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Lp REGULARITY OF WEIGHTED BERGMAN PROJECTIONS

YUNUS E. ZEYTUNCU

Abstract. We investigate Lp regularity of weighted Bergman projections on
the unit disc and Lp regularity of ordinary Bergman projections in higher
dimensions.

1. Introduction

1.1. Setup and problems. Let Ω be a domain in Cn and μ(z) be a non-negative
measurable function on Ω. Let L2(Ω, μ) denote the space of square-integrable func-
tions on Ω with respect to the measure μ(z)dA(z) where dA(z) is the ordinary
Lebesgue measure. We call μ(z) a weight on Ω and L2(Ω, μ) the weighted L2 space
of Ω. L2(Ω, μ) is a Hilbert space with the inner product:

〈f, g〉μ =

∫
Ω

f(z)g(z)μ(z)dA(z),

and the norm:

||f ||22,μ =

∫
Ω

|f(z)|2 μ(z)dA(z).

Let L2
a(Ω, μ) denote the subspace of holomorphic functions in L2(Ω, μ). This sub-

space may be trivial or finite dimensional depending on the weight μ. In such a case
the main problem of this paper becomes trivial. It will be clear from the context
that L2

a(Ω, μ) will be always infinite dimensional for all weights considered in this
paper.

Definition 1.1. A weight μ is said to be an admissible weight on Ω if for any
compact subset K of Ω, there exists CK > 0 such that

sup
z∈K

|f(z)| ≤ CK ||f ||2,μ

for all f ∈ L2
a(Ω, μ).

For instance if μ is continuous and never vanishes inside Ω (it can still vanish on
the boundary), then it satisfies the inequality above and therefore it is admissible.
It is easy to see that if μ is admissible, then L2

a(Ω, μ) is a closed subspace of L2(Ω, μ)
and all point evaluation maps are continuous. See [PW90] for this definition and
some sufficient conditions. In this note, all weights are admissible.

When L2
a(Ω, μ) is a closed subspace of L2(Ω, μ) there exists the orthogonal pro-

jection operator that we call the weighted Bergman projection:

BΩ,μ : L2(Ω, μ) → L2
a(Ω, μ).
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This projection is an integral operator with the kernel, called the weighted Bergman
kernel, denoted by BΩ,μ(z, w):

BΩ,μf(z) =

∫
Ω

BΩ,μ(z, w)f(w)μ(w)dA(w).

When μ(z) ≡ 1, we call the weighted projection the ordinary Bergman projection
of Ω. We denote the space of weighted p-integrable functions by Lp(Ω, μ) for
p ∈ [1,∞) and the weighted Lp norm by ||.||p,μ.

The Bergman projection BΩ,μ is a canonical object on the weighted space (Ω, μ)
and it is a fundamental question how perturbations of the domain Ω or the weight
μ change the analytic properties of this canonical object. In this note, we are
particularly interested in the following problem.

Lp Regularity Problem. For a given domain Ω and a weight μ on Ω,
determine values of p ∈ (1,∞) such that the weighted Bergman projection
BΩ,μ is bounded from Lp(Ω, μ) to itself.

Note that, by duality and self-adjointness, if BΩ,μ is bounded on Lp0(Ω, μ) for
some p0 > 2, then it is also bounded on Lq0(Ω, μ) where 1

p0
+ 1

q0
= 1. Further, by

interpolation, BΩ,μ is also bounded on Ls(Ω, μ) for any q0 ≤ s ≤ p0.

1.2. Background. This problem is investigated in various forms in the literature.
We mention a few results that motivate our work in this note.

For Ω = D the unit disc in C
1 and radial weights μ(z) = (1−|z|2)t for t > −1, the

corresponding weighted Bergman projections are bounded on Lp
(
D, (1− |z|2)t

)
for

any p ∈ (1,∞). This can be proven either by Schur’s lemma (see [FR75] or [Zhu07])
or by singular integral theory (see [McN94]). The same conclusion is also true for
weights that are comparable to the weights above (see [Zey10b] and [Zey10a]). On
the other hand, in [Dos04] there are examples of radial weights μ on D such that
the weighted projections are bounded on Lp(D, μ) only if p = 2.

In higher dimensions, [PS77], [McN94], [MS94] and [CD06] contain some basic
Lp regularity results in the unweighted case. In these articles, it is shown that if Ω
is a strongly pseudoconvex domain or a smoothly bounded convex domain of finite
type in Cn or a smoothly bounded pseudoconvex domain of finite type in C2 or
a decoupled domain in Cn, then the ordinary Bergman projection BΩ is bounded
from Lp(Ω) to Lp(Ω) for any p ∈ (1,∞). As for Lp irregularity results in higher
dimensions, [Bar84] and [KP07] contain the main examples. In [Bar84], Barrett
gives an example of a smoothly bounded non-pseudoconvex domain D in C2 such
that the ordinary projection BD is not bounded on Lp(D) for p ≥ 2+ 1

k where k is a
positive integer depending on the domain. In a recent series of papers, [KP07] and
[KP08], Krantz and Peloso show that on the non-smooth worm domain Dβ ⊂ C2,
the ordinary projection BDβ

is bounded on Lp(Dβ) only if p ∈ ( 2
1+vβ

, 2
1−vβ

) where

vβ is determined by winding of the domain Dβ. Recently in [BŞ10], the authors
obtained irregularity results for the Bergman projections of some higher dimensional
versions of worm domains in Cn, n ≥ 3.

1.3. Outline and results. This paper consists of two parts. In the first part
(Sections 2 and 3), we focus on the case Ω is the unit disc D in C1 and we vary the
weight μ on D. We investigate how Lp mapping properties of weighted Bergman
projections change as weights change on D. In the second part (Section 4), we
focus on ordinary Bergman projections of higher dimensional domains, i.e., the
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weight is fixed to Lebesgue measure and the domain is perturbed. In this part,
we apply Forelli-Rudin’s inflation idea to weighted examples in the first part to
construct domains in C

2 whose ordinary Bergman projections exhibit irregularities
in Lp scale. The following two theorems formulate weighted results.

Theorem 1.2. If λ is a radial weight on D which satisfies †

(1) λ(r) is a smooth function on [0, 1],

(2) λ(n)(1) := dn

drnλ(1) = 0 for any n ∈ N,

(3) for any n ∈ N there exists an ∈ (0, 1) such that (−1)nλ(n)(r) is non-negative
on the interval (an, 1).

Then the weighted Bergman projection Bλ is bounded from Lp(D, λ) to Lp(D, λ)
only for p = 2.

The conditions in Theorem 1.2 can be checked for particular weights and we do
this in the corollary following the proof in the second section. In particular, we
recover and extend the result in [Dos04]. The proof uses successive integration by
parts to compute the asymptotics of the moment function of weight λ. The infinite
order vanishing of λ is crucial to integrate by parts infinitely many times.

Theorem 1.3. For any given p0 > 2 there exists a weight μ0 on D such that
the weighted projection Bμ0

is bounded on Lp(D, μ0) only if p ∈ (q0, p0), where
1
p0

+ 1
q0

= 1.

This theorem is the first appearance of weights of this type. The proof is con-
structive and weights are explicitly written down. One key ingredient of the proof
is the Bekollé-Bonami condition. Lanzani and Stein present a clear explanation of
this condition in [LS04].

In Section 4, by using the weighted results on D, we construct domains in C2

with irregular ordinary Bergman projections. The following theorems formulate
these constructions.

Theorem 1.4. There are bounded domains Ω in C
2 such that the ordinary Bergman

projections of these domains Ω are bounded on Lp(Ω) only for p = 2.

The remarks at the end of Barrett’s paper [Bar84] contain an example of a
similar domain that is smoothly bounded but not complete Hartogs. The domains
we construct here are even Reinhardt but do not have smooth boundary.

Additionally, the domains in Theorem 1.4 are simply connected. This highlights
one more difference between one complex variable and several complex variables.
In [LS04] and [Hed02], it is shown that there exists a universal constant r > 2 such
that the ordinary Bergman projection of any simply connected proper domain D in
C1 is bounded from Lp(D) to Lp(D) at least for any p ∈ (r′, r), where 1

r′ +
1
r = 1.

We see that in C
n for n ≥ 2 there exists no such a universal constant.

Theorem 1.5. For any given p0 > 2, there is a bounded domain Ω0 in C
2 such

that the ordinary Bergman projection BΩ0
is bounded on Lp(Ω0) only if p ∈ (q0, p0),

where 1
p0

+ 1
q0

= 1.

†Here, we abuse the notation and consider λ as a function on [0, 1] and by λ(z) we mean λ(|z|).
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The main difference between this theorem and other Lp irregularity results in
the literature is the regularity part of the statement. Namely, we not only prove
unboundedness but also prove that Bergman projection is bounded for a certain
range.

The content of this paper is a part of the author’s Ph.D. dissertation at The Ohio
State University. The author thanks J.D. McNeal, his advisor, for introducing him
to this field and helping him with various points. The author thanks K. Koenig
for helpful suggestions during this project and the anonymous referee for helpful
recommendations to improve the presentation of the paper.

2. Proof of Theorem 1.2

The first examples of weights of kind in Theorem 1.2 appear in [Dos04]. Before
the proof of Theorem 1.2, we present the following corollary to give explicit examples
of weights satisfying the properties listed in the theorem.

Corollary 2.1. Let

(2.2) λ(r) = (1− r2)A exp

(
−B

(1− r2)α

)
for some A ≥ 0, B > 0, α > 0. Then λ satisfies the conditions listed in Theorem 1.2
and Bλ is bounded from Lp(λ) to Lp(λ) only for p = 2 and unbounded for p ∈ (1, 2).

The claim of the corollary was first proven in [Dos04] with the restriction 0 <
α ≤ 1.

Proof. We have to check the functions defined by (2.2) satisfy the properties in
Theorem 1.2. The first two conditions follow immediately and the last one can be
seen by a careful look at the successive derivatives. We do this here only for the
special case A = 0, B = 1, α = 1 and the general case follows similarly. We have

λ(r) = exp

(
−1

1− r2

)
,

λ′(r) =

(
−2r

(1− r2)2

)
exp

(
−1

1− r2

)
,

...

λ(n)(r) =

(
(−2r)n

(1− r2)2n
+ lower order terms

)
exp

(
−1

1− r2

)
.

As r gets closer to 1, the dominant term in the parentheses is (−2r)n

(1−r2)2n and this

term satisfies the third condition. �

Proof of Theorem 1.2. It is clear that the weighted projection Bλ is bounded for
p = 2, so in order to prove the theorem, we have to show unboundedness for
1 < p < 2.

Step 1. Analyze the moment function Φ(x) =
∫ 1

0
r2x+1λ(r)dr, for x ≥ 0.
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For any n > 0 we integrate by parts to obtain

Φ(x) =

∫ 1

0

r2x+1λ(r)dr =
1

2x+ 2

∫ 1

0

r2x+2(−1)λ(1)(r)dr

=
...

=
1

2x+ 2
. . .

1

2x+ 1 + n

∫ 1

0

r2x+1+n(−1)nλ(n)(r)dr.

For convenience we use notation ψn(r) = (−1)nλ(n)(r) and

Φn(x) =

∫ 1

0

r2x+1+nψn(r)dr.

Therefore, for any n > 0,

(2.3) Φ(x) =
1

2x+ 2
. . .

1

2x+ 1 + n
Φn(x).

At this stage we need the third condition of the theorem because we do not know if
Φn(x) is log-convex. Since ψn(r) is not necessarily non-negative on (0, 1) we cannot
use Hölder’s inequality. Fortunately, we know that ψn(r) is non-negative on (an, 1)

and for large values of x, two integrals
∫ 1

0
r2x+1+nψn(r)dr and

∫ 1

an
r2x+1+nψn(r)dr

are almost the same.
To make this point rigorous, we define

(2.4) Φ̃n(x) =

∫ 1

an

r2x+1+nψn(r)dr.

Note that ∣∣∣∣∣Φn(x)

Φ̃n(x)
− 1

∣∣∣∣∣ =
∣∣∣∣∣
∫ an

0
r2x+1+nψn(r)dr∫ 1

an
r2x+1+nψn(r)dr

∣∣∣∣∣
≤

∫ an

0
r2x+1+n|ψn(r)|dr∫ 1

an
r2x+1+nψn(r)dr

≤ max
0≤s≤an

|ψn(s)|
∫ an

0
r2x+1+ndr

a2x+1+n
n

∫ 1

an
ψn(r)dr

=
max0≤s≤an

|ψn(s)|∫ 1

an
ψn(r)dr

a2x+2+n
n

2x+2+n

a2x+1+n
n

=
max0≤s≤an

|ψn(s)|∫ 1

an
ψn(r)dr

an
2x+ 2 + n

= C(n)
1

2x+ 2 + n
.

Thus, for any n > 0,

(2.5) lim
x→∞

Φn(x)

Φ̃n(x)
= 1.
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If we combine (2.3) and (2.5), we get for any n > 0, there exists X(n) such that for
any x > X(n) we have
(2.6)

1

2

(
1

2x+ 2
. . .

1

2x+ 1 + n
Φ̃n(x)

)
≤ Φ(x) ≤ 2

(
1

2x+ 2
. . .

1

2x+ 1 + n
Φ̃n(x)

)
.

Again, for convenience label Θn(x) = 1
2x+2 . . .

1
2x+1+n Φ̃n(x) and write Θn(x) =

e−θn(x).
We also note that by Hölder’s inequality, for any 0 < t < 1 and x, y > 0, we have

Φ̃n(tx+ (1− t)y) =

∫ 1

an

r2tx+2(1−t)y+1+nψn(r)dr

=

∫ 1

an

(
r2x+1+nψn(r)

)t (
r2y+1+nψn(r)

)1−t
dr

≤
(∫ 1

an

r2x+1+nψn(r)dr

)t (∫ 1

an

r2x+1+nψn(r)dr

)1−t

=
(
Φ̃n(x)

)t (
Φ̃n(y)

)1−t

.

Thus, log Φ̃n(x) is convex.

Step 2. A specific sequence of functions.

We take k,m ∈ N and consider the action of Bλ on functions zkmz̄m. A simple
calculation shows that

Bλ(z
kmz̄m) =

Φ(km)

Φ ((k − 1)m)
z(k−1)m.

Now we focus on the following ratio

Rk(m) =
||Bλ(z

kmz̄m)||pp,λ
||zkmz̄m||pp,λ

=

(
Φ(km)

Φ ((k − 1)m)

)p ||z(k−1)m||pp,λ
||zkmz̄m||pp,λ

=

(
Φ(km)

Φ ((k − 1)m)

)p Φ( p2 (k − 1)m)

Φ( p2 (k + 1)m)
.

Given 1 < p < 2, fix k > 2+p
2−p independent of m. This choice of k gives us the

following inequalities

(2.7)
p

2
(k − 1)m <

p

2
(k + 1)m < (k − 1)m < km.

By (2.6) we know that for any n > 0 there exists M(n) such that for all m > M(n)
we have

Rk(m) ≥ C(p)

(
Θn(km)

Θn ((k − 1)m)

)p Θn(
p
2 (k − 1)m)

Θn(
p
2 (k + 1)m)

= C(p) exp
[
pθn ((k−1)m)−pθn (km)+θn

(p
2
(k+1)m

)
−θn

(p
2
(k−1)m

)]
= C(p) exp [−pmθ′n(vm) + pmθ′n(wm)]

= C(p) exp [−pm(vm − wm)θ′′n(um)]
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where we used the mean value theorem twice and wm ∈ ( p2 (k − 1)m, p2 (k + 1)m),
vm ∈ ((k − 1)m, km) and um ∈ (wm, vm). Further note that wm, vm, um and
vm − wm are comparable to m, where the comparison constants only depend on p
(they also depend on k but recall k is fixed and it depends on p). Therefore, for all
m > M(n),

(2.8) Rk(m) ≥ C(p) exp[−D(p)u2
mθ′′n(um)]

where C(p) and D(p) are strictly positive constants that depend only on p.

Step 3. Second derivative of θn(x).

Now we consider θ′′n(x), for any n > 0. We have

θn(x) = − logΘn(x)

= log(2x+ 2) + · · ·+ log(2x+ 1 + n)− log Φ̃n(x).

This implies

−x2θ′′n(x) = 4

(
x2

(2x+ 2)2
+ · · ·+ x2

(2x+ 1 + n)2

)
+ x2[log Φ̃n(x)]

′′.

Note that x2

(2x+1+n)2 ≥ 1
8 for sufficiently large x (for fixed n), and if we use the fact

that log Φ̃n(x) is convex, then for any n > 0 there exists X(n) > 0 such that for all
x > X(n) we have

(2.9) −x2θ′′n(x) ≥ 4

(
1

8
+ · · ·+ 1

8

)
=

n

2
.

If we combine this estimate with the inequality (2.8) we obtain that for any n > 0
there exists M(n, p) such that for all m > M(n, p) we have

Rk(m) ≥ C(p) exp[D(p)
n

2
].

This certainly implies that for any 1 < p < 2,

lim
m→∞

Rk(m) = ∞

and this concludes the proof. �

Note that if p = 2, then we cannot have (2.7) and further one can easily see that
R(k,m) ≤ 1 for any k,m > 0 by Hölder’s inequality. This complies with the fact
that Bλ is bounded if p = 2.

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We use a theorem of Bekollé-Bonami
which was announced in [BB78] and explained well in [LS04] and [Bor04]. This
theorem is similar to Muckenhoupt’s Ap condition for the Hilbert transform. For
Ap weights, see [Muc72] and [CF74].

One point to distinguish between the discussion here and the classification result
of Bekollé-Bonami is that in our work the projection operator changes as the weight
changes. However, in [BB78] or [LS04], the (ordinary) projection operator is fixed
and only the function spaces change as the weight changes.

We start with copying the following definition and the theorem from [LS04]. We
use R2

+ to denote the upper half plane {z ∈ C1 : �(z) > 0}.
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Definition 3.1. A weight μ on R2
+ is said to be in class A+

p (R
2
+) if there exists

C > 0 such that for any disc D = D(x0, R), where x0 ∈ R and R > 0, we have

(3.2)
1

|D ∩ R2
+|p

∫
D∩R

2
+

μ(z)dA(z)

(∫
D∩R

2
+

μ(z)
1

1−p dA(z)

)p−1

≤ C.

Here |.| denotes standard Lebesgue measure.

Theorem 3.3. (Bekollé and Bonami - Lanzani and Stein) Let μ be a weight on
R2

+, then P1
† is bounded from Lp(R2

+, μ) to Lp(R2
+, μ) if and only if μ ∈ A+

p (R
2
+).

Proof. See [LS04, Proposition 4.5]. �

The goal in the present section is to relate this result to weighted Bergman pro-
jections. Unfortunately, it is not simple to do this for an arbitrary weight μ since
it is not simple to relate the weighted Bergman projection Bμ and the ordinary
Bergman projection B1 in general. But the good news is that this relation is pos-
sible if we focus on weights μ of the form μ = |g|2 for a non-vanishing holomorphic
function g on D. The following theorem expresses this idea.

For the rest of this section, let φ(ζ) = i−ζ
i+ζ be the biholomorphism from R2

+ to

D, and ψ be the inverse of φ.

Theorem 3.4. Let g be a holomorphic function on D which does not vanish inside
D. Let ω = |g|2 be the weight and p ∈ (1,∞). Then the following are equivalent:

(1) B|g|2 is bounded from Lp(D, |g|2) to Lp(D, |g|2),
(2) B1 is bounded from Lp(D, |g|2−p) to Lp(D, |g|2−p),
(3) P1 is bounded from Lp(R2

+, |(g ◦ φ)φ′|2−p) to Lp(R2
+, |(g ◦ φ)φ′|2−p),

(4) |(g ◦ φ)φ′|2−p ∈ A+
p (R

2
+).

Proof. The equivalence of (3) and (4) is nothing but Theorem 3.3.
Let’s look at the equivalence of (2) and (3). A more general form of this equiv-

alence can be proved. Namely, if μ is a weight on D, then the following two are
equivalent:

• B1 is bounded on Lp(D, μ),
• P1 is bounded on Lp(R2

+, (μ ◦ φ)|φ′|2−p).

Put Λ(ν) = (μ ◦ φ(ν))|φ′(ν)|2−p, and let B1(z, w) and P1(ζ, ν) be the ordinary
Bergman kernels on D and R

2
+, respectively. The following transformation formulas

are well known:

P1(ζ, ν) = φ′(ζ) B1 (φ(ζ), φ(ν)) φ′(ν),

B1(z, w) = ψ′(z) P1 (ψ(z), ψ(w)) ψ′(w).

Take f ∈ Lp(R2
+,Λ) and change variables to obtain∫

R
2
+

|f(ν)|pΛ(ν)dA(ν) =

∫
R

2
+

|f(ν)|p(μ ◦ φ(ν))|φ′(ν)|2−pdA(ν)

=

∫
D

|f(ψ(w))|p|ψ′(w)|pμ(w)dA(w).

†In this section, P1 denotes the ordinary Bergman projection on R2
+.
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Thus, (f ◦ ψ)ψ′ ∈ Lp(D, μ). Now we consider the action of projection operators

B1 [f(ψ(w)ψ
′(w)] (z) =

∫
D

B1(z, w)f(ψ(w))ψ
′(w)dA(w)

=

∫
R

2
+

B1(z, φ(ν))f(ν)φ′(ν)dA(w).

This implies

B1 [f(ψ(w))ψ
′(w)] (φ(ζ)) =

∫
R

2
+

B1(φ(ζ), φ(ν))f(ν)φ′(ν)dA(w)

=
1

φ′(ζ)

∫
R

2
+

P1(ζ, ν)f(ν)dA(ν)

=
1

φ′(ζ)
P1f(ζ).

We assume that B1 is bounded on Lp(D, μ) and prove that P1 is bounded on
Lp(R2

+,Λ) as follows

||P1f ||pp,Λ =

∫
R

2
+

|P1f(ζ)|p Λ(ζ)dA(ζ) =

∫
R

2
+

|P1f(ζ)|p (μ ◦ φ(ζ))|φ′(ζ)|2−pdA(ζ)

=

∫
R

2
+

|φ′(ζ)|p |B1 [f(ψ)ψ
′] (φ(ζ))|p (μ ◦ φ(ζ))|φ′(ζ)|2−pdA(ζ)

=

∫
D

|B1 [f(ψ)ψ
′] (z)|p μ(z)dA(z) (use boundedness)

≤ C

∫
D

|f(ψ)ψ′|p μ(z)dA(z)

= C

∫
R

2
+

|f(ζ)|p(μ ◦ φ(ζ))|φ′(ζ)|2−pdA(ζ)

≤ C||f ||pp,Λ.

The same arguments above similarly prove that boundedness of P1 implies bound-
edness of B1. Therefore, we finish the proof of the equivalence of (2) and (3).

Next, we prove the equivalence of (1) and (2). We start with an identity between
the kernels. Let Bω(z, w) be the weighted Bergman kernel (ω = |g|2). By using the
orthonormal representation for the kernel we obtain

(3.5) g(z)Bω(z, w)g(w) = B1(z, w).

Indeed, if {en(z)} is an orthonormal basis for L2
a(1), then { en(z)

g(z) } is an orthonormal

basis for L2
a(ω).

By using this relation between the kernels we obtain the following relation be-
tween the operators

(3.6) g(z)(Bωf)(z) = (B1(f.g))(z) for f ∈ L2(ω).
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Suppose (2) is true. Then

||Bωf ||pp,ω =

∫
D

|(Bωf)(z)|p|g(z)|2

=

∫
D

|(B1(f.g))(z)|p|g(z)|2−p = ||B1(f.g)||pp,|g|2−p

� ||f.g||pp,|g|2−p = ||f ||pp,ω
and (1) follows. Now suppose (1) is true. Then

||B1f ||pp,|g|2−p =

∫
D

|(B1f)(z)|p|g(z)|2−p

=

∫
D

|(Bω(f/g))(z)|p|g(z)|2 = ||Bω(
f

g
)||pp,ω

� ||f
g
||pp,ω = ||f ||pp,|g|2−p

and (2) follows. This finishes the proof of the equivalence of (1) and (2). �

Remark 1. Absence of a relation of the form (3.6) for an arbitrary weight μ is the
main difficulty to generalize Theorem 3.4 to larger classes of weights.

Just for clarity, we rewrite the first and the last condition in Theorem 3.4 as
follows.

Corollary 3.7. Let F be a non-vanishing holomorphic function on R2
+ and let

ω(z) = |(F ◦ ψ(z))ψ′(z)|2, then Bω is bounded on Lp(D, ω) if and only if |F |2−p ∈
A+

p (R
2
+).

The next corollary gives explicit examples of weights in Theorem 1.3.

Corollary 3.8. Let F (ζ) = ζ2/3 for ζ ∈ R2
+ and ω = |(F ◦ ψ(z))ψ′(z)|2. The

weighted projection Bω is bounded on Lp(ω) for p ∈ ( 54 , 5) and unbounded for any
other values of p.

It is easy to see that the exponent 2
3 is not special. We can generalize the corollary

so that for any given p0 > 2 we can find a weight function ω0 (take F (ζ) = ζ
2

p0−2 )
for which the boundedness range is exactly (q0, p0). This proves Theorem 1.3 stated
in the Introduction.

Proof. By Corollary 3.7, we need to check for which values of p,

|ζ| 23 (2−p) ∈ A+
p (R

2
+).

We start with p ≥ 5. In this case, 2
3 (2− p) = −2− 2ε for some ε ≥ 0. Also we take

D1 = D(0, 1) ∩ R2
+ then∫

D1

|ζ| 23 (2−p)dA(ζ) = c

∫ 1

0

r−2−2εrdr = ∞.

This shows that the A+
p (R

2
+) inequality fails and |ζ| 23 (2−p) �∈ A+

p (R
2
+) for p ≥ 5.

Consequently, Bω is unbounded on Lp(ω) for p ≥ 5. The next step is 2 ≤ p < 5. In
this case, 2

3 (2− p) = −2+2ε for some ε > 0. Given any D2 = D(x0, R), for x0 ∈ R

and R > 0. There are two possibilities: either D2 ∩D(0, 2R) is empty or not.
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Suppose D2 ∩D(0, 2R) is not empty; then clearly D2 ⊂ D(0, 4R), and

1

|D2 ∩ R2
+|p

∫
D2∩R

2
+

|F (z)|2−pdA(z)

(∫
D2∩R

2
+

|F (z)|
2−p
1−p dA(z)

)p−1

≤ c

R2p

∫
D(0,4R)∩R

2
+

|F (z)|2−pdA(z)

(∫
D(0,4R)∩R

2
+

|F (z)|
2−p
1−p dA(z)

)p−1

=
c

R2p

∫ 4R

0

r−2+2εrdr

(∫ 4R

0

r
2−2ε
4−3ε rdr

)4−3ε

=
c

R2p
R2εR10−8ε

= c.

This implies the supremum over discs of this type is finite.
Suppose D2 ∩D(0, 2R) is empty; then clearly |z| ∼ |x0| for any z ∈ D2, and

1

|D2 ∩ R2
+|p

∫
D2∩R

2
+

|F (z)|2−pdA(z)

(∫
D2∩R

2
+

|F (z)|
2−p
1−p dA(z)

)p−1

≤ c

R2p

∫
D2∩R

2
+

|x0|
2
3 (2−p)dA(z)

(∫
D2∩R

2
+

|x0|
2(2−p)
3(1−p) dA(z)

)p−1

=
c

R2p
|D2||x0|−2+2ε|D2|4−3ε|x0|2−2ε

= c.

This again implies that the supremum over discs of this type is finite. These two
cases show that for 2 ≤ p < 5, |ζ|2−p ∈ A+

p (R
2
+). Consequently, Bω is bounded on

Lp(ω) for 2 ≤ p < 5.
This with the duality and the self-adjointness of Bω finish the proof of Corollary

3.8. �

Remark 2. The weight ω in Corollary 3.8 is unbounded on D. But if we take

F (ζ) = −2i
(i+ζ)2

(
−2ζ
i+ζ

)2/3

, then ω(z) = |z− 1|4/3 is a bounded function on D and the

conclusion of Corollary 3.8 holds for this choice, too. The proof works the same
way. See Appendix A for details.

4. Domains with irregular Bergman projections

In this section, we lift up the results of the previous chapters to C2. For a given
weight μ on D we define the following domain in C

2,

(4.1) Ω = {(z, w) ∈ C
2 | z ∈ D, |w|2 < μ(z)}.

Let BΩ be the ordinary Bergman projection of Ω,

BΩ : L2(Ω) → L2
a(Ω),

(BΩF ) (z, w) =

∫
Ω

BΩ [(z, w), (t, s)]F (t, s)dV (t, s).
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Proposition 4.2. We have the following relation between the kernels

(4.3) BΩ [(z, w), (t, s)] =
1

2π

∞∑
m=0

(2m+ 2)wmKm(z, t)sm

where Km(z, t) is the weighted Bergman kernel for the weight μm+1 on D.

Proof. See [FR75], [Lig89] or [BFS99]. This relation is sometimes called the Forelli-
Rudin formula or inflation principle. �

In particular, πBΩ [(z, 0), (t, 0)] = K0(z, t) = Bμ(z, t) in our earlier notation.
This relation between the kernels can be used to relate the Lp mapping properties

of the projections.

Proposition 4.4. For a given p ∈ (1,∞), suppose that Bμ is unbounded on
Lp(D, μ), then BΩ is also unbounded on Lp(Ω).

Proof. Unboundedness of Bμ on Lp(D, μ) implies that there exists a sequence of
functions {fn(z)} in Lp(μ) such that the ratio

||Bμfn||pp,μ
||fn||pp,μ

is unbounded. Define Fn(z, w) = fn(z). Clearly

fn ∈ Lp(μ) =⇒ Fn ∈ Lp(Ω) and ||fn||pp,μ = π||Fn||pp,Ω.
The projections of Fn and fn are related as

BΩFn(z, 0) =

∫
Ω

BΩ [(z, 0), (t, s)]Fn(t, s)dV (t, s)

=

∫
Ω

BΩ [(z, 0), (t, s)] fn(t)dV (t, s)

=

∫
D

fn(t)

∫
|s|2<μ(t)

BΩ [(z, 0), (t, s)] dA(s)dA(t)

=

∫
D

fn(t)cBΩ [(z, 0), (t, 0)] dA(t)

=

∫
D

fn(t)cBμ(z, t)dA(t)

= cBμfn(z).

Here we use the fact that BΩ [(z, 0), (t, s)] is anti-holomorphic in s, therefore the
mean value property holds in s. In order to compare the Lp norms of the projections
we argue as follows

||BΩFn||pp,Ω =

∫
Ω

|BΩFn(z, w)|pdV (z, w)

=

∫
D

∫
|w|2<μ(z)

|BΩFn(z, w)|pdA(w)dA(z)

≥
∫
D

|BΩFn(z, 0)|pμ(z)dA(z) by the sub-mean value property

= c

∫
D

|Bμfn(z)|pμ(z)dA(z) by the identity above

= c||Bμfn||pp,μ.
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Therefore, the ratio

||BΩFn||pp,Ω
||Fn||pp,Ω

is unbounded, too. This finishes the proof. �

We do not know if the converse of this theorem is true in general. Although
constructing a bad sequence of functions on Ω from the one on (D, μ) works fine,
we do not know how to control all the projections on Ω by just the projections on
(D, μ). Nevertheless, again there is a certain class of μ for which we can prove the
converse.

Proposition 4.5. Let g be a holomorphic function on D which does not vanish
inside D and let ω = |g|2 be the weight. Suppose Bω is bounded on Lp(ω) for some
p ∈ (1,∞), then BΩ is also bounded on Lp(Ω), where Ω = {(z, w) ∈ C2 | z ∈
D, |w|2 < ω(z)}.

Proof. Recall that Km(z, t) is the weighted Bergman kernel for the weight
|g(z)|2(m+1) so we can apply observation (3.5) to the kernels Km(z, t),

Km(z, t) =
1

g(z)m+1
B1(z, t)

1

g(t)m+1

=
1

g(z)m
Bω(z, t)

1

g(t)m
.

Hence, we get

BΩ [(z, w), (t, s)] = Bω(z, t)
∞∑

m=0

(2m+ 2)

(
ws

g(z)g(t)

)m

= Bω(z, t)B1

(
w

g(z)
,

s

g(t)

)
.

We recognize the sum as the representation of the ordinary Bergman kernel on
D (up to a constant). Therefore, we can express BΩ as a combination of operators
involving Bω and B1.

Indeed, by the integral representation of BΩ and the identity for BΩ above,

BΩF (z, w) =

∫
Ω

BΩ [(z, w), (t, s)]F (t, s)dV (t, s)

=

∫
Ω

Bω(z, t)B1

(
w

g(z)
,

s

g(t)

)
F (t, s)dV (t, s)

=

∫
D

Bω(z, t)

∫
|s|2<|g(t)|2

B1

(
w

g(z)
,

s

g(t)

)
F (t, s)dA(s)dA(t)

=

∫
D

Bω(z, t)

∫
D

B1

(
w

g(z)
, σ

)
F (t, g(t)σ)|g(t)|2dA(σ)dA(t)

where we make the change of variable σ = s
g(t) . Next, we compute ||BΩF ||pp,Ω by

using this identity and writing the integral on Ω as an iterated integral and making
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the change of variable u = w
g(z) ,

||BΩF ||pp,Ω =

∫
Ω

|BΩF (z, w)|pdV (z, w)

=

∫
D

∫
|w|2<|g(z)|2

|BΩF (z, w)|pdA(w)dA(z)

=

∫
D

∫
|w|2<|g(z)|2

·
∣∣∣∣∫

D

Bω(z, t)

∫
D

B1(
w

g(z)
, σ)F (t, g(t)σ)|g(t)|2dA(σ)dA(t)

∣∣∣∣p dA(w)dA(z)

=

∫
D

∫
D

∣∣∣∣∫
D

Bω(z, t)

∫
D

B1(u, σ)F (t, g(t)σ)|g(t)|2dA(σ)dA(t)

∣∣∣∣p dA(u)|g(z)|2dA(z).

We change the order of integration and integrate with respect to z first. Also,
we notice that the expression in braces below is the weighted p-norm of a projected
function. Furthermore, Bω is Lp-bounded (by the hypothesis), so we get

||BΩF ||pp,Ω =

∫
D

·
{∫

D

∣∣∣∣∫
D

Bω(z, t)

[∫
D

B1(u, σ)F (t, g(t)σ)dA(σ)

]
|g(t)|2dA(t)

∣∣∣∣p|g(z)|2dA(z)

}
dA(u)

�
∫
D

∫
D

∣∣∣∣∫
D

B1(u, σ)F (t, g(t)σ)dA(σ)

∣∣∣∣p |g(t)|2dA(t)dA(u).

Once again, we change the order of integration and integrate with respect to u
first. We notice the same thing above for B1 now, i.e., the expression in braces is
the weighted p-norm of a projected function and B1 is Lp-bounded, so we get

||BΩF ||pp,Ω �
∫
D

∫
D

∣∣∣∣∫
D

B1(u, σ)F (t, g(t)σ)dA(σ)

∣∣∣∣p |g(t)|2dA(t)dA(u)

�
∫
D

∫
D

|F (t, g(t)σ)|p dA(σ)|g(t)|2dA(t)

=

∫
D

∫
|s|2<|g(t)|2

|F (t, s)|p dA(s)dA(t)

=

∫
Ω

|F (t, s)|pdV (t, s)

= ||F ||pp,Ω.
Therefore, we finally get

||BΩF ||pp,Ω � ||F ||pp,Ω.
Note that to justify the changes of order of integrations, we can start with a

polynomial F and use the fact that polynomials in (z, z̄, w, w̄) are dense in Lp(Ω).
�

When we combine the last two theorems we get the following corollary.

Corollary 4.6. Let g be a holomorphic function on D which does not vanish inside
D and let ω = |g|2 be the weight. Then Bω is bounded on Lp(ω) for some p ∈ (1,∞)
if and only if BΩ is bounded on Lp(Ω).
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This corollary with the weights constructed in Corollary 3.8 and in Remark 2
establishes the proof of Theorem 1.5. In particular, for any p0 > 2 if

Ωp0
=

{
(z, w) ∈ C

2 | z ∈ D, |w|2 < |z − 1|
4

p0−2

}
.

Then the ordinary Bergman projection of Ωp0
is bounded on Lp(Ωp0

) if and only if
p ∈ (q0, p0).

Proposition 4.4 combined with the examples of weights in Theorem 1.2 proves
Theorem 1.4. In particular, for any A ≥ 0, B > 0, α > 0 if

ΩA,B,α =

{
(z, w) ∈ C

2 | z ∈ D, |w|2 < (1− |z|2)A exp

(
−B

(1− |z|2)α

)}
.

Then the ordinary Bergman projection of ΩA,B,α is bounded on Lp(ΩA,B,α) if and
only if p = 2.

Appendix A. Details of Remark 2

Let F (ζ) = −2i
(i+ζ)2

(
−2ζ
i+ζ

) 2
p0−2

for some p0 > 2. F is a non-vanishing holomorphic

function on R2
+. For this choice of F , we get ω = |(F ◦ ψ(z))ψ′(z)|2 = |z − 1|

4
p0−2 .

By Corollary 3.7, Bω is bounded on Lp(D, ω) if and only if |F |2−p ∈ A+
p (R

2
+).

Our goal in this appendix is to show that, indeed

|F (ζ)|2−p =

(
2

|i+ ζ|2

(
|2ζ|

|i+ ζ|

) 2
p0−2

)2−p

∼ |ζ|
4−2p
p0−2 |i+ ζ|

(2p−4)(p0−1)
p0−2

∈ A+
p (R

2
+)

only for p ∈ (q0, p0).
By Definition 3.1, this is equivalent to show that there exists C = C(p) > 0 such

that

1

|D ∩ R2
+|p

(∫
D∩R

2
+

|ζ|
4−2p
p0−2 |i+ ζ|

(2p−4)(p0−1)
p0−2 dA(ζ)

)
(∫

D∩R
2
+

|ζ|
4−2p

(p0−2)(1−p) |i+ ζ|
(2p−4)(p0−1)

(p0−2)(1−p) dA(ζ)

)p−1

≤ C

for any disc D = D(x0, R), where x0 ∈ R and R > 0, if and only if p ∈ (q0, p0). For
convenience, we label the first integral I1 and the second one I2.

We start with p ≥ p0. In this case, 4−2p
p0−2 = −2− ε for some ε > 0 and therefore∫

D∩R
2
+

|ζ|
4−2p
p0−2 |i+ ζ|

(2p−4)(p0−1)
p0−2 dA(ζ) = ∞

for discs D centered at ζ = 0. Thus, |F (ζ)|2−p �∈ A+
p (R

2
+) for p ≥ p0 and Bω is

unbounded on Lp(D, ω) for p ≥ p0.
Next, we consider 2 ≤ p < p0. When p = 2 the estimate above holds trivially

since 4− 2p = 0.
Given any D = D(x0, R), we split up to the following cases.
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Case 1. D ∩D(0, 2R) is not empty and R < 2. In this case, D ⊂ D(0, 4R) and

I1 ≤
∫
D(0,4R)

|ζ|
4−2p
p0−2 |i+ ζ|

(2p−4)(p0−1)
p0−2 dA(ζ)

≤ M
(2p−4)(p0−1)

p0−2

R

∫
D(0,4R)

|ζ|
4−2p
p0−2 dA(ζ)

≤ M
(2p−4)(p0−1)

p0−2

R

R2+ 4−2p
p0−2

2 + 4−2p
p0−2

� M
(2p−4)(p0−1)

p0−2

R R
2p0−2p
p0−2

where MR = maxD(0,4R) |i+ ζ|.

Also, we have

I2 ≤
∫
D(0,4R)

|ζ|
4−2p

(p0−2)(1−p) |i+ ζ|
(2p−4)(p0−1)

(p0−2)(1−p) dA(ζ)

≤ m
(2p−4)(p0−1)

(p0−2)(1−p)

R

∫
D(0,4R)

|ζ|
4−2p

(p0−2)(1−p) dA(ζ)

≤ m
(2p−4)(p0−1)

(p0−2)(1−p)

R

R
2+ 4−2p

(p0−2)(1−p)

2 + 4−2p
(p0−2)(1−p)

� m
(2p−4)(p0−1)

(p0−2)(1−p)

R R
2+ 4−2p

(p0−2)(1−p)

where mR = minD(0,4R) |i+ ζ|.
Hence, we get

I1(I2)
p−1 � M

(2p−4)(p0−1)
p0−2

R R
2p0−2p
p0−2 m

−(2p−4)(p0−1)
p0−2

R R2p−2− 4−2p
p0−2

=

(
MR

mR

) (2p−4)(p0−1)
p0−2

R2p

and finally we get

1

|D|p I1(I2)
p−1 ≤ Cp

(
MR

mR

) (2p−4)(p0−1)
p0−2

.

For R < 2, the quantities MR and mR are comparable so we get something finite
on the right hand side.

Case 2. D ∩ D(0, 2R) is not empty and R ≥ 2. In this case, D ⊂ D(0, 4R) and
D ⊂ D(−i, 5R). We use Hölder’s inequality to get

I1 ≤
(∫

D(0,4R)

|ζ|t
4−2p
p0−2 dA(ζ)

) 1
t
(∫

D(−i,5R)

|i+ ζ|
t

t−1
(4p−8)(p0−1)

p0−2 dA(ζ)

) t−1
t

�
(
R2+t 4−2p

p0−2

) 1
t

(
R2+ t

t−1
(4p−8)(p0−1)

p0−2

) t−1
t

= R2+ 4−2p
p0−2+

(4p−8)(p0−1)
p0−2

for some t > 1 such that the first integral above is finite.
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On the other hand, again by Hölder’s inequality we get

I2 ≤
(∫

D(0,4R)

|ζ|t
4−2p

(p0−2)(1−p) dA(ζ)

) 1
t
(∫

D(−i,5R)

|i+ ζ|
t

t−1
(2p−4)(p0−1)

(p0−2)(1−p) dA(ζ)

) t−1
t

�
(
R

2+t 4−2p
(p0−2)(1−p)

) 1
t

(
R

2+ t
t−1

(2p−4)(p0−1)

(p0−2)(1−p)

) t−1
t

= R
2+ 4−2p

(p0−2)(1−p)+
(2p−4)(p0−1)

(p0−2)(1−p)

for some t > 1 such that the first integral above is finite.
Combining these two estimates, we obtain I1(I2)

p−1 � R2p and

1

|D|p I1(I2)
p−1 ≤ Cp.

Case 3. D∩D(0, 2R) is empty. For this case, the crucial observation is the following.
If

NR = max
D

|ζ| and nR = min
D

|ζ|,

KR = max
D

|i+ ζ| and kR = min
D

|i+ ζ|,

then for any R > 0, the quantities NR and nR and the quantities KR and kR are
comparable to each other. Therefore, we get

I1 � |D|n
4−2p
p0−2

R K
(4p−8)(p0−1)

p0−2

R and I2 � |D|N
4−2p

(p0−2)(1−p)

R k
(2p−4)(p0−1)

(p0−2)(1−p)

R .

These give us

I1(I2)
p−1 � |D|p

(
nR

NR

) 4−2p
p0−2

(
KR

kR

) (4p−8)(p0−1)
p0−2

and
1

|D|p I1(I2)
p−1 ≤ Cp.

Therefore, in all three cases 1
|D|p I1(I2)

p−1 is bounded and |F (ζ)|2−p ∈ A+
p (R

2
+)

for 2 ≤ p < p0 and Bω is bounded on Lp(D, ω) for 2 ≤ p < p0.
Duality and the self-adjointness of Bω concludes that for this choice of F and

ω, the weighted Bergman projection Bω is bounded on Lp(D, ω) if and only if
p ∈ (q0, p0) where

1
p0

+ 1
q0

= 1.
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[Bor04] Alexander Borichev. On the Bekollé-Bonami condition. Math. Ann., 328(3):389–398,
2004. MR2036327 (2005c:30040)
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