ . But ( /„ )  converges to 0 in measure, while (gn) is 

equiintegrable in L2[( — 00, 00), (dx\.

E x am p le  1.6. Every bounded linear operator T  : L \ { I ) —> Ly(I)  can be 

written as T  — T d + T a where T a and T d are operators of the form

(here an : I  —» (—00, 00), ern : I  — I  are Borel functions such tha t for /u-almost 

all (//.-a.a.) x G I: |a„(.r)| > |u„ + i(.r)|,  |a„(.r)| < 00 and <t„(.t) ^  erm(x)

for m  ^  n)  and

OO
T af {x)  = 5 ^ o n(*)/(tr„(ar))
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(here (ux )x^ x  is a kernel of diffuse measures on I).  For more details, see 

Proposition 2.6. and Theorem 6.2. of [Wei IV]. As in Example 1.2., one can 

show that T  always has ( P I ) .  W ith respect to (P 2 ) , we have that

1) T a always has (P 2 ).

2) T d has (P 2 ) iff the image of the unit ball U in L P( I ) is compact in measure. 

In short: T  is Lj regular iff T d(U) is compact in measure. Furthermore:

3) There are integral operators without (P 2 ), and not every L\  operator T  

with T(U)  compact in measure is an integral operator.

4) Let //. be a diffuse measure on T  such that the Fourier coefficients jj(n) do 

not converge to 0. Then T  does not have (P 2 ).

Note that every L\  operator which maps JD00( /)  into Loo(I) defines an L p 

regular operator T  : L p{ I ) —> L p(I)  for all 1 < p < oo (e.g. by Example 1.2.).

P ro o f: 1) For (P 2 ), it is enough to demonstrate that if ( / ,)  is bounded 

in L ](/)  and /,(y ) —> 0 for all y £ / ,  then T "/,(.t) —> 0 for y-a.a. x £ I.

This certainly holds when the sum in the definition of T a is finite. To 

reduce the general case to such finite sums, we choose by Egoroff’s Theorem
OO

E n C I,  E n C E n+1 C . . .  with /<(/ — UE n ) =  0 and |o*(*)| -* 0 as
k—m

rn —> oo uniformly on each E n. Now it follows that Tf i {y)  —> 0 in measure for 

i —* oo on each E n.

2) If T d(U) is compact in measure, then (P 2 ) is obviously satisfied. On the 

other hand, let (f n) C L j( /)  be a normalized sequence such tha t ( T f n ) is 

not compact in measure. If we can find a normalized (gn ) C L\{I )  with 

p(supp gn) —> 0 and \\Tdgn — T d f n \\ —> 0, then (P 2 ) cannot hold for T. This 

is a consequence of the following claim.
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Claim: For every /  E Lj ( I )  and e > 0, there is a function g E L\{I )  with 

p(supp g) < e and ||T df  -  T^g]] < e.

Proof: It follows from the proof of the Lemma in [Wei V] that the claim 

holds for functions of the form /  =  /./(A)-1 x A ■ For a general function /  E
n

LP(I),  choose a simple function /  =  ^  I A \ Xjli wit^ ^  ~ -  2 p V  For
i=i ^  '

each i, there is a function gi with / i(supp  <7,) < supp gi C A; and

n

Then gr := has the desired properties.
7—1

3) In order to find an integral operator T  in Li {I )  with T(U)  not compact in 

measure, we first choose a quotient map S  of l\ onto the span-closure R  of the 

Rademacher functions (see Appendix A for their definition, also consult (Lin)). 

If P  is a further quotient map of L-y{I) onto Zj, then T  := S o P  : L\ ( I )  —> L\ ( I )  

is weakly compact, since R  is isomorph to I2 (see Khintchine’s Inequality, 

Lemma A.2. of the Appendix), and therefore an integral operator (cf Section

III.2., p 67 of (D ie)). But T( U ) =  Ur  is not compact in measure, since it 

contains the Rademacher functions.

To find the second operator, we choose a subspace X  of L\{I )  whose unit 

ball is compact in measure, but does not have the Radon-Nikodym property 

(cf [Bou II]). Then there is a.11 operator T  : Li ( I )  —> X  C Li{I )  which is 

not representable, and therefore not an integral operator (cf Section III.2 of 

(D ie)), although T(U)  C Ux  is compact in measure.

4) If |/t(??fr)| > C > 0, then T(e'nkt) =  fi.(nit)etnki forms a subspace of T(U)  

which is not compact in measure. Hence T  does not have (P 2 ) by Part 2).
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Let us denote by B p the Banacli algebra of all bounded linear operators 

T  : Lp(I)  —> LP(I)  and by R p the subset of all Lp regular operators.

T heorem  1.7. R p, 1 < p < oo, is a norm-closed subalgebra of B p which 

is full in the sense that for an invertible T  E R p, we have that T  1 E R p.

Proof: It is easy to see tha t R p is a subalgebra. R p is closed in the 

operator norm since a bounded sequence ( f n ) C Lp(I)  is equiintegrable (con­

verges to 0 in measure) if for every e > 0, there is an equiintegrable se­

quence (gn ) C Lp(I)  (a sequence (pn ) which converges to 0 in measure) with 

||<7n ~ /n || <

Finally, assume that T  is invertible and L p regular. If S  := T ~1 does 

not satisfy (P I ) , then there is a normalized equiintegrable sequence (/„ ) C 

Lp(I)  such tha t (S f n) is not equiintegrable in Lp{I). By Lemma A.I. of the 

Appendix, we can write a subsequence of ( S f n) - call it. again ( 5 / n ) - as a 

sum of an equiintegrable sequence (gn ) C Lp(I)  and a disjoint sequence (hn), 

where ||pn || does not converge to 0. Then /„  =  T S f n =  Tgn +  T h n, where 

(Tgn) still is equiintegrable and (T h n) converges to 0 in measure. Since ( f n) 

also converges to 0 in measure, it follows from Lemma A.2. Part A) that 

ll^Pnll —* 0. Since T  is invertible, we obtain the contradiction ||pn || —> 0.

It can be shown similarly tha t T  satisfies (P 2 ). For p > 1, this also follows 

from the duality result in Theorem 2.1., since T'  : Lp<(I) —> L p<(I) is invertible 

and L pi regular.

R em ark 1.8. That the algebra R p is full, in particular implies that the 

spectrum of T  E R p is the same with respect to R p as with respect to B p. 

It is well-known (cf Sect. IV .1., p 231 of (Scha I I ) )  that this is not true
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for regular operators and the algebra of regular operators considered in Sect.

IV .1. of (Scha II). This also indicates that the Lp regular operators are a 

meaningfull extension of the classical regular operators: The resolvent operator 

of a regular operator may not be regular but is at least Lp regular.

2. D uality  and Interpolation .

In this section, we show' that for 1 < p < oo, Lp regularity is a self-dual 

property (Theorem 2.1.) and automatically holds for interpolated operators 

(Theorem 2.3.). Some of these properties were already used to find the exam­

ples in Section 1.

T heorem  2.1. Assume T  : LP( I ) —> L P(I)  is linear and bounded. Then: 

T  has (P I ) , iff r  : L P>(I) Lp,(I) has (P 2 ). T  has (P 2), iff T'  has (P I) .

Proof: i) Assume T  has (PI) ,  but T'  does not possess (P 2). Then 

we may assume without loss of generality (wlog) that there is ( /^ ) C Lp>(I), 

ll/^H =  1 such tha t (f n) converges to 0 in measure, but ( T1 f'n ) does not.

By Lemma A.I. of the Appendix, we may wlog write T'f'n = g'n + h'n 

where (g 'n ) is an equiintegrable and (h'n ) a pairwise disjoint sequence in Lpi(I).  

Since (T '/n ) is not equintegrable, we have 0 < lim sup \\g'n ||. Thus, wlog, we 

may assume g'n ^  0 for all n and 0 < lim ||<7n || < oo.

Using the Hahn-Banach theorem, we obtain (g„ ) C L P(I),  Ĥ t, || =  1 with

t f n t e l , )  =  l l f f n l l -

As before, utilizing Lemma A.I. of the Appendix, we obtain wlog an
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equiintegrable sequence (f7n ) and a disjoint sequence (un) in L P(I)  such that 

for all n, U„ and u n have disjoint support and gn = Un + «»• The bouncled- 

and disjointness of (un) imply its convergence to 0 in measure; in particular 

we have that u n(g'n) —> 0 (cf Lemma A.2. of the Appendix). Also, since 

||<7jj| =  Un(g'n ) + u n(g'n ), we can assume wlog, possibly by taking a subsequence 

of (Un), that there is a 8 > 0 such that Un(g'n ) > 8 for all n.

Since by ( P I ) ,  (TUn ) is equiintegrable and (f'n ) a bounded sequence con­

verging to 0 in measure, by Lemma A.2. of the Appendix, we have f'n(TUn ) —> 

0. Since (h'n ) is a disjoint and bounded sequence while (Un ) is equiintegrable, 

again by Lemma A.2. of the Appendix, we have h'n(Un) —> 0.

On the other hand, we see that f n(TUn) = g'n(Un) +  h'n(Un). This forces 

Unig'n) = 9n(Un) -► 0. This contradicts Un(g'n) > 8.

ii) Now suppose that T  has (P 2), but T' does not possess (P I ) . Again, we 

then may assume that there exists a sequence (f 'n ) which is equiintegrable 

in Lpi(I),  but { T ' f ’n ) is not; furthermore (cf Lemma A.I. of the Appendix) 

T' fn — d'n+h’n where (g’n ) is equiintegrable in Lp>(/), (h'n ) is a disjoint sequence 

with h'n 0 for all n  and lim \\h'n || > c for some c > 0.

As in Part i), applying the Hahn-Banach Theorem to (h 'n ) and utilizing 

Lemmata A .l and A.2. of the Appendix, we obtain a normalized sequence 

( M  C Lp( I ), an equiintegrable sequence (Un) C LP(I)  and a disjoint sequence 

(un) C L p(I)  such that for any n and some 8 > 0: hn(h'n ) =  ||h'n ||, hn =  U„+un 

and u n(h'n ) > 8 (since Un{h'n ) —> 0 as n —> oo).

Furthermore, by (P 2) and Lemma A.2, we have f n ( Tun ) —> 0. But 

also f n( Tun ) =  g'n(un ) + h'n{un ). This forces h'n(un ) —> 0. This contradicts

Un(h'n ) > 8.
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The reverse implications follow by considering the dual operators.

T h e o re m  2.2. Assume T  : LP( I ) —► Lp(I)  is a bounded and linear 

operator.

A) T  always has ( P I )  if 1 < p < 2.

B) T  always has (P 2 ) if 2 < p < oo.

The Fourier transform (cf Example 1.5.) shows tha t neither Part A) nor Part 

B) hold for p =  2.

Proof: A) Let ( f n ) C L p( I ) be equiintegrable. Since (f n ) is weakly 

compact, we may assume | | /n || =  1 and f n —■> 0 weakly. By Prop, l.a.12., p 

7 of (Lin I), there exists a subsequence of (f n ) - call it again ( f n ) - which is 

basic.

If p = 1, then the equiintegrability of (f n ) is equivalent to its weak (se­

quential) precompactness (cf Sect. TV.2., Theorem 1 of (D ie)). Since T  is 

bounded, it is also weakly continuous, and (T /„ ) weakly converges to 0. Thus 

(T /„  ) is equiintegrable.

Let 1 ‘s  p ^  2, ctud assume (T1 J is not etjuimte^rable. Lemma

A.3. and Lemma A.4. of the Appendix, we see tha t for T  ^  0:

> im r n 5 > * :r /(n,ii > nrn->C'(^;

for some c, c' > 0 and some subsequence (/(„)) C (/«)•

But this implies tha t (/(„)) is equivalent to the unit vector basis of lp. By 

Lemma A.4. of the Appendix, (/(„)) cannot be equiintegrable, a contradiction.

B) Let 2 < p < oo. Assume that there is a normalized sequence ( /„ )  which 

converges to 0 in measure, but (T /„ )  does not converge to 0 in measure.
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Furthermore, wlog, suppose that. (T /„.) does not contain any subsequences 

converging to 0 in measure.

By selecting a subsequence again, we may assume that (T /„  ) C M p for 

some e > 0 (cf Lemma A.4. of the Appendix). Thus by Theorem 3., p 166 of 

[K ad], ( T f n ) is equivalent to the unit vector basis of I2.

Since ( /„ )  contains a subsequence - call it again (f n ) - equivalent to the 

unit vector basis of lp, we see that.

< ■ ' ( £  s  m u  £  “ » / « n  £ c  ( £  K i ' ) 1 ' '
for some c, c' > 0. This would imply lp C h  with p > 2 which is impossible.

T heorem  2.3. Assume 1 < pi < P2 < 00 and T  : LPi(I)  —> LPi( I ), 

i =  1,2 be linear and bounded. For any p, pi < p < P2, T  is a bounded linear 

operator from LP(I)  into L p(I)  which in addition is Lp regular.

Proof: T  is an operator from L P(I)  into L P( I ) by the Riesz Interpolation 

Theorem (cf Theorem IV .1.7., p 192 of (B en)). According to the previous 

duality theorem, it suffices to show that. T  satisfies (P 2).

To this end, assume there is a bounded sequence ( /„ )  C LP(I)  converging 

to 0 in measure such that. (T f n ) does not converge to 0 in measure. An 

application of Holder’s inequality shows that. ||/n ||L ,(/) ~ > 0 for any q < p. 

Choose q with p > q > p\.  The boundedness of T  as an operator from L q(I) 

into L q(I)  then implies \ \Tfn \\Lq{I) -> 0.

But. convergence in norm induces convergence in measure in L q(I) and

LP(I).



3. Lp R eg u la r  O p e ra to rs  as F red h o lm  P e r tu b a tio n s .

Although the class of Lp regular operators is much larger than the class 

of regular operators, it still shares some of the operator-theoretic properties 

of regular operators. For example, we show in this section that an Lp regular 

admissable Fredholm pert.ubat.ion is compact. (Corrollary 3.4.). This extends 

a result of [Cas] on regular operators.

The main step to obtain 3.4. is the following characterization of strictly 

singular operators.

D efin itio n  3.1. An operator T  : Lp(I)  —> Lp(I)  is called s tr ic tly  s in ­

g u la r  if T\ m  is not an isomorphic embedding for any infinite-dimensional 

subspace M  of Lp(I).

In Hilbert, spaces and in the sequence spaces lp, 1 < p < oo, the class 

of strictly singular operators coincides with the class of compact, operators (cf 

Theorem 5.2.2., p 82 of (P ie  I)), but. in L p(I),  p ^  2, there are strictly singular 

operators which are not. compact (cf §5.5. of (P ie  I)). We shall now show that 

these examples cannot be Lp regular.

T h e o re m  3.2. An Lp regular, bounded linear operator T  : Lp(I) —> 

LP(I),  1 < p < oo, is strictly singular if and only if it is compact.

P ro o f: It. is well-known that, every compact, operator is strictly singular. 

(Indeed, if T\ m  is compact and an isomorphism of M  onto T( M) ,  then M  has 

to be finite-dimensional.)
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Now consider the case where T  : LP(I)  —» LP(I)  is strictly singular with 

p > 2. Assume T  is not compact. Then we can select an unconditional 

normalized basis (f n ) C L p{I) weakly converging to 0 and satisfying for some 

8 > 0 and all n: HT/nll > 6. Then ( T f n ) weakly converges to 0.

Applying Lemma A.I. of the Appendix, we may write wlog f n = gn + hn 

where (<?„) is an equiintegrable, (hn ) is a disjoint sequence and for all n, gn 

and h„ are pairwise disjoint.

By ( P i )  and (P 2 ), we have that (Tgn) is equiintegrable and (T h n) con­

verges to 0 in measure. Thus (T h n ) converges weakly to 0, since (T h n) is 

bounded. Also, as T g n =  T /„  — T h n, (Tgn) converges weakly to 0.

i) Assume first that for some d > 0, we have that | | 3T| [  > d for all n. 

Applying Lemma A.4. of the Appendix, we see that for some e > 0:

( T ^ )  C M; ( I )  := { /  € L p(I)  : p{\ f \  > e ||/||}  > e},

where // denotes (normalized) Lebesque measure. By Theorem 3., p 166 of 

[K ad], we may assume wlog that (Tgn ) is equivalent to the unit vector basis of 

Z2. The above condition on the equiintegrable sequence (gn), i.e. the fact that 

> d /||T j|, together with an application of Lemma A.2. of the Appendix 

imply wlog that (gn) is equivalent to the unit vector basis of /2-

Setting M  span [pn], we see tha t T\ m  is an isomorphism, and thus T  

cannot be strictly singular.

ii) We may therefore assume wlog that. (Tgn ) converges to 0 in norm and 

also that for some d > 0: ||T7?n || > d, for T h n =  T /„  — Tgn.

Thus Lemma A.3. of the Appendix can be applied to ( Thn): We obtain 

wlog that (T h n ) is equivalent, to the unit vector basis of lp.
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On the other hand, since (hn) is a disjoint sequence weakly converging 

to 0, satisfying for all n: ||/?„|| > <//||Tj|, we may assume wlog that (hn ) is 

equivalent, to the unit vector basis of lp.

Thus a contradiction is immediate for M  := span [h„].

The case 1 < p < 2 is now quickly settled via the Duality Theorem 2.1.,

since by [Wei I], T'  is strictly singular.

The case p =  2 follows from the fact quoted above that in a Hilbert space 

compact and strictly singular operators always coincide. (If T  is not compact, 

then there is a normalized sequence ( /„ )  £ i 2(-0 with f n —+ 0 weakly and 

m f ||T /n || > 0. Now both ( f n ) and (T f „ ) contain subsequences which are 

equivalent to the unit vector basis of Z2.)

D efin ition  3.3. A) A bounded, linear operator 5 : L P( I ) —> LP(I)  is 

called a. Fredholm  operator if the dimension of its kernel and the codimen- 

sion of its range are both finite.

B) A bounded, linear operator T  : LP(I)  —>• LP(I)  is an (adm issable) Fred­

holm  pertu b ation  if for every Fredholm operator S : LP( I ) —> L p(I)  the sum 

T  + S  still is a Fredholm operator.

It was shown in [Wei I] that T  : Lp( I ) —> L p(I)  is an admissable Fredholm 

pertubation iff T  is strictly singular. Theorem 3.2. now gives:

Corollary 3.4. An Lp regular operator T  is an admissable Fredholm

pertubation iff T  is compact.

Recall that every Fredholm operator S  : LP(I)  —> LP( I ) has a F red h o lm
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inverse, i.e. a (Fredholm) operator T  : Lp(I)  —> LP(I)  such that I  — S T  is 

compact.

T heorem  3.5. Every Fredholm inverse of an Lp regular Fredholm oper­

ator is also Lp regular.

Proof: We only show (P 2 ) since (P I)  is similar to Theorem 1.7.

Let ( /„ ) be a bounded sequence in Lp(I),  1 < p < oo, converging to 0 in 

measure. We have to show that ( S f n ) converges to 0 in measure.

By Lemma A.I., write ( 5 / n), wlog, as the sum of an equiintegrable se­

quence (gn ) and a disjoint sequence (hn ). Write T S  — I  + Ky and S T  = I  + K 2 

where A';, i = 1, 2 , are compact operators.

Since ( f n ) is bounded and converges to 0 in measure, we have (A ';/n ) 

converges to 0 in norm.

Applying T to S f n =  gn +  h„ gives Tgn =  Kj f „  +  f„ -  T h n- Since all the 

terms on the right converge to 0 in measure, we see that (Tgn ) converges to 0 

in measure.

Since T  has ( P i )  and (P 2 ), (Tg„) also is equiintegrable and by Lemma 

A.2. Part A) of the Appendix, we get ||Tflin || -» 0. But f n =  Tgn - K yf n - T h n 

and

( * ) S f n = S T g n -  S I u  f n -  S T h n ,

thus S T h n = h n +  A'2/?„. Hence (SThn)  converges to 0 in measure, and from 

(*), we see that ( S f n ) converges to 0 in measure.

R em ark 3.6. Theorem 3.5. implies that the essential spectrum of an L p 

regular Fredholm operator 5  equals the spectrum of its equivalence class S  in 

the quotient algebra R p/ K p modulo the compact operators K p in LP(I).  Again,
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the relation between the essential spectrum of S  and spectra with respect 

to quotients of the classical regular operators is much more complicated. In 

particular, the essential resolvent of a regular operator consists not necessarily 

of regular operators, but according to Theorem 3.5., these operators still are 

Lp regular.

4. Lp R egularity  in Terms o f  R earrangem ents.

The following theorem provides an equivalent characterization of Condi­

tion ( P I ) .

T heorem  4.1. Assume T  : LP(I)  —> L P( I ) , 1 < p < oo, is a bounded 

and linear operator. Then T  satisfies Condition ( P i )  if and only if one of the 

following equivalent conditions holds:

( R l)  For any sequence ( /„ )  C LP(I) satisfying /*  < /  for some nonincreasing 

nonnegative function /  G L p( I ) and all n, there exist a su&sequence (/(*.)) C 

( / „ )  and a nonincreasing function g  G Lp(I)  with <  g  for any k.

( R 2 )  For any sequence (/„.) C L p(I)  satisfying /** < /  for some nonincreasing 

nonnegative function /  G L P( I ) and all n, there exist a su&sequence (/(fcj) C 

( /„ )  and a nonincreasing function g  G LP( I ) with (T/(*.))** < g  for any k.  

( R 3 )  If A  C Lp(I)  is a set such that {/* : /  G A}  is norm-compact, then 

{ ( T f ) *  : f  G A}  is norm-compact in LP(I).

In Condition ( R l) ,  (R 2) or (R 3), we may require that the functions /  or 

g (or both) are regular, or we may replace any of them by their second rear­

rangements.
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Proof: (P I )  = >  ( R l )  If /* < /  G L P(I),  then ( /„ )  and, by assumption, 

( T / ,,)  are equiintegrable sequences in L P(I).  By Lemma B.6., i) iii) of 

the Appendix, there is a subsequence ( T f nk) and a function g E L p( I ) with

(T U Y < g .

( R l )  ==:• ( P I )  Let M  C L p(I)  be equiintegrable. For any sequence 

( T f n ) C T{M),  by Lemma B.6 ., i) =t> iii), there is a subsequence ( f nk) C (/„ ) 

and a function /  E L P( I ) with ( /„ J *  < / .  By assumption, there is a subse­

quence - say (/„.,) C {fnk ) - and a function g E L p(I)  with ( T /„,)* < g. Now 

Lemma B.2., iii) = t  i) of the Appendix implies that T ( M )  is equiintegrable.

( P i )  ==:• (R 2 ) follows in the same manner using Lemma B.2., i) =$■ iv).

( P i )  ==:■ (R 3 ) directly follows from Lemma B.2., i) ==*• ii).

( R l )  •:=:■ (R 2) -t=?- (R 3) follows as in Lemma B.6 .

By Lemma B.7., it is clear that in Condition (R l)  or (R 2), regularity for 

any of the functions may or may not be required. Since for an Lp function /  

with 1 < p < oo, we have that /  < /** and ||/**|| < jDp||/ | | with Dp :=

(cf Remark B.4. of the Appendix), we may also replace f  or g (or both) by 

their second rearrangements in either of the conditions ( R l )  or (R 2).

There is also an easy reformulation of (P 2) in terms of rearrangements:

P ro p o s itio n  4 .2 . Let T  : LP(I) —> LP(I),  1 < p < oo, be bounded and 

linear. Then (P 2 ) is equivalent to:

(P 2 ’) If ( fn ) is a bounded sequence in L p( I ) and f * ( x ) —> 0 for all x E I,  then 

( T f n Y( x)  -» 0 for all * G / .
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P ro o f: It follows from the definition of /*  tha t f £(x)  —> 0 for all x iff 

/„  —> 0 in measure.



CHAPTER II.

EXTRAPOLATION.

5. S tro n g ly  Lp R eg u la r  O p e ra to rs .

Unless indicated otherwise, the same assumptions on p and p' hold as in 

Chapter I, i.e. 1 < p < oo and  ̂ +  jr =  1 where q := p' = oo if p = 1. In this 

chapter, with the exception of Section 8 , I  denotes either the interval (0,1) or 

(0 , oo).

D efin ition  5 .1 .  A bounded linear operator T  : Lp(I)  —> Lp( I ) is called 

strongly  Lp regular if:

(5 1 ) For every nonincreasing nonnegative function g  £ L P( I ), there exists a 

nonincreasing nonnegative function h £ LP( I ) such tha t /  £ LP( I ), /*  < g  

implies (T f )* < h.

Rem ark 5.2. In our proofs, we shall need the following equivalent vari­

ations of Condition (S I):

(52 ) For every nonincreasing nonnegative function g  £ LP(I),  there exists a 

nonincreasing nonnegative function h £ L p( I ) such that /  £ Lp(I),  /** < g  

implies (Tf)** < h.

(53 ) There is a constant c > 0, depending only on T  : L p(I)  —> Lp(/) , such 

tha t for every nonincreasing nonnegative function g £ LP(I),  ||<7|| < 1, there 

exists a nonincreasing nonnegative function h £ Lp( I ), \\h\\ < c such that 

/  £ LP( I ), f** < g implies (Tf)** < h.
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Furthermore, in Condition (S I ) ,  (S 2 ) or (S3), we may require that the func­

tions /  or g (or both) are regular, or we may replace any of them by their 

second rearrangements.

P ro o f: The equivalence of the conditions (S I)  and (S 2), as well as the 

last sentence of the remark are shown as in Theorem 4.1. Thus let us establish 

that Condition (S 2 ) induces the validity of Condition (S3).

To this end, assume that there is a sequence ( / m) C LP(I)  of nonincreasing 

nonnegative functions with | | /m || =  1 such that (a m) given by a m :=  inf { ||/i|| : 

h e  LP(I)  is nonincreasing and nonnegative, and /  G Lp(I),  f** < f m implies 

( T / r  <  h } does not stay bounded. Wlog, we may assume that a m > 4m.

Set F  := 2~m/ m. Thus F  G L p(I). Applying (R 2 ) on the nonincresing

nonnegative function F,  we obtain a G G LP( I ) and such that /  G Lp(I), 

f** < F  implies (Tf)** < G. Since f m < 2mF  for all m , by the definition 

of (a m), we see that ||2m(7|| > 4m or ||G|| > 2m for any m. This contradicts 

G G LP(I).

R e m a rk  5.3. By Section 1.4. every strongly Lp regular operator on 

I  :=  (0,1) satisfies (PI) .  But there are Lp regular - even compact - operators 

which are not strongly L p regular as the following example shows. (For further 

examples of strongly L p regular operators see Section 8 .)

E x am p le  5.4. For n > 0, 1 < p < oo set

/3n := 2n/p (n +  l ) “ 1/p [In(n +  2)]~1/p.

Let I  := (0.1) and Fn : I  —> [0, oo), n  > 0, be given by

if 2 - n- 1 < x < 2~n;
otherwise.
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(Fn) C LP(I)  is a disjoint sequence converging to 0 in norm.

Let (rn) denote the set of Rademacher functions and

P  : L p(I)  -> span [rn] C LP(I)

be the canonical projection. It is well-known that P  is a bounded and linear 

operator, e.g. Khintchine’s Inequality (see Remark A.2. of the Appendix). We 

now define the linear operator L : span [rn] —» Lp(I)  by Lrn =  Fn.

Finally, define T  := L  o P  : Lp(I) —> span [<7n].

Claim: T  is compact.

We can write T  as T  =  X(o,2- ^  +  X(2- n,i)T  where the second operator 

is finite-dimensional (its range is in the span of F\ , . . . ,  F2^ ~ \) and the first 

operator satisfies ||X(o,2- n]2n|| 0 as n  —> oo.

Indeed, for f  — ^2 anrn , we get

OO OO

i i x ( o , j - i r / r  =  ii e  =  E
k = n  k = n

i) If 1 < p < 2, an application of Holder’s inequality gives with A  := 2/(2 — p) 

that

OO OO oo

< (E w2*”'2 <E iî iî )̂  s ii/ikE +1 ) r AYIA-
k = n  k = n  k = n

ii) If 2 <  p < oo, we estimate

OO

< s ip  ii-Fiii < E  i°‘ i2),/2  £  ™_ ,/p n /ir -
k > n  ,

In any case, we showed that ||X(o,2- "]^11 0 f°r n “ > 00> and T  is compact.

Claim: For g = 1, Condition (S I)  cannot be met.
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Indeed, for any n  > 0, we have r* = g = 1, (T r n )* =  F* and F£(x) =

j3n- j  for 0 < x < 2-n_1 . Since 
1*2”"

f  (3? dx = 1/2 (n + 1) 1 ln(n +  2),
J 2-" -1

and
2 - n

X !  /  =  0 0  *

any h as in (S I)  would have to satisfy h(x) > (3n for a.e. 2~n~1 < x < 2~n. 

Therefore, such h cannot lie in LP(I).

Thus T  is not strongly Lp regular.

0. E xtrapolation  into Lorentz and M arcinkiewicz Spaces.

For the remainder of this chapter, if 1 < k  < oo, let || ||*. denote the norm 

on Lk(I)  for I  := (0,1) or (0,oo). Also, it is understood that if I  := (0,1), 

then any condtition involving behaviour of a function at oo must be modified 

in an appropriate manner or omitted.

Under slight assumptions on g and h, it is possible to express Condition

(S2) in terms of Marcinkiewicz spaces. We shall need the following definitions.

D efin ition  6.1 . A nondecreasing function <fr : I  —> (0,oo) satisfying 

<£(0+ ) := limj;_.o+ 4>(x ) =  0 is called quasiconcave if for t > 0 , the function 

is nonincreasing (cf p ^7 of (K re)). We define the concave m ajorant 

<j> of a quasiconcave function (j) by
OO OO OO

(j>(t) := sup { X ]  ■■ > 0 , X ]  X ]  ~  1 }■
t=l i= 1 i=l
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Then \<j> < 4> < <j> (cf p 49 of (K re )). If ip(f) given by ij>{f){t) t f ( t )  for

t > 0 and some measurable function /  on I  is a quasiconcave function, then

<£(0+) := limiC_+o+ $(%) =  0 and <f>{oo) limI_ 00 (/>{x) = oo is defined to

a separable Banach space under || ||a(<£) (see (K re ), pp 107-115). Under these 

assumptions on <̂>, the dual space is the M arcink iew icz  space  M(<f>) given 

by the norm

R e m a rk  6 .2 . If /  :=  (0,1) or (0,oo) and (j)(t) =  <f>a{t) '■= for some

1 < a  < oo and any 0 < t < 1, then according to p 220 of (B en ), we see that 

M ( L a ) = M((f)a ) =  L a'°°(I), and its dual space is A(La ) =  A(<£a ) =  L a ^ (I) .

Here, Lp,q(I), 1 < p < q, I  :=  (0,1) or (0 ,oo), denotes the Banach space 

of all measurable functions /  for which the norm

is finite. Note tha t for q > p, the above expression only defines a quasinorm, 

but that there is an actual norm equivalent to it (cf Definition 2.b.8., p 142 of 

(L in II ) ) . For p =  q, it is clear that Lp,q(I) coincides with Lp(I).

its concave m ajorant is denoted by We set ^’( / ) (0+ ) := ^ lim ^ ( /) ( t) ,

oo) := lim and /*(<) := <//(<).

The L o ren tz  sp ace  A(</>) for a nondecreasing concave function <t> with

be the collection of all measurable function x — x(t) on I  := (0,1) or (0,oo)

satisfying

where x* denotes the first rearrangement of x on I  (see Appendix B). A(^>) is

sup [t1̂ f*{ t ) )  if q =  oo
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For 1 < p < oo and 1 <  q < oo, in the definition of the norm of LP,9(I), 

we may replace the first rearrangement /*  of the function /  by its second 

rearrangement /** without altering the Banach space (up to isomorphism). 

Furthermore, the dual space of Lp'q(I)  for 1 < p < oo and 1 < g < oo is 

isomorphic to L p,q' (I).  (See (B en ), Lemma 4-5., p 219 and Corollary 4-8., p 

221.)

L em m a 0.3 . Let T  : L p(I)  —> L p(I)  be a bounded linear operator. Let 

j , / i  £ L P(I)  be regular functions satisfying Condition (S 2 ) for this operator 

T.  If I  := (0,oo), also assume ^(p)(oo) =  ^>(h)(oo) =  oo. Then

(S 4) T  defines a bounded operator from M(ip(g)) = M(ip(g**)) to M(ip{h)) = 

M(Hh**)) .

P ro o f: The regularity of g implies that g** < M[g] g. Since h < h**, 

we see that T  satisfies the following: /** < g**, /  6 LP(I)  implies (Tf)** < 

M[g] h** where M[g) denotes the constant of regularity for g (cf Remark B.4. 

of the Appendix).

Let f i  denote either g** or h**. Then V’(Zt) ape quasiconcave functions, 

since for example %j}(g**)(t) — tg**(t) = J* g(s)ds is nondecreasing, while g**(t) 

is nonincreasing. Furthermore, the concave m ajorants satisfy V’(/i)(0+ ) =  0 

and if>(fi)(oo) — oo.

If II/IIm(^(s**)) ^  then for any 1 > 0:

or /** < 2g**. Condition (S2) then implies (Tf)** < 2M[g] h**, i.e.

< 2M\g\.
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According to Remark B.4. of the Appendix, we see that g < g** < M[g] g. 

Therefore, we have rf (̂g) <  ifi(g**) < M[g] tpid)- Looking at the Marcinkiewicz 

norms, we see tha t M(iJ>(g)) and M(ip(g**)) are equivalent. Furthermore, from 

Definition 6.1., we have \i>(g) < i>{g) < g )• Thus M(jp(g)) and M(ip(g)) 

are isomorphic.

Clearly, the same holds for M(V>(fo)), M(ip(h))  and M(^(h**)).

The following technical lemma will be needed in the sequel.

L em m a 6.4 . Assume that T  : LP(I)  —+ Lp( I ) is strongly L p regular. 

Define h : L*{I)  -> L J(I) by

h(g) := s u p { ( r / ) "  : /  €

(for the definition of L \ { I ), see Lemma B.7. of the Appendix). Then:

i) there is a constant C  > 0 such that ||h(<7)||p < c  \\g\\l/r ;

ii) if 9i < 92 with g{ G L$(I),  then h{gi) < h(g2);

iii) if gi |  g with gi,g G L^(I) ,  then h{gi) |  h(g).

P ro o f: h : L*( I ) —> L*( I ) is well-defined by (S 2 ) and the last sentence 

of Remark 5.2. Thus Part i) is an immediate consequence of (S3) of Remark 

5.2. Also, Part ii) is clear.

To show Part iii), consider h3(g) := sup{(T/)** : /  G LP( I ) is a step 

function, /** < (5 1/p)**}-

Claim: For any g G L$(I),  we have hs(g) — h(g).

Proof: Fix g G L^(I).  Given /** < (<71//p)**, choose a sequence of step 

functions ( /„ )  C LP( I ) satisfying /** < /** and | | /  -  / n ||p -* 0 as n ^  oo.
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Then | |Tf  -  T f n \\p —► 0, and thus

(Tf)** =  lim ( T f n )** < ha(g).
n —* oo

Thus, h(g) <  ha(g). Since clearly h(g) > h a(g), we have the claim.

It therefore suffices to show Part iii) for h a(g). Furthermore, since pt |  g 

implies h(gi) < h(g) by P art ii), it is enough to show that for any e > 0, there 

exists N  such that

||h'(<7n)||p > \\ha(g)\\P -  e

for any n > N.

By Fatou’s Lemma, we can choose N  such that Hp1̂  — 9r/P\\P <  e for any 

n  > N .

Assume /  G Lp(I)  is a step function with /** < (g1 / p ) * * .  Then /** < 

(hi  -f h2)** where hi := (gh^P)* and h2 := (gl ^p — g V P)* are nonnegative and 

nonincreasing. Indeed, this follows from the fact tha t (k +  I)** < (k * +  /*)** 

(i.e. f*(k  +  I)* dp. < fg(k* + l*)dp) for any functions k, l  G L p(I). Just set 

k := g V P and I :=  g1̂  — g V P ■

We may now apply Theorem 777.7.7., p 173 of (B en ) to obtain step func­

tions f i , f 2 G L p(I)  with f  = f i  + f 2 and /** < h** for i — 1,2. Thus,

(Tf)** = (T( f i  + f 2))** < (Th)**  +  ( T f 2)**

< ha(hp) + h a(hp) = ha(gn) +  ha((g^p -  g ' J r ) ,

i.e.

ha(g) < h a(hp) +  ha(hp) =  ha(gn) + h’dg1^  -  g]!p]p).
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Therefore, for some constant C > 0 and n > N,

ll* '(9)ll, <  ll*'(*»)ll +  C  ||<,1/p -  g 'J - ||p < />■(«„) +  C  e,

This implies ||ha(<7)||p < ||hs(<7n)||p + C e which completes the proof.

L em m a 6.5 . If T  : LP( I ) —► L P(I),  1 < p < oo, is strongly Lp regular, 

and its dual T 1 : L q(I)  —> L q(I)  is strongly L q regular, then the following holds 

for some C > 0 and some nonincreasing positive function h £ L\{I)\  

if /  € L p{I) and /** < h1/?, then (Tf)** < C h and,

if /  G L g(I)  and /** < h1^ ,  then ( T ’f)** < ChV*.

P ro o f: Given g € L j( /) ,  let h(g) be defined as in Lemma 6.4., and 

hf (g1/,p) G LP(I)  denote the regular function obtained when Lemma B.8 . of 

the Appendix is applied to f  = h(g) £ L*p(I),  i.e. h€(g1̂ p) stands for h,:(h(g)) 

in Lemma B.8 . This regular function then satisfies

M s 1 ' ” ) >  M s ) ,

B [M (s,/p )! < £^ y - ,

and

I I M s 1 / p ) l l „  <  ( i  +  < ) c ,  l l s l l ! / p ,

where C\  is the constant obtained in Part i) of Lemma 6.4.

The same may be done for the dual operator T'  : L q(I)  —> L q(I): For any

e >  0 and any g £ L \ ( I ) ,  by Lemma 6.4. and Lemma B.8 . of the Appendix,

there is a constant C2 =  C2(q,T) > 0 and a regular function Hf (gi lq) = 

ht (H(g)) £ L*(I)  such that

> H[g) := .up{(r7 ) "  : /  € 1, (1),/** < (<71/,)**}>
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o m s 1' ’ )) < ‘-y ~ ,1 T €

and

ll/MS'1'*)!!, < ( i  +  <)c2

Claim: The functions hi {gi !p) and H ^ g 1̂ )  for any e > 0 satisfy:

<*) 91 < 92, where gi G L\( I ) ,  implies he(g]/p) f he(g\ lp) and H( {g]/q) |  

H ({g\lq)%, even

P) 9n T 9, where g,g{ G L J(/) , implies h({gl!P) T K { g1/p) and He(gn/q) T

H (( g ^ q).

Proof: We shall show the claim for hc(g1̂ p)-, the other case is similar, 

a )  If gi < <72j then h(gi) < h f a )  by Lemma 6.4. Part ii). By Lemma B.8.

Part iii) of the Appendix, we have that

K{ g \ lp) = h t (h(g,))  < K(h(g2)) = K { g \ lp).

/?) By Lemma 6.4. Part iii), we have that h(gi) f h(g) if gi |  g. As for Part 

a ), Part /?) now follows from Lemma B.8. Part iv) of the Appendix.

Set Se(g) := \{(1 + e) -pC ; p[h€(g' /p)]p + (1 + e) ^ C p { H €(9i/q))q}. Then

| | ^ ( 5 ) l l i  <  l l l^ ll i -

Let A > 0 be given.

Pick any (nonincreasing strictly positive) regular function go G Li ( I )  with 

D[go\ < m in{A ,l} , <7o(0+) =  °° and ||<7o||i =  §• ^  I  (0, oo), we can also

arrange i>{gl^P)(oo) = oo and V’Cfl'o^Hc©) =  oo. Furthermore, once we fix

1 < I < oo, we may require ^>(<7o)(0+) =  °°> too. According to Theorem
j j

1.1.7., p 6 of [Rug], we see that g0' is regular for any 1 <  m  < oo.
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We define a sequence (gn) C Ly (I) of nonincreasing positive functions 

by gn+1 := go +  S€(gn)- Then gn+1 > gn and ||flrn ||i < 1, as one can check 

inductively:

9n+1 =  9o ^  9o "k Sf (gn—i)  =  gn,

(this is a consequence of Part a ) above) and

I l S n + l  I I  <  \\9o\\ +  1 1  ( 5 n )  1 1  <  l l f f o l l  +  ^ U t i ­

lising Part /3) above and Fatou’s Lemma, it follows tha t the sequence 

(gn) converges a.e. to a nonincreasing positive function ge E Ly( I ) satisfying
1 /l)pe(0+) =  oo, ge =  g0 +  Sf (g€). Also, if I  :=  (0, oo), then if>(ge/p)(oo) -  oo and 

4>(gl/q){oo) =  oo.

First Major Claim: We now wish to demonstrate that for any 1 < m < oo, 

A > 0, we can choose e =  e(m, A) > 0 such that for any g E L\ ( I ) ,  the function 

[5 £(5')]1/m is regular with D[[5'e(<7)]1/p] < q +  A and D ^S ^p)]1/9] < p +  A.

Proof: We shall apply the regularity statements of Lemma B.8 . Part v) of 

the Appendix on the functions [ht (p1/p)]p/ m and [H€{gi lq)\qlm for appropriate 

e > 0. The following fact is needed:

For any oo > n  > 0 we can find a constant cn > 0 such that for all a, b > 0, 

we have

(*) c - ' i a  + b)" < an + bn < cn(a + b)n .

Taking n  := m, 1 <  m  < oo in (*), by Lemma B.8 . Part v) of the 

Appendix (here 0 < k <  p translates to 0 < p /m  < p or 1 < m  < oo, and
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0 < f c < g t o 0 <  q / m  < q or 1 < m  < oo), for any g G L$(I)  and any

/ \ rP /m — l  q l m  — 1e > em = em(p,q) := max{---- ——,  ------—— , 0}
1 — 1 jna 1 — 1/m

max{p — m , q — m, 0}
m — 1

we obtain a constant c =  c(p ,q ,m,T)  such that

c - 1{{h((g1^ ) ] P/m + [H,(91/9)}g/m}

< [5c(p)]1/m <  c {[M<71/p)F /m +  m g 1'*)}*/™}. 

Thus, [5«(p)]1/m is regular.

Claim: We have

m e +  I+

Proof: Since

we have that

d \K{s Ut )\ <

D{h, ( s I/p)p/mi <  -  +  1 =  i  — 7m  1 +  e m e + 1

(cf Lemma B.8. Part v) of the Appendix). Similarly, we obtain 

D[H<(g1/q)q/m} < X f Z i ± l  =  l l ± | .
777 1 +  e 777. e +  1

The claim now follows from

£>[[Se(<7)]1/m] < max{D[h'{g1'*Y>/m],D[Ht {g1t*)*/'n]}.



31

Thus, if e —*• oo, then 0 [[5 e(s)]1/m] -» £  or M[[5e(ff)]1/ m] -+ 

Therefore, given A > 0, taking m  — p in the above inequality, we can pick 

e > cm so large such tha t M[[S'e(</)]1/p] < q + A. Similarly, taking m  — q in the 

above inequality, we can choose e > 0 so large such that ikT[[*S'c 3 < P + A, 

too.

This proves the first major claim.

Second Major Claim: We now want to show that for any 1 < m  <  oo, 

there is e =  e(m, A) >  0 such that

g'J™ =  [5o +  S€(5e)]1/m

is regular with M[gl^p] < q + A and M[gVq] < p +  A.

Proof: Since 5o^m is regular, by the above, we obtain tha t 5o//m+ [‘5e(5)]1/7n 

is regular. Taking n := 1/m  in (*), we see that [50 +  *5'£(5 )]1/m is regular for 

any 1 < m  < 00 and any e > em.

Furthermore, since X>[5o] < m in{A ,l} , we have for A > 0 (sufficiently 

small) that
,1/P1 -

m  11 

and

Therefore, if e > em is sufficiently large, we have for any 5 € L\{ I )  that

M[[5o +  S£(5)]1/p] < 9  +  A

and

M[[g0 + S e(g)}1/q} < p  + A.
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This holds in particular if we choose g = ge. Therefore, for 1 <  m < oo 

and e > em sufficiently large we obtain that

g l /m = [go + S ((g<)Ylm

is regular with

M\gl?*} =  M[[g0 +  5e(<7e)]1/p] < q + A

and

M[g\^}  = M[[g0 +  S ^ ) ] 1/*] < p +  A.

This is the second m ajor claim.

Finally, if /** <  g]/p < (gVP)**, f  G L P(I),  then

(Tf)** < ht (g\l*) < 41/,p(l +  e)Ci g l /p,

and, if /** < g V q < (g\/q)**, f  G L q(I),  then

(Tf)** < H t (g\/*) < y l q( 1 +  e)C3 g 'Jq.

Choosing C := max{41/pC i, 41/ ?C2} (1 +  e), shows that for h := g(:

If /  € LP(I)  and /** < h ^ p, then {Tf)** < C /i1/?; and 

if /  G L q(I)  and /** < h 1/ ’ , then (T' f)** < C h J/«.

This proves Lemma 6.5.

Applying Lemma 6.3. to T  and h}!p as g and h in (S4), and then again 

to T ' and h as g and h in (S4), we obtain:

T h e o re m  6 .6 . If T  : L P( I ) —> L P(I),  1 < p < oo, is strongly Lp regular, 

and T'  : L q(I) —> L q(I)  is strongly L q regular, then there exists a nonincreasing 

positive function h G L\ ( I )  such that: T  extends to a bounded map
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from M(V’(h1/p)) into M(V’(^1 P̂))

and

from A('0 ([/i1/9]**)) into A(-^([/i1/?]**)).

Furthermore, for any A > 0 and any 1 <  I < oo, we can choose this 

function h G L i ( I ) such that

i) we have h(0+) =  oo, i[>(hl)(0+) =  oo, and, if I (0 ,oo),

ifi(h.1/p)( oo) =  ■^(h1/9)(oo) =  oo;

ii) h}!p and h 1̂ 9 are regular with constants of regularity M[/i1/p] < q + A and 

M [ h ^ 9} < p  + A.

R em ark 6.7 . If we only know that T  is strongly Lp regular without any 

assumption on its dual T ', then a simplified version of our argument gives a 

one-sided extrapolation result:

there is a regular function g G LP(I)  with if>(g) concave such tha t T  defines a 

bounded map from M(ip(g)) into M(V’(s'))-

7. Further E xtrapolation  R esu lts.

7.1. B oyd Indices and h-Num bers: Let I  := (0,oo). A Banach 

space (E , || ||) of measurable functions on I  is called sym m etric if /  G E  and

M 5: | / |  a.e., implies th a t g G E  and ||gf|| < | | / | | ,  and if g is equimeasurable 

with / ,  then g G E  and | | < g r | |  =  ||/ | |.  This is equivalent to: If /  G E  and 

/*  > g*, then g G E  and ||/ | |  > \\g\\.
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The low er a n d  u p p e r  d ila tio n  e x p o n en ts  of E  are given by

a £  := lim• In III?. I
«->o+ Ins 

and

0 E lim M M ,
s—too ins

where )|f?a|| denotes the norm of the linear operator D 3 : E  —> E  given by 

D af{t )  := f { i / s ) for s , t  G (0,oo).

Their recipicals are called the u p p e r  a n d  low er B oyd  ind ices denoted 

as p e  :=  1 jotE and qE :=  1 /Pe -

Given a measurable, everywhere finite function h on I  := (0, oo), define 

for s > 0

, . . h(t / s)  , h(t /s)h(s) := sup , , and h(s) := mf - — , .
’ tei  h(t) ; tei  h{t)

If the following limits exist:

hn := lim :———- and h := lim
3-*o+lnh(s) —0 s-»o+ \nfi(s) ’

also,

:=  lim r — r and h := lim 3In h(s) s-*oo In h(s)  ’

we refer to them as the h-nu m b e rs  of the function h. In

general, they satisfy

hn < h and / i„  < h .—u —  = o  — o o  —  — OO

7.2. T -A d m issab ility : For the remainder of this section, the symbol 

T  : Lp(I)  -  LP(I),  1 < p < oo, is reserved for a strongly Lp regular operator 

whose dual T'  : L q( I ) —* L q(I)  is strongly L q regular, while h G L \ ( I ) stands
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for a function which is obtained when Theorem 6 .6 . is applied on T  and T ' ,

i.e. a function such that: T  defines a bounded map

from into M(V’(h 1̂ p)),

and also

from A M t/i1/ ’ ]**)) into

Furthermore, we shall assume that h € L i ( I ) meets all the technical assump­

tions of Theorem 6 .6 . for some A > 0 and I > 1. Such a function h will be 

called T -ad m issab le .

The following theorem does not make any assumptions on / > 1.

T heorem  7.3. Let I  := (0,oo). Assume h is T-admissable with its 

/i-numbers satisfying

Pkoo > (9^0 )'•

(In particular, this forces p h ^  > 1 and > 1 .)

Furthermore, assume that

+ > 1
M[h' /p} ~  '

Then T  defines a bounded map from any symmetric space E  into E  whose

Boyd indices {p e i Qe ) satisfy

P h  oo >  P E  > V E  >  ( q h Q)'-

In particular, for any 1 <  r < oo, T  defines a bounded map from L k,r(I) 

into L k,r(I),  and thus also from Lfc(/) into Lk(I) ,  provided that

P h o o  > k >  (<lh0 )'•
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Proof: Set

t
M * )  :=*><<)  := ([ '> , /p D “ I (<) =  7 rJ„ h ' / ”(a)da 

and

M )  := M i )  '■= =  t  h' /*(s)ds
Jo

for t E (0,oo). Clearly,

& ( 0+)  =  ^ ( 0+)  = 0.

Furthermore,

< ^ o ( 0 + )  =  ^ 0 ( 0 + )  =  0

by L’Hopital’s Rule. Also,

4>o(<x>) =  i/>o(oo) =  OO,

since E LP(I),  and

M °°)  = i ’ i (°°)  =  °°>

since / 0</i1/9(s) ds > th

Claim: <f>i = ipi, i =  1,2, are quasiconcave functions.

Proof: Clearly, is nondecreasing, while <f>0(t) / t  is nonincreasing. Fur­

thermore,

(*,(<)/<)' - t-1 {-(/>1/<?r(<) + /^(t)} < 0,
and thus <j)i(t)/t is nonincreasing. Finally,

(1 /Mi)) '  = t - 1 { - (h1/py*(t) + h1/p(t) } < 0,
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and thus is nondecreasing.

Claim: *s nonincreasing over I  := (0, oo).

Proof: Differentiating the function <f>o<f>i shows tha t (<f*o<f>i )f < 0 iff

for all < G / .  This is satisfied if

1 + ^ > i .M[hVv] Mlk ' / i ]

Since A(<̂ 0) C o)*) and A(</>i) C i)*) (cf p 130 of (K re )) , we 

see tha t T  extends to a bounded map from A(<^o) into M((ifio)*), and from 

A (^j) into M ((,0 i)*).

Thus all the assumptions of Theorem 6.1., p 129 of (K re ) are met: We 

obtain that T  extends to a bounded map from any symmetric space E  into 

Ei :=  { /  G L\ ( I )  +  Lqo{I) : /**  G E }  C E  (for the definition of Li ( I )  +  Loo{I) 

see Section 3.3., pp 15 -16 of (K re ), also see p  125 of (K re )) , if the lower and 

upper dilation exponents {cx-EiAe) °f E  satisfy 71 >  0 e  >  (*e > ^o-

Here
So :=  lim lmllC - W .) ~ A ( w  =  , im ln i , ,( l /« )

«-+oo I n s  s —too  I n s

and
I n  l l ^ a  IIa ( 0  1)— A(</pi) , .  l n ^ i ( l / s )

71 :=  lim ---------- p ‘--------   = lim  ^------.
a—*0+  m s  a—*0+  I l l s

Indeed, note tha t according to pp 53 and 99 of (K re ), we obtain for a concave 

function (f> with >̂(0+ ) =  0 and <j>{00) =  00 tha t the norm of the dilation 

operator D a : A(<f>) -> A(<j>) satisfies ||£>s||A(^)—a(^) =  ^ (l/« )-
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We have tha t

4W>" < l|f .||a(,o)-AA) = i(l/.) < 2M\h>lr\ H . ) ' / ’

and

M * ) - '1'  £  llB .llA « i.,-» ,J.) =  & (V * ) <

Indeed, if <j>q{t) = ([h1/p]**)-1 (<) is concave (with <̂ >o(0+) =  0 and <^o(°°) =  

oo), then, for example, ||I>.||a(*o)-*A(*o) =

=  s” p < W /p) ™p X - ’/ m  =  M [h' l r ] ~ ' r{3)'t e ( o , o o )  ( l «  / P J  )  ( t )  < e ( o , o o )  h /p(t)

The factor 2 occurs because <j>o is only assumed to be quasiconcave.

Similarly, one proves the opposite inequality:

h n r , M s ) ' 1” <  I l f

as well as the inequalities in the case of <f>i .

Finally,

60 =  lim ln ^o(1/a) =  iim ln &1/p(3) _  1 1_
s-» oo Ins »—► oo Ins p h o o

while
v l n ^ l / a )  l n { s r I/?(s)} 1 1 1

7 i =  lim ----    =  lim ----- =-----------  =  1 ---------— .a-* o+ Ins s—*o+ Ins q h* =o
Taking recipicals, gives the claim in terms of Boyd indices.

The last statem ent then follows immediately from the fact that for any 

1 < k  < oo and 1 <  r < oo, the lower and upper Boyd indices of L k'r(I)  are k



(cf Section 2.b., p 142 of (L in  II ) ) , and that L k,k(I)  coincides with Lk(I)  (cf 

Remark 6.2.).

R em ark 7.4. Assume h € L \{ I )  meets the assumptions of Theorem 7.3. 

From Formula (1.24)> P§4 °f (K re), a computation as in the proof of Theorem

7.3. shows tha t the h-numbers {k0,!i0, h oo,j ioo) ° f a T-admissable function h 

on I  := (0, oo) always satisfy

1/p  <  < h0 <  co and 1/q  < < oo.

Indeed, in this proof, we saw So =  r r — • The lower dilation exponent to the™—oo
same quasiconcave function, namely to ([h1/,p]**)~1(t), computes as 70 =  -4-.P—0

Formula (1.24) °f (K re) states 0 < 7 0  <  5o < 1-

A similar argument works for the quasiconcave function t ([h1//?]**)(t).

R em ark 7.5. From Theorem 6 .6 ., it is clear that we can select a sequence 

of T-admissable hn £ L i ( I ) with

D[h\!*} j i ,  
p q

and thus also

 - -------1____ 1  |  l
M [h1Jp\ M [ h n q)

The following theorem takes this into account.

T heorem  7.6. Assume h is T-admissable for some 1 < I <  00 as in the 

technical assumptions of Theorem 6.6 . with I  := (0,1). Furthermore, suppose
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and also require that 

where

m lW 1 :=  inf -1577-T f X W W  dL x e i x W ( x ) J  o

Then T  extends to a bounded map

from E  into E  := { /  E  T i( /)  +  Loo(I) ■ | |t_e/**(f)l|s  <  oo},

provided

ph.oo >  p e  q E >  {qh0)'-

P ro o f: For x ,y  real, define for t E /  := (0 ,oo),

t x if t < 1

f x U ' It® i f f > l .

Note tha t this function is continuous on / ,  in particular at t = 1.

Set

0 o  :=  /o  

0 ! := fe 01)

00 :=  / - £ 0 o,

and

01 := /o 0 i,

where 0j =  0 ,, * =  1,2, are defined as in the proof of Theorem 7.3.

Claim: These four functions and 0 f, i =  1,2, are quasiconcave with

0i(O+) =  0 i (  0 + )  =  0
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and

^ i(o o ) =  ^ f(o o ) =  oo.

Furthermore, <f)0<j)j 1 is nonincreasing over I  := (0,oo).

Proof: As in the proof of Theorem 7.3.,

^ 0(0+) =  V>i(o+) =  ^ 1(0+ ) =  0 .

By L’Hopital’s Rule,

_   ̂  ̂— e ' f.l/(pl)-c
Sn(oo) =  (1 — e) lim . . y =  (1 — e) lim , , , ,  =  0 ,
roV ' v '<-*<>+ V ; t - o + ’

since e <  1 /(pi)  and limt_o+

As in the proof of Theorem 7.3.,

V’1(oo) =  <f>o(o°) =  <^i(oo) : 00.

By l’Hopital’s Rule,

? o ( o ° )  =  ( l - « ) (M m  J A j ^ o o ,

since e < 1/p  and h £ L\{I).

The functions t =  1,2, / E f ,  are nondecreasing.

Indeed, as in the proof of Theorem 7.3., ipi (t) and are nondecreasing. 

For t < 1, as in the proof of Theorem 7.3., V’o(*) is nondecreasing. For 

t > 1, we see that V’o(^) — 0 , since

1 -  e > 1
m [h'/p] ‘



For t > 1, as in the proof of Theorem 7.3., <f>o(t) is nondecreasing. For 

t < 1, we see tha t <j>0(t) >  0 , since

— m [ f i 1/?]

The functions i =  1,2, i E / ,  are nonincreasing.

Indeed, we easily conclude as in the proof of Theorem 7.3. that if>0(t)/t  

and <j>0( t) / t  are nonincreasing.

For t > 1, we see as in the proof of Theorem 7.3. tha t =  ipi(t)/t

is nonincreasing. For t < 1, is nonincreasing, since (^-j(<)/<)' < 0 if

— m [ h } l q\

For t < 1, we see as in the proof of Theorem 7.3. that =  <^j(t)/t

is nonincreasing. For t > 1, is nonincreasing, since (<f>i(t)/t)' < 0 if

~~ m [ h } l q]

Thus <j>i, i = 1,2, are quasiconcave functions.

The function <f>0(j>1 * is nonincreasing over I  := (0, oo).

Indeed, for any < G / ,  we see that

_ ____j

^0(0^1 ( 0  =  , , f t , , ; . ,  > , •
/o  h 1/p(s)  ds  /„  h ' / i ( s )  ds  

Differentiating as in the proof of Theorem 7.3., then shows that {<j>04>i 1)' < 0
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This proves the claim.

Note th a t <  1. Thus ipi < ipi or (V’j)* > (V’i)*- Therefore,

1 /$ < )*  < l/(V>i)*, and M ((^i)*) C M ((^ )* )-

Note tha t /®f ,/o  > 1. Thus ^  > 4>i or 1 !4>i < 1 /& • Therefore, D

M(4>i), and by duality, A(<^) C A(<^j).

Since T  extends to a bounded map from A(< ,̂) into M(ifti) (cf proof of The­

orem 7.3.), the above continuous embeddings show that T  defines a bounded 

map from A(<^) into M ((^ )* )  for i =  1, 2 .

Furthermore, we see that 1 =  4>o4>\ Also,

k(t) := 4’0( t ) $ ~ \ t )  = /o_eW o(<)(/e° ) -1 W o  =  f - A f ) = <_6-

Therefore, when we apply Theorem 6.1., p  129 of (K re), we see that T  extends 

to a bounded map from any symmetric space E  into E  where

\e •■= i r 7 * * ( o u ® ,

if the upper and lower dilation exponents {ole,Pe ) of E  satisfy

6o < otE < Pe  < 7i-

Here So and 7 i compute as follows. Note tha t for s > 1, we have that

/ ”«(<-)
SUP fO m  

<6(0,oo) J - A 1)

while for s <  1, we have

1 ^ £ ( V fl) = SUP T ^ T  ^
<6(0,oo) Jov /
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Therefore, as in the proof of Theorem 7.3., £o =  hm s —*s—oo in .

.  lim  ln ^ o f . .K 1 /s )  <  lim  =  lim  ! £ ^ ! W  .  1 J -  =  h i
® ►oo Ins s—oo Ins e—oo in s  PtLoo

1 - 1  -  v l n |  (l/a)while 7 , =  h m ,_ 0+ — ^ —

.. ln { i , / ;} ( l /< )  _ , 1 1
=  lim -------- ^ ------------  >  lim ------- = --------------- =  1 --------- —  =  7 j  .

8-» o+ Ins 3—0+ Ins q h* =o

In fact, 7 i  +  e >  7 j  > 7 1  and £0 >  ^0 >  ^0 — Here 60 and 71 are defined as 

in the proof of Theorem 7.3. This shows the claim.

R em ark 7.7. Suppose that h € Lp(I), e > 0 are as in Theorem 7.6. For 

E  L k ( I ) with phoc > k > {qh.Q)' and k < 1/e (omit if e =  0), we see by 

Remark 6.2. that

( / )ii/nfr= ( { t - ' r m ) i dt= /y/‘-'r*(i)]*(-1 * = 11/us, ,
J l  J l  T/»—7’

Therefore, T  extends to a bounded map from Lk(I)  into L 1 ^ (7).

Finally, let us look at a particular function h 6 L \{ I )  for I  (0,1). This 

will be im portant at the end of the next section (Remark 8.10.).

P ro p o s it io n  7.8 . If h is T-admissable for I  := (0,1) where the function 

h : (0 , 1) (1, 00) is given as

h(t) := t -1 / 7 for some 1 < 7 <  00,

then, for 1 <  r < 00,

T  extends to a bounded map from Z^’r (0 ,l)  into L^'r{0,1), 

provided p lies strictly between 7p and (7 q)1.
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Furthermore, if 7  > 2m ax{ l/p , l/g } , then T  defines a bounded map from 

£ 2(0 , 1) into £ 2(0 , 1).

P ro o f: We observe tha t, if h is T-admissable, then the operator T  extends 

to a bounded map from L 7̂9  ̂ ^(O ,!) into (0 , 1), and from £ 7P,oo(0 , l )

into £ 7P,oo(0 , 1), i.e. is an operator of weak types ((•yq)', (t?)*) and ( jp , jp ) .  

Here, we use the continuous imbedding £ fc,oo(0 ,1) C £ fc,1(0 ,1) for 1 < fc < 00. 

The Theorem now follows from the Marcinkiewicz Interpolation Theorem (cf 

Theorem J .̂13., p 225 of (B en )), since 7p ^  ('yq)' always.

Also, we see that yp  > 2 and (7 q)' < 2, if 7  > 2m ax{l/p , 1/q}.

Lp regular operators.

8 .1 . T h e  C a ld e ro n  O p e ra to r :  Let I  := (0,1) or (0,oo). Consider the 

following integral operators defined for 0 < o < 1 and 0 < 6 < 1:

8 . E x am p le s  o f  S tro n g ly  Lp R e g u la r  O p e ra to rs .

We shall show here that the Hilbert transform and the Calderon operator 

are strongly Lp regular. Since the Hilbert transform is the basic building block 

for many singular integral operators and the Calderon operator is the typical 

operator of weak type, they give raise to many concrete examples of strongly

and
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for < £ I  and /  € L \{ I )  fl L ^ I ) .  (The upper limit of the second integral is to 

be replaced by 1, if I  (0,1). We shall assume such modifications whenever 

necessary.)

The C a ld e ro n  o p e ra to rs  are then given by

S a,b '■= Pa +  Qb-

Notice tha t for any nonnegative function /  G Ly{I) fl L ^ I ) ,  S a,bf is nonin­

creasing, since for example

d_
dt

ds
Paf ( t )  =  - a t ~ a /  saf ( s ) ~  + f ( t )  t ~ \  

Jo 3

and thus

d_
dt

-Sa,bf ( t )  = - a t-  f  s« f ( s ) - - b t ~ b f s hf ( a ) ~  < 
Jo 3 Jo 3

Furthermore, i f 0 < 6 < a < l , w e  may write

A OO

Sa,bf(t) =  /  M C t ( 3)ds,
Jo

. 8“- 1 a'’"1

where

<t (s )  : = m i n { ^ - , ^ }  

is nonincreasing. Indeed, it is easy to see that

I V -  l{ 3 > * >

since, for 0 <  b < a < 1 , we have tha t (s / t ) a < (s / t ) b if 0 < s < t, while 

(s / t ) a > (s / t ) b if s > t > 0 .
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T h e o re m  8 .2 . If 1 jp  < a < 1 and b < 1/p, then the Calderon operator 

S a>b extends to a strongly Lp regular operator, and its dual S ^ b : L q(I)  —* 

L q(I)  to a strongly L q regular operator.

P ro o f: Let I  := (0, oo). Then Pa extends to a bounded linear operator 

Pa : Lp(I)  —* Lp( I ) if 1/p < a < 1, while Qb : LP(I)  —> L p( I ) is bounded for 

0 <  b < 1/p  according to Theorem III.5.15., p 150 of (B en).

Using Remark B.4. and the inequality

/ f(s)v(s)ds <
Jo

where t] is any nonincreasing nonnegative function (cf Theorem 1.2.2., p 44 °f 

(B en )), we see that for /  6 LP(I):

poo poo
(Sa,bf)*(t) = Sa,bf ( t )  < /  f*(s)Ct(s)ds < /  r ( s ) C t (s)ds,

Jo Jo

if is the function of 8 .1 .

Given g € Lp(I), where g is nonincreasing and nonnegative, set h 

2(Sa,b(ff**))** € Lp(I). Then, if 0 < /  and /** < g , we obtain that

( S a, bfY* <  1 / 2  h.

For any /** < g , we obtain (cf Remark B.4.)

( S a , b f r  < (Sa,bf + r  + (Sa,bf - Y *  < h.

Here /+  and /_  denote the positive and negative part of / ,  resp. Thus S0if, 

satisfies (S2) of Remark 5.2., and is strongly L p regular.

Since S'a b =  5'i_;))1_ a, according to Definition III.5.14-, p 150 of (B en), 

the strong L q regularity of the dual follows by the same argument.

/  f * { s ) rl { 3 ) d s  
Jo
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Finally, let I  := (0,1). If S a,b denotes the Calderon operator on (0 , oo) 

while S a,b is the Calderon operator on (0,1), we see that for any /  G Lp( I ):

^a,bf X(o,i) ̂ a ? 

and the result holds in this case, too.

8.3 . O p e ra to rs  o f  W eak  T y p e : Let I  := (0,1) or (0,oo). An operator 

defined from Loo(I) fl L \ { I ) into the set of measurable functions is of w eak 

ty p e  p, if there is a constant M  > 0 such tha t for all /  G L i ( I ) fl Loo(I):

/•OO J
{Tf)*{t) < M t ~ 1/p s1/pf**(s) —  .

Jo 3

In terms of Lorentz norms, for 1 < p < oo, this says: | | r / | |p i00 <  M ||/ | |P)i (cf 

Remark 6.2.).

The next theorem states that the Marcinkiewicz Interpolation Theorem 

not only implies L p boundedness, but also strong Lp regularity.

T h e o re m  8.4. Let T  be of weak type q\ and q2 with 1 < qi < q2 < oo. 

Then, for every p with qi < p < q2, T  defines a strongly Lp regular operator

T  : 1 ,(1 )  -  £ , ( / ) .

P ro o f: Theorem IV .4-11, p 223 of (B en ) implies tha t T  also is of joint 

weak type (q i,q i\q2iQ2)i i-e- f°r /  € L \( I )  fl L ^ I ) ,  we get a constant c > 0 

such tha t (cf Definition III.5.4- of (B en))

( T f y ( t ) < c S i/qi,i/q2( D ( t ) .

Since 1/qi > 1/p  and 1 — 1/^2 > 1 — 1/p? if follows from the Theorem 8.2. that 

Si/glti /q2 is strongly Lp regular, and thus so is T.
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Since Lp bounded operators are in particular of weak type p, we get:

C orollary 8.5 . Let T  : LP( I ) —» LP(I)  be a bounded linear operator 

for all p G (a, b) with 1 <  a <  6 < oo. Then T  is strongly L p regular for all 

P e  (a, 6).

8.6 . T he H ilbert Transform: Let I  := ( — 00, 00). For /  G L i( I )  fl 

Loo(I) define the m axim al H ilbert transform  H max by

For 1 < p  <  00, we see from Theorem III.4.7., p 134 ° f (B en ) that for some 

c > 0 and any /  G L p( — oo, 00):

Theorem III.4-9., p l39  of (B en ).) Here we define the H ilb e r t  tra n s fo rm

Hmaxf(s) := sup \Ht f(s)\

where

(■H m axfT  < C 5ll0(/* ),

where ^ 1,0 is the Calderon operator of 8.1. This, in paricular, implies the 

boundedness of the (maximal) Hilbert transform for 1 < p < 00. (See also

H  : Lp(—00, 00) —► Lp(—o0 , 00)

as

Hf ( s )  := lim H J ( s ) .
e — ► ( ) +

If I  := (—7r ,7r], we define the H ilb e r t  t ra n s fo rm  by

Hf { s )  := lim H ef ( s ),e—*0+
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w here s € (—7r,7r] and

r T f ( \ - - l [  1 f  /(^) ,,
-  tt Jn>ltl>e 2tan(</2) tt Jn>|a_t|>e 2tan((a -  0 /2 )

Theorem V.2.4- of (Tor) shows that H  defines a bounded linear operator

H  : Lp(I)  —* L p( I ) in this case.

By appealing to Theorem 8.2. in the case of I  := (—oo, oo), or to Corollary 

8.5. if I  := (—7r ,7r], we get:

T heorem  8.7. Let I  (—00,00) or (—7r ,7r], and 1 < p < 00. Then the 

Hilbert transform H  defines a strongly Lp regular operator.

For the unit circle I  := T, which we cannonically identify with (—7r ,7r], we 

denote by a n^%nt the usual Fourier expansion of a function f  £ L p(T).

The spaces

HP(T) := span {emt : n = 0 , 1,2 ,3 ,...}  

are called the H ardy spaces on T.

C orollary 8.8. Let 1 < p < 00. The projection
OO OO

/ ( < ) =  £  a n e i n t ^ P f ( i )  =  ' £ « r l e in t
n= —00 n= 0

of L p(T) onto the Hardy space HP(T) is strongly Lp regular.

Proof: It follows from Proposition III.3.1. and Proposition III.6.2. of 

(Tor) tha t the above projection is Lp bounded iff H  is bounded on L p(—7r ,7r].

Define the H ardy-L ittlew ood m axim al operator M  for a locally in- 

tegrable function /  by

( Mf ) { x )  := s u p — /  \f{t.)\dt,
Q M v) J q
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where the supremum extends over all subarcs Q c T ,  and p, or dt, resp., denote 

the normalized Lebesque measure on I \  Here T is naturally identified with the 

interval (—7r ,7r]. Then M  extends to a bounded operator M  : Lp(T) —» Lp{T) 

for any 1 < p <  oo. Note that M  is not linear.

R em ark 8.9. For 1 <  p <  oo, the Hardy-Littlewood operator on T 

satisfies (S I )  of Definition 5.1.

P ro o f: It follows from Exercise III. 12.(b), p 177 of (B en ) that for some 

constant C  > 0, the Hardy-Littlewood maximal operator satisfies (M f  )* < 

C /** for any locally integrable function / ,  and thus for any /  € LP(r).

R em ark 8.10. The following special case of the Calderon operator, 

namely S  = S i ,o, is encounterd rather often. Clearly, S  : Lp(I) —> Lp(I), 

I  := (0, oo), is of the form

with the obvious modification if I  := (0,1).

If I  := (0,1), for any 1 < 7  <  00, set

: (0 , 1) —> (0 ,oo) as h7(s) := s -1 / 7 

(cf Proposition 7.8.). Then the Calderon operator on I  := (0,1) satisfies

where t £ (0 , 1).

For any 1 < 7  < 00, by Remark 6.2. and Lemma 6.3., the Calderon 

operator defines a bounded map from M(i/>(hy)) =  L7’°°(0,1) into L7’°°(0,1).

Shy(t) = (7  +  H t ) ,
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Since S  = S i j  is a selfdual operator (5 10 =  Si,o according to Definition 

III.5.14-, P 150 of (B en )), S  also extends to a bounded map from A('^(gy )) =  

L7 ,1(0 , 1) into L7 ,1(0 , 1).

If I  :=  (0, oo), consider

A m  J V 1/Q if 0 < < < 1

for 1 <  a  < oo and 0 < (3 < oo. A computation shows that the Calderon 

operator satisfies

.. , + + (£-“) a»<i

”  \  (1 ^ 7 5  +  +  < i= f c  -  i .

i) Assume 0 < 13 <  1 and 1 < a  <  oo. Then haip G L i {!)• Furthermore, 

S h aip < C ha<p is satisfied for

C  =  C(a,(3) := m a x i ^ - ^ y -  +  a , +  /?}.

Fix 1 <  p < oo. Consider S  as a bounded operator S : Lp(0,oo) —> Zp(0,oo). 

If

l / p < ( 3 < l ,  

then V’(^ a ^ )  is a (quasi)concave function with

^ H j p X 00) =  °°-

Claim: If (3 > 1/p, then h lJ ^  is a regular function.

Proof: For t < 1, we see that
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since p > 1 and thus pa > 1, and

tha.U*)

since q > 1 and thus qa > 1.

Furthermore, for t > 1, we obtain that

s ^ i i )  j f  * » ■ * >  *  =  < 1 ^  -

Thus, we need to require that p(3 > 1 so that is a regular function. 

Note tha t (if also q/3 > 1)

M { h '/n  = max{ 1 , 11/(p-a ) . 1 _ 11/(p/3)} =  W ) '  >  «

and

= max { ,  _ 11/(9C[). 1 _ 1/ (g/J)} =  W Y  > P- 

Therefore, the second condition in Theorem 7.3. fails, since

1 +  Y > -riT /7 i < i / g  +  i / p  =  i -M f/i1/?] M [hJ/g]

Nevertheless, according to Lemma 6.3., we may conclude tha t S  defines 

a bounded map from M(V’( h ^ ) )  into M(V’( h ^ ) ) .  Since p > 1 is arbitrary, 

and h*Jp = hpaigp, we see that for any 0 < f3 < 1 and 1 < a  < oo, 5  extends 

to a bounded map from M(i/^(ha^ ) )  into M(ip(hQtl3))) and by duality (5  is 

selfdual), from A(^>(/iQi/3)) into A(V’(^a,/3))-

ii) Given 1 < a  < 00, setting /3 a , by Remark 6.2. and Lemma 6.3., 

we see that 5  defines a bounded map from M(ip(haiCt)) = L ct’00(0,oo) into
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La,00(0,oo), and also from A(V’(^a,a)) =  L a ^(O, oo) into L a ^(OjOo), since S  

is selfdual.

iii) Suppose now 1 < « , / ? <  oo. If we understand by

= £ « M ( o , l ) n I /J'-1(l,oo)

the space of all measurable functions /  on (0,oo) satisfying

X(o,i)f € La,,1(0,oo) and X ( i , o o ) /  £  ^ ^ ( O ,o o ) ,

and similarly define the space L a,f3'°°, then S  defines a bounded map from 

J ^ a ' ,(3' ,1  ̂ a n ( J  f r o m  ^ o , / 3 ,o o  j n ^ Q £ a , / 3 ,o o



CHAPTER III.

REPRESENTATION OF Lp OPERATORS BY KERNELS OF DISTRIBUTIONS.

9. D efin itions an d  E x am p les .

Many well-known operators in analysis have a useful representation by 

kernels of distributions.

Exam ple 9.1. For every positive operator T : Lp(X,f.t) —» Lp(Y,u), 

1 < p < oo, there is a kernel (py )y<=Y °f measures on X  such that for all

/  G Lp(X,fi):

T f ( y ) =  j  f  dny ;.'-a.e.

Exam ple 9.2. The Hilbert transform H  on L p( — oo,oo), 1 < p < oo, is 

given by

Hf { x )  = Cx( f ) ^-a.e.

for all /  6 Lp( — oo,oo), where x —+ CT is the kernel of Cauchy’s principle value 

distribution

Cx( f )  = lim -  f  - ^ - d t

(cf Sect. III.4., p 126 of (B en)).

Exam ple 9.3. For /  6 L2(-o o ,o o ) f l  L j( —00, 00), we may write the 

Fourier transform

F f ( x ) = E x( f )

55
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where x —> E x is the kernel of the distribution

Ex(g) = J  e’xyg(y)dy.

In the case of the first example, we actually have a characterization of 

positive operators in terms of the representing kernel. This leads us to the 

following question.

P ro b le m  9.4 . Is it possible to characterize strongly L p regular operators 

in terms of a representation

T  f ( x)  =  D x(f )

where D x are distributions in an appropriate class?

Such a characterization would distinguish between Examples 9.1. and 9.2. 

(which are strongly Lp regular) and Example 9.3. (which is not  strongly Lp 

regular).

At this point, we cannot answer the above question, but in the next sec­

tion, we give a general representation theorem for L p operators in terms of 

distributions, which may be considered as a. first step in this direction.

This theorem is motivated by Lemma 9.5. below. But first some notations.

We shall assume 1 < p < oo and 1 +  ^  =  1. Let X  be an open, bounded 

subset of R N . ft  will denote the Lebesque measure on X .

By Wp (A') with 1 < p < oo and n > 1 we denote the S obolev  space 

consisting of all functions for which the following norm is finite:

l l / l l n ,  :=  £  W & f l
\ j \ < n
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Here the norm || || denotes the appropriate Lp norm on X.  We denote its 

topological dual by ITp7n(-Y) .

The Banach space L 00(p, n, p)  consists of all f { t , x )  =  f { t ) ( x ) on X  x X  

such tha t the following norm is finite:

Id/Hi :=  ess sup(6A-||/(<)||n>J>.

Similarly, one defines L rx>(p-, —n,p').

W ith the space D( X )  of te s t  fu n c tio n s  we mean the space consisting of 

all C°° functions with compact support with its usual topology. The d is tr i­

b u tio n  space  D '( X ) is its dual.

The following illustrates that, if certain assumptions are made on a linear 

bounded operator T  : L p{X)  —> Lp(X) ,  then its kernel can be described as a 

distributional derivative.

For simplicity, let := /  := (0,1). Denote by J  : LP( I ) —> C ( I ) the 

bounded linear operator given by

f  fdp.
Jo

where 1 < p < oo. Set T  := J  o T  : LP( I ) —1 C(I) ,  anci denote its dual by 

T'  : M( I )  —> L P'(I).

L em m a 9.5 . If T  :=  J  o T  : L p( I ) —► C(I )  maps D(I )  into D(I) ,  then

T f ( x )  =  ( 4 - G( x ) ) [ f ) .r-a.e. ax

for any /  £ D(I) ,  where G(x)  : I  Lp>{I) for any x £ I  is given by

G( .r) (y)  =  f ' S x ( y ) .
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P ro o f: Since LP>(I) C D '( I ) and j ^ T f { x )  = T f ( x ) in £>(/), we have for 

any f , C € D{I)  that

<  Tf ( x) ,  C(.t) > = <  - ^ f f ( x ) , ( ( x )  > =  -  < Tf ( x ) ,  >

= - « 6r. , T f  > , -^< (* ) > =  -  «  r ' w  > , >a.r ax

=  - «  Cr(x), f  > ,  ~  C(.T) >  =  <  <  £ ( * ) , /  > , ( ( .T )  > •
a,r a.r

Since < £ '(• ) ,/  > =  T /(  ) £ -D(/) and thus differentiable, we may apply 

Remark A2.2., pp 148/49 of (G el I) to obtain that.

■ f < G ( x ) , f  > = < ^ - G ( x ) , f > .  
ax ax

Therefore,

< Tf ( x) , C( x)  > = «  j ~ G ( x ) , f  >, ( ( x)  >
ax

for any £ £ D(I) .  This gives the claim.

In Section 10, we shall deal with bounded linear operators which map 

some Sobolev space W/p(JC) into Loc(A"). However, not all bounded linear 

operators have this property as the following example shows.

E x am p le  9.6. There exist bounded linear operators T  : Lp{X)  —> Lp(X)  

for which there is a G : X  —> Lp( X)  such that Th = G(h)  for any h £ L p(X) ,  

but T  does not  map any Sobolev space TT'p(X) into L 0C(X).

P ro o f: Set p 2, X  := I  := (0,1) and /„ := [1/ ( 7? +  l ) , l / 7?) for n > 0. 

Then

? = U 7-
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For each pick a function Qw ^ -^2( f ) f  oo (I) and f n G W^{I )  which both 

are supported in I n and satisfy | | /n ||L2(/) =  ||5t i | |l2<J) =  1-

Define the linear operator Tn : L 2( I ) —>■ L 2(I) for h G L 2( I ) by

Tnh := J  X,Nh fnd(i ■ gn-

Since Tnf„ = gn, the restriction of Tn to L 2(In ) does not map W2 (In ) into
OO

LooVn). Thus T  := ] T  Tn as an operator from L 2(I)  into L 2(I)  is bounded
77 =  1

and linear, but does not map any W2(I) into Zcol-O-
OO

Define G : I  —> L 2(I)  by G(t)  := gn(1)' fr>- An application of Lebesque
71 =  1

Dominated Convergence Theorem demonstrates that Th — G(h)  a.e. for any 

h G LP(I).

10. K ern e ls  w ith  V alues in  Sobolev  Spaces.

Our theorem provides representation of any bounded linear operator on 

Lp(ft) where ft is an open, bounded subset of R N.

T h e o re m  10.1. If T  : L p(fl) —* Lp(fl) , 1 < p < oo, is a bounded and 

linear operator, then there exists a G G L ^ p - ,  —2N ,p') (cf 9.4.) such that for 

any /  G Lp(fl),  the following holds in the Bochner sense:

T ' f  = J  Gf dp.

Furthermore, for any g G , we have Tg{t)  = 6 '(/)(<;) /-a.e.

P ro o f: Let J  : —* L ^ f l )  denote the canonical imbedding. Since

J  is nuclear for 1 < p < oo by Theorem 3.C.5., p 186/87 of (K o n ), we can
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write

T o  J :  W £ N ( X )  - >  L ^ X )

as
oo

T J f = Y , X” f n ( f ) 9 n ,
n —0

where

(•*„) e h ,  | | / n | |- 2NlP' =  1, and | | £ ? n (n) =  1.

For /  G Uw2n r (fi)> un^ kail W72iV,p(^)) we have that

\ \ T J f W <  l ^ n l l f l ' n l -

Set. g := £  |An ||5„|. Then g £ Lp{Ll) and |T / | < g. Set

Lln := {/ e  Cl : g(t) < n}

and

Tn  : =  =  X a J T o J )  : T T p2 N ( f l )  -  L o o t f i ) .

Since

llr n| |w'-sW(n)_L00(n) =  SUP IUnn \ Tf \  | | l«( .Y) <
l l / l | 2N , p  =  l

we have that. T n is a bounded linear operator. Since W ^ N  is reflexive, we have 

that

T'n : L a ( f i ) - > t F p7 2 ; V ( f i )

is a weakly compact operator. The Dunford-Pettis Theorem (cf Lemma 11, p 

75 of (D ie)) thus provides for any n a

G n = n  -  w pf N (n)
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such that for any /  £ T i(fl):

Also, the norm of Tn equals ess sup<gfj||G'n(f)||_2iv,p'' Since for any t £ f tn 

and any n  < m, we have that Gn{i) = Gm(t) as distributions, we may define 

G by setting G’(/) =  Gn(t) for t £ fl„.

C laim : For g £ W ^ ^ f l)  and any n, we have Tng(x) =  G'n(®)(<7) .r-a.e. on fI.

First, it is clear tha t G'n (.T) =  0 for any n and x £ J7 — fin . Second, by 

Theorem 6, p ^7 of (D ie) , we see that

which is the claim.

C la im : For g £ we have Tg(x)  =  G(.t:)(<7) .x-a.e. on fl.

By the previous claim, we have for any n and any measurable set A n C f ln

that

Since we can write every measurable set A  C fl as the disjoint union of 

A n C fln ~  f^n-i where n > 0 and flo := <f>, the claim follows from Lebesque 

Dominated Convergence Theorem.

R e m a rk  10.2. We indicate an alterative proof of Theorem 10.1. which 

is based on a disintegration result of [Edg].

(TU) ( g)  = f  Gn( i ) ( g ) m d n ( i )  
J n

Therefore, we get for any measurable set A C fl:

/  Tng(t)df,(t) = (T^Xa )(9) = [  Gn(t)(g)dn(t),
J A J A

f  Tg(t)dn{t) =f  G(t)(g)dfi(t) 
J  A n J  A n
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Assume that, the operator T  : Lp(ft) —> L p(fl) maps Wp (Q) into L 00(fl). 

Let T' : L i(fl) —> TVJ7 r (fi) denote the dual operator to T|w>(n ). Set

A := { : £  € fl(fi), - (E )  > 0 },
V\*J)

where i?(fl) denotes the collection of all Borel sets of fl. Since

l l ^ ^ l l i v - r(n) ^  Hr , |lL1(n)-*M7 r(n)’

we see that A is weak* relative compact. Setting m ( E ) := T 'x E for any 

E  G B({1), we see tha t m  is a vector measure absolutely continuous with 

respect to v.

Identifying S  with fl, F  with B{i1), A with u and V  with Wp7r (fl) in 

Theorem 2.1., p 1)1,1 of [Edg], we obtain a G : fl —> W~,r(fl) such that

T ' \ e = f  Gdu.
J e

As in the above proof, we now obtain that

T h  = G{h)  t'-a.e.

for all h G Wpr(fl).
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APPENDIX A.

E q u iin te g ra b ility  a n d  B asic  S equences.

In this appendix, we give some basic results on equiintegrable and pairwise 

disjoint sequences. These facts are essential for the proofs in Chapter I.

First, we show that any bounded sequence in Lp( I ), I  := (0,1) with 

(normalized) Lebesque measure fi, 1 < p < oo, can be split into a disjoint sum 

of an equiintegrable and a disjoint sequence. (For the history and extensions of 

this device, consult [Wei V I].) Then we show how equiintegrable and disjoint 

sequences relate to basic sequences isomorphic to I2 and lp. The latter results 

are well-known in Banach space theory, but they are still scattered in the 

literature and we collect them  here for the convenience of the reader.

A non-empty set M  C Lp(I)  is called e q u iin te g ra b le  if for any e > 0, 

there exists a c >  0 such tha t

/  l/l '- fc  <  e
A t\> '

for any /  E M.

M  is said to be d is jo in t, if for any two functions f , g  E M , there are 

disjoint measurable sets A , B  C I  with f\& — 0 a.e. and g\B — 0 a.e.

L em m a A .I .  Let ( / n ) C L p( I ), I  := (0,1), 1 < p < 00. Set
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If A(/n ) is finite, there exist a subsequence ( fnk) C (f n ) and two sequences of 

functions (gk) and (hk ) such that:

1) fn k = 9k +  hfc for all fc, and gk and hk are disjoint;

2) (gk) is an equiintegrable sequence in LP( I ) ’,

3) (hk) is a sequence of disjointly supported functions.

P ro o f: If A(/n) =  0, then ( f n ) is an equiintegrable sequence. We may 

therefore assume, wlog, th a t A(/n ) ^  0. We can find a subsequence (f(i)) C 

( / n ) such that lim ||x Fi/(t)|| =  A(/„ )  where F* := { > i }. Set g{ :=

f(i) 7Cpi f(i) and hi . \ F./({)•

Claim: A(gn) = 0. Assume not. Then we can find a subsequence (gij ) C 

(gi), and sets Gj  { l^j | > j  } such that lim ||xG. g^  || = : >>i > 0. Thus,
3 1

Hx<lJUj,l2»Aii>ll S  Therefore,

Hxri/,,,,i>,ifell” £ llx„./(h)r + llx.,/<i,->ll' - + A’ > A(/’>)’’’
a contradiction. Hence A(gn) =  0, and (gn) is equiintegrable, as required in 

Part 2).

The (hi) can be made disjoint using the following procedure: Reindexing 

assume that hi = X F./i, Fi = { |/i | > 0  and wlog ||hi|| > 0. Set

Hi := hi/\\hi\\ = XFifi/WxFifiW-

Since A(/n) <  oo, we have fJ-(Fi) —> 0. Therefore, for any 0 < e < 1, 

there exists N(e)  such th a t n{\H i I > e} < p{Fi) < e for any i > N(e).  In 

other words, (Hi)  converges to 0 in measure. Furthermore, if i > N(e)  and 

E  := {\Hi\ > e}, then

f  \Hi\pd/i = [  \Hi\pdn -  f  \Hi\pd/j, = 1 -  f  \Hi\pdfi > 1 -  e.
J  E JO J E '  J  {|H; |>e}
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Thus, for e 2 2, we can find n i such that f i(Ei)  < 2 2 and

f  \Hni \pdfi > 1 — 2-2 
J Ei

where E \ := {|-ffni| >  2-2 }.

Again, we can find n 2 > n\ such that for j  >  n 2 we have that ^ (E 1’) < 2~3

and

/  > 1 — 2~3 
J E>

where := {| H j  \ >  2 3}. Since ^(E-’) —*• 0 as j  —> oo, we can find n 2 > n 2 

such that

/  |t fn i | ^ / x < 2- 3.
iI e u 2

Thus for i ?2 :=  .E”2, we see that /x(E2) < 2-3 ,

/  1 - 2 - 3 
Je 2

and

/ |F n i |pdM< 2- 3.
J E i

Inductively, we obtain a subsequence (ify)) C (# i)  and a sequence (J3;) 

of measurable sets such tha t n(Ei) < 2~l~1,

[  \ H ^ \ pdfi > 1 — 2~z_1
J e ,

and
/> 1 

fc=l
OO

Set Ai := Ei — E\. (A;) is a sequence of pairwise disjoint sets. Let
k=i+i

hi := H(i)XAi• Then

||hl - H (l)\\p = j  \Hw \pd n =  [  \H(l)\pdi i+ f  \H{l)\pdv
JA'  JEf JE,-A,
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OO a oo

< 2~l~1 + I \H V)\Pd^  < 2~i- 1 +  ^  2-fc_1 < 2" '.
fc=i+l fe=!-f-l

Set fi, = hi ||xF(,) /(I) || • Then

ll&i -  h i)\\ =  IIxf(I)/(oII IIhi -  H (l)II < M  2 ~ l -*  0

where M  :=  sup ||x f (0 /(oII < °°> since H f n )  < oo.

Thus (hi) and (g;) given by g t := /;  — ht meet all parts of the Lemma.

L em m a A .2. A) Let ( /n ) C LP( I ), 1 < p < oo, be an equiintegrable 

sequence converging to 0 in measure. Then | | / n || —> 0.

B) Let ( f n ) be a normalized sequence in LP(I),  1 < p < oo, which con­

verges to 0 in measure. Let (<7n) be an equiintegrable sequence in L p>(I). Then

S\fn9n\dfJ. -*• 0.

Proof: A) i) Assume that even /„  —> 0 a.e. By the equiintegrability of 

( /„ ) , given any e > 0 , we can find a constant c > 0 such that

f  \ f n \ p d n  <  e
' { \ f n \ > c }

for any n. Thus, if f n —> 0 a.e., then by Fatou’s Lemma

0 < lim inf f  \ fn \pdfi < e +  /  lim su p \ fn \pdn
n ~ * °° J l  J { \ f n \ < c }

< e +  / l im su p |/n |pd/u =  e.
J  J n — ► o o

Since e > 0 was arbitrary, we have the claim in this case.

ii) If | | /n || 0, then there is a subsequence ( f n') of ( /„ )  with | | / n'|| > a

for some a > 0. But since f n> —> 0 in measure, there is a subsequence ( f n'k ) of 

( f n') with f ni —> 0 a.e. By Part i), | | / n< || —> 0. Contradiction to | | /n'|| > a■
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B) By Holder’s inequality, hn := f ngn is an equiintegrable sequence in Li( I ) ,  

and converges to 0 in measure. Now we may apply Part A).

We now turn  to basic sequences (f n) in Lp(I),  i.e. (f n) is a basis of 

span[/n]. It is well-known (cf Proposition l.a.12. of (Lin I)) that a sequence 

( f n ) with 0 < inf | | / re|| < sup | | /n || < oo and / „ - » 0  weakly has a subsequence 

which is a basic sequence.

A basic sequence ( f n ) of a Banach space X  is said to be unconditional, if
OO

for any x G span[/n], its basis expansion anf n converges unconditionnally,
n=0

oo
i.e. e„an/ n converges in X  for any choice of en G {0,1}. For further details,

n —0
consult Section l.d. of (Lin I).

Let < G / .  The sequence (rn ) of R adem acher functions is given by

ro =  1, rn(t) sgn sin (2n7rt) for n  > 0,

while the H a a r  sy s te m  is defined as hi = 1 and, for k — 0 , 1, . . . ,  I = 

1, 2, . . .  , 2fc:

( 1 if (2/ -  2) 2~k~1 < t < (21 -  1) 2“ fc- 1

fc2*+i( 0  =  ■{ - 1  if (21 -  1) 2 - fc- 1 <  t < 21 2~k~1

'  0 otherwise.

For the Rademacher functions, K h in tc h in e ’s In e q u a lity  holds: For some 

constant c =  c(p) > 0 and any square-summable complex sequence (an ) we 

have
OO OO OO

C_1 ( Y 1  lfl" |2)1/2 ^  II J 2  a" r "H ^  C ( £  l°n|2)1/2>
n=0 n=0 n=0

where 1 < p < oo, and, as usual, || || denotes the norm on LP(I).
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If we normalize the Haar system in LP(I),  1 < p < oo, then they form an 

unconditional normalized basis in LP(I)  (cf Definition l .a .4., p 3 of (Lin I)).

Lem m a A .3. A) For any normalized unconditional basis ( /„  ) C LP(I) 

there exist a c > 0 such that

n n

if 2 < p < 00 : | | ^ a n/ n || < c ( ^ 2  |a „ |2)1/2.
n n

B) For any normalized unconditional basis (f n) C LP(I)  we have for some 

c > 0 that

n n

if 2 < p < OO : | |X ; « n / „ | |> c ( X ; i « n n 1/P-
n n

C) If 1 < p < 00, then any disjoint normalized sequence (f n ) C L p(I)  is 

equivalent to the unit vector basis in lp.

Proof: Part A) easily follows from a result on p 131 of (Lin), while Part

B) can be found on p 4 of [Joh] or p 209 of [Ros]. Part C) is well-known and

easy to check:

J  | o = J  E  l“«l'l/n|'<</* = E

Lem m a A .4. Assume that 1 < p < 00, and that (f n ) C L P(I)  is a 

sequence converging weakly to 0 and satisfying

0 < inf ||/n || < sup | | /n || < 00.
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Consider the following conditions:

A) A subsequence ( f nk) C ( / n) converges to 0 in measure.

B) ( f n ) $■ Mp for any e >  0 where M*p := { /  G LP{I) : p{\ f \  > e ||/||}  > e }.

C) There exists a subsequence ( f nk) C ( f n ) which is isomorphic to the unit 

vector basis of lp.

D) There are c > 0 and a subsequence ( f nk ) C ( / n) such that for any (ct*.) £ lp-.

if 1 < p < 2 : || Y , II < c ( E  l“ ‘ l')’" .
k k

if 2 < p < oo : II ]P a f c /n J | > c |a fc|p)1/p.
k k

E) ( f n ) is not equiintegrable.

F) There exist a subsequence (f nk) C (f n )> a 6 > 0 and a sequence of disjoint 

sets (E k ) such that for all k:

f  | f n k \ * d p > 6 .
J E k

Then:

if 1 <  p < 2 : A •<=>■ B =>  C D E F, and 

if 2 < p < oo : A <==> B C •$==>• D ==t- E <=> F.

Note th a t if 1 < p < 2 ,  then Part C) does not imply Part B), and if 2 < p < oo, 

then P art E) does not imply Part D).

Proof: A B, E <=> F and B = >  D are clear.

Other directions are based on known results: (We may assume, wlog, that

ll/»ll =  10

B C: Theorem 2, p 164 ° f [Kad].
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D = >  E: For p =  1, this follows from the fact that the unit vector basis of l\ 

is not weakly compact, but equiintegrable sets are weakly compact in L\( I ) .  

For 1 <  p < 2, this follows from Theorem 8 of (R o s), and for 2 < p < oo, from 

Theorem 3 of [Kad].

F =£■ B if 1 <  p < 2: Prop. 1.1.15, p 21 of (L in ), also Lemma 1, p 4 and

Lemma 2, pp 12 - 13 of [Joh].

D ==> B if 2 < p < oo: Lemma 1, p 4 of [Joh] and Theorem 3, a <=> d, p

166 of [Kad].

The remark at the end of the Lemma can be dem onstrated by consider­

ing a sequence (gi) on Lp(0 , 2) given by g, := fi  + Ti where (r ,) denote the 

Rademacher functions supported on (0,1) while (f i )  is a normalized, disjoint 

sequence supported on [1, 2).

If 1 < p <  2, then (</,) satisfies Part C) since (f i )  does by Lemma A.3. 

Part C) and by Khintchine’s inequality:

II £  °»s,.ir = ii £  «»/jip + ii £  <v„r 

< £  k i p + ( £  i“ »i 2)r /* s 2 £

and

II £  a n S j '  >  II £  llP =  £  K I P-

But also (<7,) C Mp for any 0 < e <  1/2.

If 2 < p <  oo, then (gn) satisfies Part F), since (f i )  does. But Part D) 

cannot be valid, since this would imply for some c > 0 :

53 ia "ip -  ii 5 3 a^ n p ^ ii 53 a«r^np ^ c (53 ia "i2)p/2
for any ( a n ) G lp, which is impossible for p > 2 .



APPENDIX B. 

R earrangem ents and R egular Functions.

In this appendix we collect some properties of rearrangements and regular 

functions tha t are related to equiintegrable sets and Lp operators. They will 

be useful in Section 1.4. and Chapter II. Unless indicated otherwise, I  := (0,1) 

or (0 , oo).

D efin ition  B . l .  A function W  : I  —> (0,oo) is called regular if it 

is strictly positive, left continuous and nonincreasing satisfying IU(1 —) := 

lim j;_i_ W( x)  > 0 (lim exists because of left continuity) and J* W{t)dt  < oo 

such that its constant o f  regularity M[W] is finite where

M m  := sup - ± -  f  W(t )M.
xei xW{x)  J0

Then we define

-  1 '- S p j -

Furthermore, if W  is regular and I  := (0,1), set the infin itesim al constant 

o f  regularity as

M ( W )  : = l im s up —- r /  W(t)dt
x —»0 +  ( • c )  JO

and

Clearly, M ( W )  < M [ W } and D{W)  < D[W).

75
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Note tha t if I  := (0, oo), we do not require W  to be integrable.

R e m a rk  B .2 . A) Regularity on I  := (0,1) or (0, oo) is equivalent to

requiring that

r  w(i) j,
SUP /  w ?  7 \ d t  <  00xeiJo W { x - t )

(cf Theorem 1.1.2., p 3 of [Rug]).

B) Assume that W  € Lp(I),  I  := (0,1), is differentiable (in the usual sense)

as a real-valued function and that the following limit exists:

£ ; = l i m
E-+0+ W^a:)

Then:

i) If W  is regular, then 0 < L < 1 and the infinitesimal constant of 

regularity of W  satisfies D{W)  = L (cf Theorem 1.3.3., p 10 of [Rug]).

ii) If L  < 1, then W  is regular and D( W)  = L (cf Lemma 1.3.6., p 12 of 

[Rug]).

iii) Under the assumptions of Part i) or Part ii), we have for any oo > p >

0:

W p is regular. p D( W)  < 1.

Then, D ( W P) = p D(W) .  (See Theorem 1.3.4-, p 10 of [Rug].)

C) Let M  > 0, and W ,W n : I  —> (0, oo), I  := (0,1) or (0,oo), be strictly 

positive, left continuous and nonincreasing functions. Assume that {Wn)  is 

a sequence of integrable functions converging to W  pointwise and in mean, 

whose (infinitesimal) constants of regularity are no larger than M . Then W  is 

regular with (infinitesimal) constant of regularity at most M .
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D efin ition  B .3 . We define the (first) rearrangem ent / * : / —> (0,oo) 

of a Lebesque measurable , a.e. finite function / : / —>(0, oo) by

f*{t)  := inf { r  : n f (r) < t },

where

n / ( r )  : =  p  {  t  :  | / ( < ) |  >  r  }

and p. denotes the Lebesque measure on I.  We assume that n / ( r )  is finite for 

some r  € (0 , oo). In a similar way, one defines the (first) rearrangement for a 

measurable, a.e. finite function on the real line (—00, 00) or the unit circle T.

Two measurable, a.e. finite functions /  and g are said equim easurable  

i i f *  = g \

The second rearrangem ent /** : I  —> (0,oo) at t E I  is defined as the 

average of f* over the interval (0, /),  i.e.

r * m  £ r m .

Rem ark B .4 . It is clear from the definition that /*  always is nonin­

creasing and left continuous. For a nonincreasing nonnegative function f, we 

therefore see that f { x )  — f*(x)  for all but possibly countably many x  6 / ,  and 

/  and f*  define the same equivalence class in LP(I).

We always have /*  <  /**, and if the function /  is regular, we have for all 

x € I:

r * ( x )  < M[f]  /* (« ).

For /  G L P(I),  1 <  p < 00 , we have tha t

11/11 =  n n < i i r i <  9 11/11,
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where q denotes the conjugate index to p (cf Theorem •/.#., p 139 of (B en)). 

Our main reason for using the second rearrangement instead of the first, is the 

following inequality which does not hold in general for the first rearrangement: 

For two functions /,<? G L P(I),  we have

( /+ $ ) * * ( * )  < /**(») +5**(®) 

for all x G /  (cf $6.1., p 125 of (K re )).

We shall need the following compactness principle.

L em m a B .5 . If ( f n ) C L P( I ) is a sequence of nonincreasing nonnegative 

equiintegrable functions, then there exists a subsequence (/(*)) of (f n ) and a 

nonincreasing function /  G LP(I)  such that for any 0 < e < 1:

lim | | /  — /(jb)|| =  0 .k—+oo

P ro o f: Wlog, assume I  — (0,oo). Helly’s theorem (cf Satz 3.2., p 247 of 

(V og)) inductively provides functions f m G Lp( l / m, oo)  for any m > 0 and 

subsequences

(/,<->) C  (/ ,(  —  »)) C . . .  C ( / , ( ! ) )  C ( f n ) ,
i t  i

such tha t for any m > 0 and all continuity points x G (1/m , oo) of f m :

/ 1lm)(as) -> f m(x).
i

Since for 0 < I < k, f k — f l on (1/1, oo) except on an at most countable set, 

we may pointwise define a (measurable) nonincreasing function /  which for 

any m  > 0 equals f m on (l/m ,o o ) except on a countable set.
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Set / ( j.) :=  Then (/(&)) converges pointwise to the measurable func­

tion / .  Since ( f n) is an equiintegrable sequence, we get from Lemma A.2 that 

X[«,oo)/ G Lp(I)  and

l l x lei0o ) / - / ( f c ) l l  - »  0

for any 0 < e. Also, the equiintegrability of (f n) implies its boundedness, say 

||/n || < C for all n. It follows that | | / m|| < C for all m  and /  E Lp( I ) by 

Fatou’s lemma. Thus also | | /  — /(fc)|| —!h 0.

The second lemma deals with an alternate description of equiintegrability 

in terms of rearrangements.

Lem m a B .6 . The following are equivalent for 1 < p < oo:

i) M  C Lp(I)  is equiintegrable.

ii) The set {/* : f  E M }  is norm-compact in Lp(I).

iii) For any sequence ( /„ )  C M  there exist a su&sequence (f(k)) C (f n ) and a 

nonincreasing function f  E LP(I)  such that / ^  < /  for any k.

iv) For any sequence (f n ) C M  there exist a .su&sequence (/(*.)) C (f n ) and a 

nonincreasing function /  G L p( I ) such that < /  for any k.

P ro o f: i) = *  ii) follows from Lemma B.5.

ii) ==> iii) Given a sequence (f n ) C M , we choose by Part ii) a subsequence 

(/(fc)) such tha t / ( fc) -  /  e  L P(I)  in norm. Set h^k) '= f(k) /(fc) A f  where 

/(*fc) A /  denotes the pointwise infimum of and / .

Since ||/*fc) -  / | |  -> 0,

lim ||h(fc)|| =  0
k—̂oo
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and, by taking subsequences (h(i)) again, we obtain that

Y  ||fyi)ll <  oo.
l

Setting F  := /  +  ^  ^ Lp(I),  we see tha t (/(*)) and F  have the

disired properties of P art ii).

iii) = *  iv) / (*fc) < /  implies /**} < /** G LP{I).

iv) =£■ i) If M  C L P(I) were not equiintegrable, we could find e > 0 and

a sequence (f n ) C M  such that

l!X{|/„|>n} fn  II > e-

From Part iv), we obtain a subsequence ( f nk) C (f n) and and an Lp function 

/  such tha t f * k < /** < / .

But then ||x{/>„fc} / | |  > e for any k , contradicting /  G Lp(I).

L em m a B .7 . For any 1 < p < oo, e > 0, let L*( I ) denote the class of 

nonincreasing nonnegative functions /  G Lp( I ) — {0}. Then, for any e > 0, 

there exists a map W e : L*( I ) —> L*(I)  such tha t for any /  G L*( I ):

i) /  <

ii) \\Wf ( f ) \ \ <  (1 +  6) ||/ | | ,

iii) if / i  < f 2 where f i  G L*(I),  then TFf( / i )  < W e( f 2),

iv) if /„  T /  (i-e- f o <  f i  < • • • < / . < • • • < /  and /„  -» / )  where / {, /  G L*(I),

then Wt {fn)  T W€(f) ,

v) W e( f )  is regular and the following inequality holds for any x G I-

f X W t(f)(t )dt  < (1  +  - )  q x W e(f ) (x)
Jo e
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where q is the conjugate index to p (q =  1 if p = oo).

P ro o f: Define T  : LP( I ) -+ LP{I) by Tg{x)  := \  g{t)dt. Then T  is a

bounded linear operator with

im i =  ? « p <
\  1 i f p  =

oo
oo

for any 1 <  p < oo (cf Lemma III.3.9., p 124 °f (B en ) with q =  p = A-1 ). 

Thus, we may define S  ôr any a > q as a bounded linear

operator in Lp(I).

Set W  :=  Wt ( f )  := S f .  Then W ( l - )  >  0 and W(t)dt  < oo are clear. 

Also, Part i) is satisfied.

Since Tg  =  g** for every nonincreasing nonnegative function g G LP(I),  

we see tha t W  is the sum of nonincreasing nonnegative functions and therefore 

nonincreasing itself.

Part iii) follows from T W  < a W , i.e. since T  and S  are bounded (a > q):

°° rp ° o  m n + 1

a W  =  a S f  =  < ■ £ ( - ) " /  >  £  — /  =  TW.
n = 0  n = 0

If we choose a := (1 +  A)g, then

00 T  °° f
ii^ ii = iis/ ii < £  i i ^ r / i i  < £ ( - ^ - r r n /n  < u  + *)ii/n-

°  ^ e + 1

Thus Part ii) is clear.

Part iv) follows from the fact that S' is a positive operator. Part v) is 

immediate, since Part iv) shows W e(fo) < < . . .  < W €(fi) < . . .  <

Wt ( f )  and the continuity of 5  implies W€(fi)  —► W€(f) .

L em m a B .8 . For any 1 < p < oo, e > 0, there is a map h( : L*p(I)  —> 

L*( I ) such tha t for any /  G L p(I)'
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i) /  5; he( f ) ,  and he( f )  is the second rearrangement of a regular function,

ii) | | M / ) I I <  ( l  +  e)5 l l / l l ,

iii) if f i  < f 2 where /,• € L*(I),  then h€{f i )  < h f ( f 2),

iv) if /„  t  /  where / ; , /  e  L*p{I), then h(( f n) |  M / ) >

v) for any 0 < k < p  and any e > max(0 , i*fc/p )» h k(/ )  =  [^e(/)]fc is regular, 

and the following inequalities hold:

" W < / »  ^ +  i  » W < / »  * *  T T T -

P ro o f: The identity W(x)  = x(W**)' (x)  +  W**(x)  (x 6 I) ,  valid for any 

absolutely continuous, in particular any regular function W  € LP(I),  demon­

strates tha t for any 0 < k < oo and 0 < c < 1, the following are equivalent:

[  W(t )dt  < (1 -  c)~J xW(x) 
Jo

x(W**)' (x)  < c
W**(x)

-a[(W '**)fc],(®) < kc.
(w**)k{x)

Set h :=  W**. Then the last inequality is equivalent to

- x ( h k)'{x) < kc hk(x).

For 0 <  k < p we see that

lim t hk(i) = lim <[fF**]fc(t) =  0 ,
1 -fO -f  l - > 0 +
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since X(o,i)W** € L k(I)  if 0 <  k < p. Therefore, assuming kc < 1 and 

0 < k < p, integrating

—x (hk)'(x) < k c h k(x)

by parts gives

f  hk(t)dt < (1 — kc)_1 x h k(x).
Jo

Thus, if W  is regular, then h k =  [W**]fc for 0 < k < p is regular provided 

kc <1 where c is determined by M[W] =  (1 — c)-1 .

Given /  G Lp(I) — {0} and e > 0, let W  =  W€( f )  be the function ob­

tained when Lemma B.7. is applied. Let h =  hf ( f )  := [^(Z)]**- Then 

> 0 and Jo h t ( f ) ( t )dt  <  oo are clear. Parts i), iii) and iv) fol­

low from the corresponding parts of Lemma B.7. and the properties of the 

second rearrangement, in particular its continuity. Part ii) is an immediate 

consequence of Lemma B.7. and Remark B.4.

Finally, we need to show Part v). For 1 < k < p, setting

( 1 - c ) - 1 : = ( !  + -e ) q > M [ W c(f)}

shows

Taking

we see that

e / p + 1
c =

€ + 1

k — 1 e / p  -1-1
( > T ^ k f r  ‘ - ^ T T r  < 1 >-

e +  1
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and thus h£( / )  = [h£( /) ] fc is regular with constant of regularity M[h*(/)] no 

larger than

a  -  kc) -1 -  A 1 ~ k / p ) ~ k + 1)-1 = e + _1______
[ [ e +  l  ’ c( i_j fc/p)_j fe +  i '

For 0 < k < 1, any e > 0 will do. In this case, the regularity of h£( / )  also 

follows from Theorem 1.1.7., p 6 of [Rug].

L em m a B .9 . For any 1 < p < oo, /  G Lp( I ), e > 0 and any bounded 

linear operator T  : LP(I) —> L P(I),  there exists a nonincreasing function F  G 

Lp( I ) such that

i) (TF)** < (1 +  I )  g ||T|| • F ,

ii) \\F\\ < ( l  +  e) ||/ | |,  and f < F ,

where || || denotes the norm on L p( I ) and q is the conjugate index to p. 

P ro o f: Assume T  ^  0. Define inductively for any n  >  0 the operators

Tn : LP(I)  -  LP(I)

by T i f  := (Tf)** and Tn+1f  (T(Tnf))**.  Then (Tn ) is a sequence of 

bounded linear operators in LP(I),  and a simple estimate shows that

iiTn/n < gnim ni / i i ,

where q denotes the conjugate index to 1 < p < oo. Set

OO

F1 := 5 > " r n+1/ ,
n=0

where

a :=
(i + e )9 ||r ||-



Then

OO OO
(TF)** = (]Tan:r(:rn/)r* < Y , * n(T(Tnf ) )
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