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DIFFERENTIAL OPERATORS
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1. INTRODUCTION

Let Q be an arbitrary connected domain in the n-dimensional Euclidean space R,.
Let o(x) be a weight function,

o(x)e C(Q), ofx) >0,
o(x) > o0 for x—0Q or |x|— o0,
D7 ofx)| = co'*(x)") -
Examples. (a) In every bounded domain there exists a function g(x) such that
cdx) 207 (x) L cpdx), 0<e¢y<c,
holds. d(x) is the distance of x € Q from the boundary of 9<Q.
(b) @ = R,
o(x) = (1 + [xy* or o(x) =exp (1 + |x|*)*; »>0.
We consider singular elliptic differential operators A,

Au = Y a(x)Du.

laf=2m

Besides the (singular) ellipticity condition we assume the growth conditions

2m — 1 !
D a(x) = O(g*=*1") 5 5, = v +u—; (I=0,..,2m);
2m 2m
*) We denote all unimportant constants by c, ¢/, ¢’, ..., ¢y, €5, ...

525



vand g are real numbers; v = 0; v > u + 2m; |y| 2 0. The exact definition is given
in Section 2.2,

Let be

Sew = {f|f€ C*(Q), sup o'(x) [D*/(x)] < oo forallaand I = 0,1,2,...},
xe?
11w, = <J- M@:@ljdxdy + ”f”{p)l/p; Il<p<ow; 0<i<l;
axo |X — yln P
WS =1L,,

and

Wrae (@) = {f| /e D(Q), /]

P = (T 10D b, + [ ) < )
0 <s=[s]+ {s}, [s] integer, 0 < {5} < 1; 7> o + ps.
The main results of this paper are:
(a) Sew(R) = L(Q) iff 3a>0, ¢ “eL,(Q).

(< always means a continuous embedding of the left space into the right space). If
such a number a exists then Sox(€) is a nuclear space isomorphic to s, the space of
rapidly decreasing sequences.

(b) A— AE is an isomorphic map from

Se(R) onto S,.,(RQ)
and from

2m+s s
Wp,x+pu(1 +8/2m),x + pv(1 +s/2m)(‘Q) onto Wp,k+pus/2m,x+pvs/2m(Q)‘

5 2 0, % is an arbitrary real number. A is a complex number with Re A =c
(There exists @ > 0 such that g~%x)e L,(Q)).

The exact formulations of both the assumptions and the results follow in the next
sections,

Locally convex spaces of the type S, () are considered in [3,4, 5] also in
connection with special operators of the described type (selfadjoint, acting in L,(Q)).
The spaces W, (Q) are introduced in [6]. We developed in [6] an interpolation
theory for these spaces which is the basis for some results proved here. Further, we
obtain an improvement of a structure theorem for the spaces W, (Q); T > ¢ + sp;
1 < p < 0. In [6] we showed that all these spaces have a Schauder basis, AP (9)]
is isomorphic to 1, for s + integer. Now we obtain, moreover that W2" (@), m =
=0, 1,2,...; is isomorphic to L(0, 1)).*¥)

*) By other methods it is possible to prove that all the spaces Whe d; m=0,1,2,..;
are isomorphic to Lp((O, 1)).
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2. DEFINITION

2.1. The weight function o(x). Let Q be an arbitrary connected (bounded or un-
bounded) domain in the n-dimensional Euclidean space R,. #Q denotes the boundary.
C®(Q) is the set of all complex infinitely differentiable functions. We consider
a weight functions g(x),

) o(x)e C*(Q); ofx)>0 for xeQ;

for all multiindices y there exists ¢, > 0 with

) |07 0(x)] < ¢, 0**(x)

for x € Q; for all K > 0 there exist ¢, > 0 and 7, > 0 with

(3 o(x) >K for dx) =g or |x|2r (xeQ).

d(x) is the distance of the point x € Q from the boundary Q. We considered weight
functions of such type in [6], Section 3.5, example 2. We write

QY ={x|xeQ o(x)<2}; j=N, N+1,..; (@™ + 9).
In [ €] we showed
(4) d(0QW, eQUD) = ¢ 27,
¢ > 0 is independent of j. d(0QY, 6QU*Y) is the distance between the boundarie

QY and 6QU*D,

Let us describe an important example for weight functions o(x). Let Q be a bounded
domain, d(x) denotes again the distance of x e £ from the boundary. In [6], Section
3.5, we mentioned the existence of weight functions g(x) with the desired properties
such that

dx) 2o (x) = d(x); 0<c <e,,

Q“‘(x) is a “general distance function”. We mentioned in the introduction other
simple examples of weight functions g(x).

2.2. Operators of the type 4"). Let m be an integer; m = 1,2, ...; pand v are real
numbers; v > p + 2m;

5 ¥, = -~1 vi2m — )+ pull; 1=0,1,..,2m.
1
2m

A is said to be an operator of the type A" if

m

(6) Ap =73 Y @*(x)b,(x) Du + lmgzmaﬂ(x) Dfu.

1=0 |a]=21
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b,(x), as(x) are infinitely differentiable real functions, D? b(x) bounded in Q for all y
and all a; |of = 2I; I = 0,..., m. There exists a positive number ¢ so that for all
E=(¢,..,E)eR, & =¢3 . Erandall xe Q

(7a) : (”U"’lalzmba(x) &z g, bo,.o)zc,

(7b) (=1)" ¥ bx)&z

la]=21

\
(=4
if
3
|

holds (ellipticity-condition).
For all y and all § (|B| < 2m); is

6 D7 ay(x) = ol ().
(This means: For all & > 0 there exists an integer j,(¢) such that
[D? ayx)| < e@#*V(x) for xeQ — QD = je)).
Let us describe a few simple examples.
(a) Let Q be a bounded domain. Let ¢~ (x) be a general distance function. Then
Au = "(X) (=" u + ¢"(X)u; v>p+2m;
is an A{"-operator. If 9Q € C* we may assume ¢~ *(x) = d(x) near the boundary.
(b) Let Q = R,. It is easy to see that
Au = (14 (=) u + (4 3P us 0>

is an A{"-operator. (We choose g(x) = (1 + |x|?)* with a suitable positive number x.)

3. PROPERTIES OF THE OPERATORS A{™)

3.1. Powers of A"). Lemma 3.1. Let A be an operator of the type AT). Then A* is
an operator of the type Afm s k = 1,2, ...

Proof. Assume that the lemma is true for k = 1, ..., j. Let

jm i s I
9 Au=3 ¥ ¢x)bP(x) Du + Y aP(x) Du

1=0 |a]=21 1Bl <2mj

with the properties of the coefficients described in Section 2.2. Particularly

%(ij)zv%m]_—l_F l; 1=0,...,2mj.

2m 2m
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It 18
n(.l [ o, = 35(" 1)
1 ) S I+s

(6), (9), and the last relation show that the “main part” of A" 'y = A¥(Au) has the
right structure, (7) is true. Using

lDr Qx(x)l <ec Q’H'IYl(x)
and

(10) w4+ ] = oED + | < w@ED, for O< =1+
we obtain that the “perturbation part” has also the desired structure.

3.2. The spaces W, , (). In the next sect1on we shall prove an a-priori estimate.
For this purpose we introduce the spaces W,., (). Let I be an integer; I = 1,2,.
let ¢ and © be real numbers; I < p < o, © > o + pl. D'(Q) denotes the complex
distributions in Q. We write

Wooe(Q) = {f|feD(Q), |f]w,..=( Z ”Q"/"D“f” Lo T
+ e [L,@)"" < 00} .
These Banach spaces are introduced in [6]. Further we write
L, Q) = Wy, (2) = {f|fe D'(Q), =[], < o0}

Let us recall some properties proved in [6]. Q1) has the same meaning as in Section
2.1. We write

Q=QUf QU jo N4+ 1, N+2, ...; Q=W

There exists a set of functions {i(x)} 2y with
0y (x)s1; ¢y(x)eC(Q); Y¥x)=1 for xeQ;
j=N
(11) D yy(x)|<e2; j=N,N+1,..; 0= <oo,
(c is independent of j and [y[). We cover Q; with balls,
Ny . ,
(12) Q; nylK(’J) CQ ,V Q. KP={|x—x;|sc277},

¢ is a suitable positive number independent of j, see (4)*) Now we choose systems

*¥) By suitable choice of K{/) there exists a number L such that ﬂ KD =@; j=N,
N+ 1, ; L is independent of], I, 1. m=1
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{o(x)}} ;i =N, N + 1,...; with

05 o) S 15 g e CEKY): Yol =1 for xen;;
(13) D7 eP(x)| 22y j=NN+1,..5 I=1,..,N;; [y]=z0.
The method developed in [6] shows that it holds ‘
(14) Wrod@) = {1 /€ D(Q); | /], ...

] Ny
; g(zla“ll’.l (P(J) ”WIP(RH) + 211”‘#; (p(l)f“LP(R"))]l/p < OO}

(f(x) = 0 for x ¢Q). The norms |f|y., . and [f]§., are equivalent. In [6],
Theorem 3.2, we proved that C3(Q) is a dense subset in these spaces. The following
lemma will be helpful for the further considerations:

Lemma 3.2. Let | be an integer; « a multindex; 0 < ]oc| <l, o and t real numbers;
>0+ pl; 1 < p < 0. Then there exists a positive number ¢ with

(J st o) s ..

I=o Ial

l fE pd’t(Q)'

%®

IIA

T

Proof. It is
f (%) [P f(X)|Pdx < ¢ Z Z 2o o Nlzyewn =

sc Z Z @ o M) 705 02 1, r) T S [ e -

We used (14). This proves the Jemma.

3.3. A-priori estimate. The basis for the further considerations is the following
a-priori estimate.

Lemma 3.3. Let A be an operator of the type Af["v), v = 0. Let % be a real number.
Then there exist three numbers c,, ¢,, and c3; ¢, > ¢4 > 0; ¢5 real, that

(15) €2 ”u”Wzmp,x+pu,x+pv g ”Au - }'u“Lp,n g ¢ ”u”Wl”'p.n*rpu.xdrpv
for Re & £ ¢ (A complex) holds. ue W)in, i ().
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Proof. We use the functions ¥ ,(x), @{’(x), the balls K{” (with the centre x IR
and the equivalent norm (14) introduced in the last section. First we assume that

1€ W, b vt (@) vanishes outside of a fixed ball K{P. It is

Au — Au = Bu + Cu + Du,

Bu =3 3 o)) bulx;) Du = du,

1=0 [«f=21

Cu

li Z;I[Q”z'(x) b(x) — 0™"(x; ) bx; )] Du ,

la]=

Du= Y ayx)Du.
1Bl<2m

We denote the Fourier transformation in S'(R,) (the set of tempered distributions)
by F, the inverse Fourier transformation is F ~1, Then

|BulZ,,. = ¢ Qx(xj,k)J llzo | fv‘zﬁm(x"”‘) by(x;0) D°u — AulP dx,
Rn 120 la|=

¢ > 0. (u(x) = 0 for x ¢ Q). We use the transformation
(16) X = T (x) y s ulx) = o)
and we obtain with the help of x,, + 2I(v — p)/2m = v

[Bullz, . 2 @+ 77072

: ”F_](é:m a12221(~ 1)1 ba(xj,k) & - AQ_v(xj,k)) FU”{ﬂ(Rn) >
¢ > 0. (7) shows that
(1) A= (PP, T (0 b & = e
and

A ™(x; 1) (lio (¢|Zzz(~ D) byfx;) € — A0 (x;0)) ™"

are multipliers in the sense of Michlin-Hormander, see [1]. Re 2 < 0. With the help
of Hérmander’s multiplier theorem [1], 2.5, it follows

S %, (20000 & = d™ (5] Folhna 2

z o([|F7H (L + [ Follpm,y + [Re 4] @ 7*(x 1) 0] pma) -

531



¢ > 0 is independent of 4, j, and k. Using again the transformation (16) we obtain
(18) |Bulf, . 2 e P77y
- (MZZ D0l + 02 cm0 + [Re 27 @7"7(x;0) 0] 2, n,;) 2
Z C’(Q“”’(xj,k)’ ‘ZZ 1D ullE rny + @ 7(xs0) 1] Eycmy +

+ [Re 207 (5 ) u)Esr) Z € lulfvzmy r e+ ¢"|REA7 [l ,

|Culy, . - (2) shows

"

are positive numbers. Now we estimate
|o™2(x) ba(x) — @**'(x;0) bulx;0)] £ € 2707 Dx — x| 5

x e K. Now we choose the number c¢ in (12) sufficiently small (but irdeperdent
of j). Then we obtain with the help of Lemma 3.2

¢, ¢, c¢” and ¢

(19) Cul?, . = 6120 I Izuziuﬂmp“Dau”ﬁm") <

é 6, Z J\ Q”+xl°‘|p(x) ‘D“ u(x)lp d'x é Bvllu”%ump,n+un.z+vn ’
lafg2m j o

¢ is an arbitrary positive number.

Finally we estimate | Du|,, . If o is a bounded domain, @ < @, the well-known
formula reads

”“”WZM—lp(“’) = "”“”Wz'",rw) + ce“””LP(m) =¢ ”“llwmp.ﬂ,.p,ﬁwm) + e, ““”Lp,x(a) .

With the help of this estimate, the assumption (8) and Lemma 3.2 we obtain

(20) “Du“Lpsx é 8|!u||W2'"p,=¢+up,:¢+vv + C‘:”u“[‘m% 4

¢ is an arbitrary positive number. ¢, is independent of j and k. (18), (19), and (20)
show that

(1) |Au = dulf, 2 clulfam, oppsp + (R AT = ¢) [uf,

Lp,x =

holds; ¢, ¢’, and ¢” are positive numbers. y~ *(£), see formula (17), is also a multiplier.
Using v 2 0 and Hrmander’s multiplier theorem [1], we obtain

”Bu”{p.x S c”u”%zml’m*rpp,%*'vp )

By means of this estimate, (19) and (20) we obtain the left hand side of (15). This
proves the lemma for the particular function u. Now we consider a general function
U € W2Ry vt (). Then

o0
u= ZN v u.

532



(21) shows (we assume ¢'[Re 4| — ¢” > 0)
ulf,. <

(22) C“uul;"zmp‘”'*pu.a+pv + (C,IRC /'{lp - C”) ’

o Nj X .
c£¢ Y YA, o) - 2 o, .

It is
AW ot u) — W0 =
= 0 (Au — Au) + wcﬁ,a(x) D*(y;0) DFu. .

o< |pl<2miZlal£2m-
For |«| = 1itis %, + |¢] < %4 (see (10)). From this relation it follows that

cﬂ,,(x) Da(l//j(pl(cj) = O(Qxlauwlgla[) = O(Q““”_") ,

§ > 0. Analogously to (19), (20) we obtain
Nj » »
1“/1(!#,-(/);‘”14) = Mo ul, o <

(23) \
i=N

=< c]|Au — ;L“”Iz’,p,,,(n) + ¢ Z J Q"*'P"m*f"“)ﬁulp dx <
|Bij<2m | o

=

= C“A“ - iuﬂip,m + E|[“”ﬁ'2mp,,,m,,‘+pvn + Ce”"”{p,xm)’

0" > 0; ¢ is an arbitrary positive number. Choosing [Re A! sufficiently large we obtain
the right hand side of (15) from (22) and (23). The left hand side of (15) follows in

a similar way.

4. THE SPACES Sp(x)(22)

4.1. Definition and inclusion property. Q is again an arbitrary connected domain
in R, and g(x) is the weight function defined in Section 2.1. C*(2) is the set of all

complex, in Q infinitely differentiable functions. We write
@) Sul® = {717€ @), [flie = sup )| D7) < a0
foralll = 0,1, 2, ... and all multiindices a} .

S,(€) is a (F)-space (a complete separable locally convex space equipped with
a countable set of semi-norms). In [3, 4, 5] we introduced the (F)-space S,,(Q),

(we have to replace in (24) o(x) by g(x)). g(x) is a weight function such that

(25) g(x)e C*(Q2), gq(x)zc>0,
533



Jo, 0 ¢ < % so that

(26) 17 )] S 8
(27) g(x)d*(x) 2 C >0 for xeQ
(d(x) is the distance for x € Q from the boundary 6Q).

(28) Ja >0 with g %(x)e L(Q).

We choose
g(x) = @"(x), »>2.

It is easy to see that (25) and (26) are true (¢ = %~ ). Furthef,
SnfQ) = Sp(Q) -

We shall show that (27) is also true. Let x € QU+ — QU), see Section 2.1. Then for-
mula (4) implies
g(x)d*(x) = c227¥ = ¢ > 0.

This proves (27). Now we discuss (28).

Lemma 4.1, Let be | < p < c0.
(29) SenfQ) = Ly(Q)
holds if and only if '
(30) Ja > 0 suchthat ¢ %(x)e Ly(Q).

Proof. It is easy to see that (29) is a consequence of (30). We prove the opposite
implication. First we assume the existence of a positive number b so that

|QUFD — QW < by j=N,N+1, ..

holds. Let 2% > b. It follows

f e (x)dx = 3. e (xydx +cSc+ Y27 < w0,
Q j j=

J=NJou+rn - =N

Now we assume that (30) is untrue. The last consideration shows the existence of
a set of numbers jy, j,, ..., and

O<a; <a,<...<ag<.., a-=>x0 for |- w,
with

(31) : IQUIH) - QY > al'; i -2k,
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k a given positive integer. Let
u(x) = czl‘j”"1 for xeQUD _ QUL 112
u(x) = 0 otherwise (xe).
Now we use Sobolev’s smoothness-method, see [2]. We write
o(x) = (W(x))-5n for xe QUi+ — QU=
v(x) =0 otherwise (xe®).

¢ 2771 is the radius of the method [2]. ¢ is sufficiently small, see (4). k is sufficiently
large, see (31). It is v € C*(Q) and
. . L p—1\-ji
) o) ¢ 22 = ()

for x e QU3 _ Ui=2) The last estimate shows

ve Sg(x)(g) .
On the other hand, it is

o o
J [p(x)|” dx = ), J. ()P dx = ¥ a9t QUi — QUD] = oo
Q 1=1 Jou,+»=0up I=1
Hence

v L(Q).

This shows that (29) is untrue. This proves the lemma.

4.2 Isom.orphic property. We denote by s the nuclear space of rapidly decreasing
sequences. This means

s ={¢|&=(&)Fy, & complex, [|E]|; = supj’]éjl < oo for 1=0,1,2,...} .
J

Theorem 4.2. Let
e (x)e Ly(Q)

for a suitable positive number a. Then S,,(Q) is isomorphic to s.
Proof. We use the results of [5]. Let
(32) (Af) (x) = —Af(x) + " (%) f(x), D(4) = CJ(Q).
% > 2. In [5], pp. 301302 we showed that 4 is an essential selfadjoint operator
acting in L,(Q).
(53 D(A?) = () DE) = S,().

-
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This includes the equivalence of the topologies, where the locally convex space
D(A~) is equipped with the norms |A'u|.,, I = 0,1,2,... (We use the above men-
tioned fact that g(x) = ¢*(x), » > 2 is a function g(x) of the type considered in [5].)
A is a positive-definite operator with a pure point spectrum. Let

(34) N#) =} 1

Aj<a

be the number of eigenvalues smaller than A (including their multiplicity). In [5],
p. 292 we noted that D(4*) (and hence also S,,,(£2))is isomorphic to s if and only if

(35) e A" £ N(A) £ 4%

holds for suitable positive numbers ¢;, ¢,, t, and 7,. Now we prove (35). Let K be
a ball, K < Q. We write

Bu= —Au +d; D(B)={u|neW5K), ulx =0},

d = 0. It is well known that B is a positive-definite selfadjoint operator with a pure
point spectrum acting in L,(K). Let N (1) be the analogous function to N(2), formula
(34). The well known eigenvalue distribution for B and Courant’s maximum-minimum
principle show for sufficiently large d

(36) " = Ny(l) S N(2), ¢>0.

This proves the first inequality of (35). Now we prove the other inequality of (35).
Let A be a given positive number. We determine an integer o, such that

0“(x) > 1 for xeQ — QU»,

For instance

(37) o, = [clog 1],
¢ > 0 sufficiently large, independent of A, A = 1,. Now we cover Q# with cubes
(3%) Q= {x|x=(x)j=0 [x; — x| <3}

We estimate the number of the needed cubes. It is
|QC»| = f 0 Y(x) @*(x)dx < ¢2%* < A
N(ad)

We used (30). By means of (4) it is not difficult to show that it is sufficient to consider
¢"A%, fi > 0 cubes of the type (38). Let N(4) be the function for the eigenvalue distri-
bution for the Neumann problem for — 4 in the unit cube. It is .

NQ) S cd? for A= 4.
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Courant’s maximum-minimum principle implies now
N() S "AFNQ) S "F2 for A2 Ay .

This proves the right hand inequality in (35). We remarked above that this is suf-
ficient for the proof of the theorem.

4.3. Remark. Note that Theorem 4.2 is an affirmative answer to the problem 2
of [5], p. 310.

5. ISOMORPHIC PROPERTIES FOR OPERATORS OF THE TYPE Agm

5.1. A special case. In [5], p. 298, we remarked that
(39) Agu = —Au + @*(x)u; x> 2; (30) holds;

is an isomorphic map from S,.,(2) onto S,.,(2). We need an extension of this
result.

Lemma 5.1. There exists such an operator A of the type AY") that A — JE is an
isomorphic map from S,(Q) onto S,,(Q) for every real i = —1. o(x) is the
described function such that (1), (2), (3) and (30) hold.

Proof. We consider the operator A,, formula (39). 4, is an operator of the type
A§. We proved in [5], p. 301 that Ap* is an isomorphic map from W5, . (Q)
onto L,(2), m and k are integers >0. Let

Aju = (=" u + " (x)u — ™(x)u,

6, > 2m, A a real number, 1 £ —1, ¢, a real number. 4, is an operator of the type
AG rtor.an We choose % = (1/m) max (o5, 6,). A" and Af are positive-definite

operators acting in L,(Q) with the domain of definition Wi ok mid Q). The same is true
for

(40) Bu = (1 — p) A"+ pdf; 0spusl.
Lemma 3.3 shows that
(41) €2 “u“WZ"'kz,o,zmk’f 2 ”Buu”b Z ¢ “u”.Wz'""z.o,kax ’

where ¢, and ¢, are positive numbers independent of y. Now we assume that By, is
an isomorphic map from WZ%'(',",‘Z,,,;‘,,(Q) onto L,(£2). Then

HB;DI ”LZ"WZ'”"z,O.zmku = "1_1 .
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We consider the equation
Bu = feL,(Q).
It is equivalent to
(42) u+ B, (B, — B,)u = B.l'fe sz)'g"fz,,,kx(ﬂ) .
(40) and (41) show

HB;OI(B” - Bﬂlﬂ)”Wzme,D,2mku"’WZMk2,0,2mkn <1 for l” - ”Ot sc,

¢ is independent of p,. But then it follows by the standard argument that B, is an
isomorphic map from W ..{2) onto L,(Q). We start with pg = 0, By = Ag".
After a finite number of stei)s we find that A% is an isomorphic map from sz, 'Sf‘zmkx(g)
onto Ly(€2). Using the fact that C&'(€Q) is dense in W2g%,,,,(2) we obtain that

All(’ D (AI;) = sz,'(r)l';chxk(Q)
is the usual k-th power of the selfadjoint operator

Ass D(A1) = W25 20l Q) -
In [5] we proved

kOID(A’;) =k01W22,'(;‘fc2mxk(Q) = Se(x)(Q)

(including the topologies). This shows that A4, is an isomorphic map from S,(Q)
onto S,(©). But then also A = ¢7%(x) A, is an isomorphic map from Se()
onto S,,(€). This proves the lemma.

5.2. Isomorphic property in Sg(x)(Q). Theorem 5.2. Let A be an operator of the
type AU, v = 0. Then A — AE is an isomorphic map from S,,(Q) onto S,.(Q)

for Re A < ¢. o(x) is the described function such that (1), (2), (3) and (30) hold.

Proof. Let A, be the special operator determined in Lemma 5.1. Similarly to (40)
we consider
Bu=(1—p)A§ +pd*; 0<pus1.

By repeating the arguments of the last lemma the theorem is proved. (We use Lemma
3.3 with p = 2 and »% = 0).

5.3. Isomorphic property in W7, (Q). Theorem 5.3. Let » be an arbitrary

o+ kpup,x+kpy

real number. g(x) is the described function such that (1),(2), (3) and (30) hold.
Let A be an operator of the type Af":'ﬁ, v=0. Let

D (A) = sz,;':+ puxt pv(g)

be the domain of definition. A is considered in L, (@), 1 < p < oo.
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(a) It is
(43) D(Ak) = sz,zl-;pku,x-l-pkv(g) 5 k = ]> 2a

(b) For Red = ¢ (With a suitable C), A — LE is an isomorphic map from
Wy Louths 13,0+ poiaer 1)(R2) 020 W2k i pi(@), k= 1,2,

Proof. C5(Q) (and hence also S,,(R))is dense in W27 . . (). Lemma 3.3
and Theorem 5.2 show that A — AE is an isomorphic map from W2, . . ,.(Q)
onto L,.(Q), Re A £ c. Using again Theorem 5.2, Lemma 3.1, and Lemma 3.3, we
obtain

D(Ak) = sz,,:lj-pku.x+pkv(9) = Se(x)(Q) .
But Lemma 3.3 and the one-to-one map (4 — 1E)* show that (43) is true. (b) is an
easy consequence of (a). This proves the theorem.

5.4. The spaces W, , (Q). We extend the definition of W}

PG,y p,o,T

3.2. Let 0 < n < 1. We write

17 oy = (L e =P 4, dy + ”f”'ipm)>up§ l<p<ow.

<0 lx - yln+rm

() given in Section

Let Q be an arbitrary connected domain in R,. ¢(x) is the weight function of Section
2.1. Let 0 < s = [s] + {s}, [s] = integer, 0 < {s} < 1. We introduced in [6] the
spaces W, , (Q), o and 7 real numbers, © > o + sp,

Wps,a,r(g) = {flfe DI(Q) s

I lwep e, = (l 1;[ ]”Q"/I’D“f I, + " |7,2)'"" < o0} .

For s = integer, W, , (Q) has the meaning of Section 3.2. For our purpose the fol-
lowing fact proved in [6] is important: Let (4, A;)e,, be the real interpolation
method of Lions-Peetre, 1 < p < o0, 0 <0 < 1. (A short description is given in
[6].) Then

(44) (W, Q) Wt e Do,p = Wrate~ @7(Q)

p,02,72 p,o,T

my and m, integers, m; = 0,1,2,...,m, = 1,2, ... (For m; = 0 we assume o, = 1,
and W), (@) =1L,,(9)0< 0@ <1;1<p< o0,

45)  (ry —o)ymy = (1, — o) my; my(l — O) + m,0 * integer;

46) t=(1—-0)1, + 01,3 0 =1—(m(l — 0) + me) 222,
m,

A proof is given in Theorem 4.3 [6] (more general cases can be found there, too).
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Further, we denote by [ A4y, 4;]e, 0 < @ < 1, the complex interpolation method.
It is

(47) [Wra () Wi, o(@)]e = Wlsa " m4(Q)

PiT1,T8 p,g2,72

forl < p < o0, m (1 — @) + m,0@ = integer, provided (45) and (46) hold. A proof
is given in Theorem 4.3 of [6].

5.5. The main result. Theorem 5.5. Let x be an arbitrary real number. o(x) is the
described function such that (1), (2), (3) and (30) hold. Let A be an operator of the
type A, v = 0. Then A — AE is an isomorphic map from

2m+s s .
Wy o L ou1 +512my x4 pvi1 +s/2m)(Q) onto Wp,x+pus/2m,x+pvs/2m(‘g) >
s=20, 1l <p<ow. Red=Ze

Proof. Theorem 5.3 and the general interpolation theory show that 4 — AE is an
isomorphic map from

2m(k+2 : 2mk+1)
(Wp,:l+pu(k)+2).x+pv(k+2)( )’ Wp,x+pu(k+1),w+pv(k+1)(9))9,p
onto

2m(k+1) 2mk
(Wp.x+pu(k +1),x+pvk+1 )(Q)’ Wp,x+puk,x+pvk(‘Q))('),P

and similarly for the complex interpolation method. k = 0, 1,2, ... Let s = 2mk +
+ 2m(1 — @) = 2m(k + 1 — ©). It is easy to see that the condition (45) holds.
(46) yields the desired indices. This proves the theorem. .

5.6. Remark. In [6] we introduced also the spaces H} , () (Lebesgue spaces with

p,o,t

weights) and B; , , (Q) (Besov spaces with weights). We do not repeat the definitions

here, see [6]. The interpolation theory for these spaces developed in [6] shows that
the following theorem is true.

Theorem 5.6. Theorem 5.5 is true after replacing the W—§paces by the H-spaces
or by the B-spaces.

5.7. Remark. A special case of Theorem 5.5 is proved in [4], Theorems 7 and 8.
5.8. The structure of the spaces W, ”(Q). I, is the usual sequence space.
Theorem 58 Let be 1 < p < 00; g, v are real numbers, s 2 0;t > ¢ + sp. Then

(48) Wy, Q) isisomorphictol, s + integer,

540



and

(49) Wir (Q) isomorphicio LJ(0,1)), m=20,12,...

p,o,T

Proof. (48) is proved in [6], Theorem 7. Further it follows from the consideration
in [6] that all the spaces W27, ., (@) are isomorphic to one another, see formula
(14). —o0 < x < o0. So we may assume without a loss of generality 7 = 0. But
then it follows from Theorem 5.3 that W}y () is isomorphic to L,(®) and hence
also isomorphic to L,((0, 1)). :

5.9. Remark. By other methods it is possible to show that (49) holds also for
m=111..
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