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ABSTRACT Existing multiple kernel learning (MKL) algorithms indiscriminately apply the same set of
kernel combination weights to all samples by pre-specifying a group of base kernels. Sample-adaptive
MKL learning (SAMKL) overcomes this limitation by adaptively switching on/off the base kernels with
respect to each sample. However, it restricts to solving MKL problems with pre-specified kernels. And,
the formulation of existing SAMKL falls to an ℓ1-norm MKL which is not flexible. To allow for robust
kernel mixtures that generalize well in practical applications, we extend SAMKL to the arbitrary norm and
apply it to image classification. In this paper, we formulate a closed-form solution for optimizing the kernel
weights based on the equivalence between group-lasso and MKL, and derive an efficient ℓq-norm (q ≥ 1
and denoting the ℓq-norm of kernel weights) SAMKL algorithm. The cutting plane method is used to solve
this margin maximization problem. Besides, we propose a framework for solving MKL problems in image
classification. Experimental results on multiple data sets show the promising performance of the proposed
solution compared with other competitive methods.

INDEX TERMS Multiple kernel learning, cutting plane, deep learning.

I. INTRODUCTION

Kernel methods [1], have been an attractive topic in machine
learning [2]–[6]. They introduce nonlinearity to the decision
function by mapping the original features to a higher dimen-
sional space. Due to their descent computational complexity,
high usability and solid mathematical foundation, they have
been widely used for classification [7], clustering [8] and
regression [9] tasks in numerous applications, such as pattern
recognition [10] and object detection [11].
In many practical applications, data has multiple repre-

sentations or data sources, which usually contain comple-
mentary and compatible information. For example, in the
classification task of Oxford Flower17 [12], flowers can be
represented by different features, such as color, shape, and
texture. It is difficult for us to design an appropriate kernel
function for this task. We have multiple kernel candidates
because multiple features are derived from images or because
different kernel functions (e.g., polynomial, RBF) are used to
measure the similarities between samples for given feature
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representation [13]. It is of vital importance to find the opti-
mal combination of these kernels for this task. This is exactly
what multiple kernel learning (MKL) needs to solve.

Recently, MKL has attracted much attention. It not only
provides an efficient way to learn an optimal kernel but
also builds an elegant framework to integrate complementary
informationwith distinct base kernels extracted frommultiple
heterogeneous data sources or features. Research on MKL
has been flourishing and can be roughly categorized into
two aspects. One is to improve the computational efficiency
of MKL. Using Semi-Definite Programming or alternating
approaches, these methods try to make MKL capable of
handling large-scale learning tasks [4]–[6], [14]–[18]. The
other one is to improve the classification performance of
MKL by exploring the possible combination ways of base
kernels [19]–[25].

While MKL has been studied extensively, it is restricted
to learning a global combination for the whole input space.
Due to the characteristic of data distribution, the set of kernels
that are important for discrimination may vary from sample
to sample. In the sense that all input samples share the same
kernel weights, ignoring the fact that it may be beneficial
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FIGURE 1. Framework of MKL.

to assign different samples with different kernel weights.
For instance, the data distribution of different images for
a given feature representation (e.g., color) may have a big
difference [13]. Therefore, the kernels derived from differ-
ent data distribution may have different effects on different
images. Thus, introducing local learning into MKL for a
localized sample-specific combination would achieve better
performances and various local MKL methods have been
proposed [24], [26]–[31].
Nevertheless, the base kernels may be irregularly corrupted

across different samples. For instance, when the input fea-
tures of samples are contaminated by noise, the kernel com-
bination weights predicted via a parametric model will not be
accurate anymore. To handle this problem, Liu et al. [3] pro-
posed a sample-adaptiveMKL algorithm (SAMKL), inwhich
base kernels are allowed to be adaptively switched on/off with
respect to each sample. Latent binary variables are introduced
to each base kernel to decide whether a particular kernel
should operate on a particular sample or not. The kernel com-
bination weights and the latent variables are jointly optimized
alternately via margin maximization principle.
However, previousMKLmethods usually use pre-specified

kernels to improve classification performance. In this work,
we propose a framework to construct kernels from fea-
tures extracted by ourselves and derive an efficient ℓq-norm
SAMKL problem. The cutting plane method [32] is used
to optimize the objective function. Extensive experimental
results on multiple data sets exhibit the promising perfor-
mance of the proposed technique compared with other com-
petitive methods.
Fig. 1 illustrates the framework of our work. Given an

image data set, we extract features using traditional machine
learning methods (HOG [33], SIFT [34], LBP [35], and etc.),
and deep learningmethods [36]. Then, we construct Gaussian
kernels on the normalized featurematrices. After that, we per-
form MKL algorithms on these computed kernels to get the
predicted labels for classification performance evaluation.
Precision is used as the metric to evaluate the classification
performance in our experiments.
The contributions of this study can be summarized as

follows:
(a) An efficient ℓq-norm SAMKL is proposed which is

much more flexible compared with SAMKL.
(b) The cutting plane method is used to solve this margin

maximization problem. By exhibiting a trick on constraints
of the objective function, we can achieve comparable com-
putational complexity of SAMKL.

(c) Comprehensive experimental results on multiple data
sets demonstrate the effectiveness and efficiency of the pro-
posed ℓq-norm SAMKL.
The rest of this paper is organized as follows. Section 2

provides a brief overview of related work. Section 3 presents
the proposed optimization methods for SAMKL. Section 4
shows the extensive experimental results. Finally, Section 5
concludes this paper.

II. BACKGROUND

Given a labeled dataset D = {(xi, yi)}
n
i=1 ∈ X × Y , where

X = {x : xi ∈ Rd ,∀i} denotes the collection of n training
samples that are in a d-dimensional space and Y = {y : yi ∈

{1, · · · , c},∀i} denotes the label of the corresponding sample
inX with c denoting the number of sample classes. Consider-
ing a feature mapping φ : Rd → H, in the new Hilbert space
a hyperplane can be written as f (x) = ω⊤φ(x) + b. In the
existing MKL framework, it involves a linear combination of
m pre-defined base kernels {Kp(., .)}

m
p=1 with each element

of the p-th kernel calculated by kij = φp(xi)⊤φp(xj), where
φ(·) = [φ⊤1 (·), φ

⊤
2 (·), · · · , φ

⊤
m (·)]

⊤. Then, the hyperplane
(i.e., discriminant function, linear classifier) can be written
as [37]

f (x) =
m
∑

p=1

γpω
⊤
p φp(x)+ b

w.r .t. ωp ∈ RT , b ∈ R

s.t.

m
∑

p=1

γp = 1, γp ≥ 0, ∀p (1)

where ωp is the weights of the original feature space cor-
responding to the p-th feature mapping, γp is the weight of
the classifier induced by the p-th feature mapping, and b

is the bias term of the classifier. MKL learns the classifier
by maximizing the margin between classes via solving the
following quadratic optimization problem.

min
{ωp}

m
p=1,b,ξ

1

2





m
∑

p=1

||ωp||Hp





2

+ C

n
∑

i=1

ξi

w.r .t. ωp ∈ RT , b ∈ R

s.t. yi





m
∑

p=1

ω⊤p φp(xi)+b



 ≥ 1− ξi, ξi ≥ 0, ∀i, (2)

where Hp represents the feature space corresponding to the
p-th base kernel, T is the dimensionality of the feature space
given by φp(·), ξ is the slack variables, and C is a regulariza-
tion parameter.
According to [38], the problem in Eq. 2 is proven to be

equivalent to the one in the following equation.

min
{ωp}

m
p=1,b,ξ ,γ∈δ

1

2

m
∑

p=1

||ωp||
2
Hp

γp
+ C

n
∑

i=1

ξi

w.r .t. ωp ∈ RT , b ∈ R
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s.t. yi





m
∑

p=1

ω⊤p φp(xi)+ b



 ≥ 1− ξi, ξi ≥ 0, ∀i,

m
∑

p=1

γp = 1, γp ≥ 0, ∀p (3)

where γp is the combined weight of the p-th base kernel and
controls the smoothness of the kernel function. The primal
optimization problem of Eq. 3 is convex and differentiable [6]
and it is equivalent to solve the min-max optimization prob-
lem of the following dual problem [14].

min
γ

max
α
−
1

2
(α ◦ y)⊤





m
∑

p=1

γpKp



 (α ◦ y)+ α⊤1

s.t. α⊤y = 0, 0 ≤ αi ≤ C, ∀i,
m
∑

p=1

γp = 1, γp ≥ 0, ∀p (4)

where α = [α1, α2, · · · , αn]⊤ are the Lagrange multipliers, 1
is a vector of all ones and (α ◦y) denotes the component-wise
multiplication between α and y. It should be noted when
γ ∈ 1 lies in a simplex, i.e., 1 = {γ :

∑m
p=1 γp = 1,

γp ≥ 0,∀p}, it is a ℓ1-norm of kernel weights. Correspond-
ingly, when 1 = {γ : ||γ ||p ≤ 1, γp ≥ 0,∀p}, it is an
ℓp-norm of kernel weights and the resulting model is called
ℓp-MKL [4]. After obtaining the optimal α, b and γ , we get
ωp =

∑n
i=1 αiyiφp(x). The discriminant function can be

formulated as

f (x) =
n
∑

i=1

αiyi





m
∑

p=1

γpKp(xi, x)



+ b. (5)

The problem in Eq. 4 is usually solved by performing an
alternating optimization strategy which consists of solving
a canonical SVM optimization problem with given γ and
updating γ using the gradient calculated via Eq. 6 with α

found in the first step [39]. This MKL framework is called
simpleMKL [6].

∂J (γ )

∂γp
=−

1

2
(α ◦ y)⊤

∂γpKp

∂γp
(α ◦ y)=−

1

2
(α ◦ y)⊤Kp(α ◦ y)

(6)

Most of existing MKL algorithms are restricted to learning
a global combination of kernel weights for the pre-specified
kernel matrices. That is, all input samples share the same
kernel weights, ignoring the fact that samples may have the
underlying local structure, which in turn degrades the MKL
performance. Therefore, it is reasonable to assign different
samples with different kernel weights by suppressing kernels
that are irrelevant for learning tasks and selecting kernels
that are beneficial for MKL tasks. Based on this idea, many
localized MKL algorithms have been proposed. Xu et al. [4]
discussed the connection between multiple kernel learning
and the group-LASSO regularizer and proposed an efficient

ℓp-norm MKL algorithm. The algorithm generalized the for-
mulation of MKL to ℓq-norm MKL by replacing

∑m
p=1 γp ≤

1 with
∑m

p=1 γ
q
p ≤ 1 where q > 0. This proposed algorithm

can be applied to the entire family of ℓq models, besides
which the kernel weights can be calculated by a closed-form
formulation without employing other commercial optimiza-
tion software.

However, the base kernels may be irregularly corrupted
across samples. To improve this situation, Liu et al. [3] pro-
posed a sample-adaptive MKL (SAMKL) algorithm to local-
ized MKL, where base kernels can be adaptively switched
on/off at the example level. The optimization problem of the
proposed SAMKL is as follows,

min
{ωp,hi},ξ ,b,γ∈1





1

2

m
∑

p=1

||ωp||
2
Hp

γp
+C

n
∑

i=1

ξi+C
′

n
∑

i=1

||hi||1





s.t.
yi

τi





m
∑

p=1

hipω
⊤
p φp(xi)+ b



 ≥ 1− ξi, ξi ≥ 0,∀i

||hi − h0||1 ≤ m0,hi ∈ {0, 1}
m, ∀i

τi =

∑m
p=1 hip||ωp||Hp
∑m

p=1 ||ωp||Hp

, ∀i

m
∑

p=1

γp = 1, γp ≥ 0, ∀p (7)

where latent binary variables hi = [hi1, hi2, · · · , him]⊤ ∈
{1, 0}m with respect to xi are introduced to decide whether
a particular kernel should operate on a particular point or not.
Specifically, hip = 1 means that the p-th feature mapping
φp(·) is beneficial for the classification of the i-th sample
xi, while hip = 0 indicates the opposite. The optimization
problem of Eq. 7 can be solved by considering a two-stage
alternating optimization which consists of solving an MKL
problem for different subspaces simultaneously with fixed
values of the latent variables and secondly obtaining new
values of the latent variables by running an integer pro-
gram solver. Note that each step of the iteration here solves
costly operations (an MKL solver and an integer problem
solver) in comparison with the SVM solvers in the other
approaches [26].
As can be seen in Eq. 7, the combination of kernel weights

falls into the ℓ1-MKL model. Following our previous analy-
sis, we improve this situation by formulating a closed-form
solution for optimizing the kernel weights and derive an
efficient ℓq-norm SAMKL algorithm. Besides, the cutting
plane method is used to solve this margin maximization
problem, and the computational complexity of our algorithm
is equivalent to that of Eq. 7.

III. SAMPLE-ADAPTIVE MULTIPLE KERNEL LEARNING

This section introduces the proposed ℓq-norm SAMKL prob-
lem. First, the problem formulation of ℓq-norm SAMKL
is given. Second, cutting plane based methods are used to
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optimize the objective function of our proposed problem.
A discussion of our work is then provided.

A. PROBLEM FORMULATION

For MKL problems with latent variables, we want to learn a
prediction rule of the form

f (x) = max
(y,h)∈Y×H

[

ω⊤9(x; y, h)
]

(8)

where 9(x; y, h) is a joint feature mapping on data X , labels
Y and latent variablesH. The objective of latent MKL can be
formulated as

min
ω, γ

1

2

m
∑

p=1

∥

∥ωp

∥

∥

2

γp
+ C

n
∑

i=1

max {0, fi(ω)− gi(ω)} (9)

where

fi(ω) = max
(u,h)∈Y×H

[

ω⊤y 9(xi; u,h)+1(yi, u)
]

= max
(u,h)∈Y×H





m
∑

p=1

hpω
⊤
p 8p(xi; u)+1(yi, u)



 (10)

and

gi(ω) = max
h∈H

m
∑

p=1

hpω
⊤
p 8p(xi, yi) (11)

where ω =
[

ω⊤1 , · · · , ω⊤m
]⊤

, h = [h1, · · · , hm]⊤ ,H =

{h : h ∈ {0, 1}m ∧ ‖h− h0‖ = m0}. h0 is a binary vector
with all bits set to 1, indicating all feature mappings are ben-
eficial for classification of all samples. m0 is a pre-specified
parameter controlling the deviation of each hi from h0.

We generalize theMKL formulation for arbitrary ℓq-norms
by regularizing over the kernel coefficients or equivalently.
The optimization problem of Eq. (9) can be rewritten in the
following functional form

min
ω, γ

1

2

m
∑

p=1

∥

∥ωp

∥

∥

2

γp
+ C

n
∑

i=1

ξi

s.t.

m
∑

p=1

γ qp = 1, γp ≥ 0

fi(ω)− gi(ω) ≤ ξi, ξi ≥ 0, ∀i (12)

We use a classical Lagrangian approach [4], [39]–[41] to
get γ . The Lagrangian of the primal is:

L(ω, γ ) =
1

2

m
∑

p=1

∥

∥ωp

∥

∥

2

γp
+ C

n
∑

i=1

ξi − s





m
∑

p=1

γ qp − 1





−

m
∑

p=1

tpγp − l (fi(ω)− gi(ω)− ξi)

−

n
∑

i=1

wiξi (13)

Setting the partial derivatives w.r.t. γ , we obtain the following
condition on the optimality of γ ,

∂L

∂γp
= −

1

2

∥

∥ωp

∥

∥

2

γp2
− sqγ q−1p − tp = 0 (14)

At optimality, we have these conditions which satisfy the
KKT condition:

(a)
∥

∥ωp

∥

∥

2
= −sqγ q+1p − tpγ

2
p

(b)
m
∑

p=1

γ qp = 1

(c) tpγp = 0, ∀p (15)

According to (c), we can state for all p that either γp = 0 and

thus
∥

∥ωp

∥

∥ = 0 or tp = 0 and thus γp =
∥

∥ωp

∥

∥

2
q+1 /(−2sq)

1
q+1 .

Then at optimility, we have tp = 0 following the KKT con-

dition. With
∑m

p=1 γ
q
p =

∑m
p=1(

∥

∥ωp

∥

∥

2
q+1 /(−2sq)

1
q+1 )q = 1,

we have (−2sq)
1

q+1 = (
∑m

p=1

∥

∥ωp

∥

∥

2q
q+1 )

1
q . Combining these

conditions with (a), γp can be updated by

γp =

∥

∥ωp

∥

∥

2
q+1

(
∑m

p=1

∥

∥ωp

∥

∥

2q
q+1 )

1
q

(16)

We optimize the upper bound of the problem in Eq.(9),

min
ω
L(ω, {hi}) =

1

2

m
∑

p=1

‖ωp‖
2

γp

+C

n
∑

i=1

max{0, fi(ω)− gi(ω;hi)} (17)

where gi(ω;hi) =
∑m

p=1 hipω
⊤
p 8p(xi; yi) and H =

[h1; · · · ; hn]⊤

According to the representer theorem [42], we have

ωp = γp

n
∑

i=1

∑

u∈Y

α̂iu8p(xi; u) (18)

and

‖ωp‖
2 = γ 2

p

n
∑

i,j=1

∑

u,v∈Y

α̂iuα̂jvkp((xi; u), (xj; v))

= γ 2
p α⊤K̃pα (19)

fi(ω) = max
(u,h)∈Y×H





m
∑

p=1

hpω
⊤
p 8p(xi; u)+1(yi, u)





= max
(u,h)∈Y×H



α⊤
m
∑

p=1

γphpap +1(yi, u)



 (20)

and

gi(ω) = max
h∈H

m
∑

p=1

hpω
⊤
p 8p(xi; yi) = max

h∈H
α⊤

m
∑

p=1

γphpbp

(21)
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where K̃p is calculated via kron(KY ,Kp) and KY is a sim-
ilarity matrix defied on label set Y . Parameter α is defined
as [α̂11 · · · α̂n1, · · · , α̂1c · · · α̂nc]⊤ ∈ Rn×c and ap = [Kp(:
, xi)⊤KY (1, u), · · · ,Kp(:, xi)KY (c, u)]

⊤ and bp = [Kp(:
, xi)KY (1, yi), · · · ,Kp(:, xi)⊤KY (c, yi)]

⊤.
Combining Eq.(19) and Eq.(16), we obtain

γp =
(γ 2
p α⊤K̃pα)

1
q+1

(
∑m

p=1(γ
2
p α⊤K̃pα)

q
q+1 )

1
q

(22)

Combining Eq.(17) and Eq.(19), we obtain

min
α,H,γ∈θ

L(α; {hi}) =
1

2
α⊤





m
∑

p=1

γpK̃p



α

+C

n
∑

i=1

max{0, fi(α)− gi(α;hi)} (23)

where

fi(α) = max
(u,h)∈Y×H



α⊤
m
∑

p=1

γphipap +1(yi, u)



 (24)

gi(α;hi) = max
h∈H

α⊤
m
∑

p=1

γphipbp (25)

B. OPTIMIZATION

Inspired by the works in [32], we try to solve the ℓq-norm
SAMKL by the cutting plane method. In this section, we use
a ‘‘n-slack’’ formulation to solve the optimization problem.
Two different ways of using a hinge loss to covex upper bound
the loss is proposed in [43], namely ‘‘margin-rescaling’’ and
‘‘slack-rescaling’’. Margin-rescaling methond is used in this
section. Combing Eq.(23), Eq.(24) and Eq.(25), we obtain the
following optimization problem

min
α,γ ,ξ≥0

L(α; {hi}) =
1

2
α⊤





m
∑

p=1

γpK̃p



α + C

n
∑

i=1

ξi

s.t. ∀(ȳ1,h1) ∈ Y×H : α⊤
m
∑

p=1

γph
⋆
1pbp−α⊤

m
∑

p=1

γph1pap

≥ 1(y1, ȳ1)− ξ1
...

s.t. ∀(ȳn,hn) ∈ Y×H : α⊤
m
∑

p=1

γph
⋆
npbp−α⊤

m
∑

p=1

γphnpap

≥ 1(yn, ȳn)− ξn (26)

where ξi is shared among constraints from the same sample.
1(yi, yi) is a function that quantifies the loss associated with
predicting yi when yi is the ground-truth. The ground-truth
labels are not excluded from the constraints because they cor-
respond to non-negativity constraints on the slack variables
ξi. And

∑

ξi is an upper bound on the empirical risk on the
training sample S = {(x1, y1), · · · , (xn, yn)} [32], [44]. We

Algorithm 1 Cutting Plane for SAMKL With
Margin-Rescaling via the n-Slack Formulation

Input: C, ε,S.
Output: (α, γ , ξ ).
1: W ← ∅, ξi← ∅ ,∀i

2: repeat

3: for i = 1, · · · , n do

4: (ŷi
⋆
, ĥ⋆

i )← argmax
ŷi∈Y,hi∈H

{

1(yi, ŷi)+ α⊤
m
∑

p=1
γphipap

}

5: h⋆
i ← argmax

hi∈H

α⊤
m
∑

p=1
γphipbp

6: if 1(yi, ŷi
⋆) − α⊤

m
∑

p=1

(

γph
⋆
ipbp − γpĥ

⋆
ipap

)

> ξi + ε

then

7: W ←W ∪ {ŷi
⋆
,h⋆

i }

8: (α, ξi)← argmin
α,ξ≥0

1
2α
⊤

(

m
∑

p=1
γpK̃p

)

α + C
m
∑

i=1
ξi

s.t. ∀(ȳ1,h1) ∈ W : α⊤
m
∑

p=1
γp(h⋆

1pbp − h1pap) ≥

1(y1, ȳ1)− ξ1
...

s.t. ∀(ȳn,hn) ∈ W : α⊤
m
∑

p=1
γp(h⋆

npbp − hnpap) ≥

1(yn, ȳn)− ξn
9: end if

10: end for

11: for p = 1, · · · ,m do

12: γp← τ
1

q+1
p �

(

∑m
p=1 τ

q
q+1
p

)
1
q

where τp = γ 2
p α⊤K̃pα

13: end for

14: Until noWi has changed during iteration
15: return(α, γ , ξ )

give the cutting-plane algorithm with margin-rescaling via
the n-slack formulation in Alg. 1.
Since the optimization problem in Eq.(26) has O(n|Y| ×
|H|) constraints, it can not be solved efficiently. For
real-value outputs, |Y| is typically extremely large. Besides,
|H| grows exponentially with the increase of the number of
base kernels. For sample i in S, it has at most 2m hi, which
constructs H. We reformulate the optimization problem by
replacing the n cutting-plane models of the hinge loss, one
for each training example, with a single cutting plane model
for the sum of the hinge-losses. The ‘‘1-slack’’ formulation
of Eq.(26) is

min
α,γ ,ξ≥0

L(α; {hi}) =
1

2
α⊤





m
∑

p=1

γpK̃p



α + Cξ

s.t. ∀((ȳ1,h1), · · · , (ȳn,hn)) ∈ Yn ×Hn :

1

n
α⊤

n
∑

i=1

m
∑

p=1

(

γph
⋆
ipbp−γphipap

)

≥
1

n

n
∑

i=1

1(yi, ȳi)−ξ

(27)
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In the formulation aforementioned, for each possible com-
bination of labels and hidden models ((ȳ1,h1), · · · , (ȳn,hn)),
it has only one slack variable ξ that is shared across all con-
straints. This optimization problem in Eq. 27 is a non-linear
integer programming, which can be solved via quadratic
programming. We give the cutting-plane algorithm with
margin-rescaling via the 1-slack formulation in Alg. 2.

Algorithm 2 Cutting Plane for SAMKL With
Margin-Rescaling via the 1-Slack Formulation

Input: C, ε,S.
Output: (α, γ , ξ ).
1: W ← ∅

2: repeat

3: (α, ξ )← argmin
α,ξ≥0

1
2α
⊤

(

m
∑

p=1
γpK̃p

)

α + Cξ

s.t. ∀ ((ȳ1,h1), . . . , (ȳn,hn)) ∈W :

1
n
α⊤

n
∑

i=1

m
∑

p=1

(

γph
⋆
ipbp − γphipap

)

≥ 1
n

n
∑

i=1
1(yi, ȳi)− ξ

4: for i = 1, . . . , n do

5: (ŷi
⋆
, ĥ⋆

i )← argmax
ŷi∈Y,hi∈H

{

1(yi, ŷi)+ α⊤
m
∑

p=1
γphipap

}

6: h⋆
i ← argmax

hi∈H

α⊤
m
∑

p=1
γph

⋆bp

7: end for

8: for p = 1, . . . ,m do

9: γp← τ
1

q+1
p �

(

∑m
p=1 τ

q
q+1
p

)
1
q

where τp = γ 2
p α⊤K̃pα

10: end for

11: W ←W ∪ {((ŷ1
⋆
,h⋆

1), · · · , (ŷ
⋆
n,h

⋆
n))}

12: until 1
n

n
∑

i=1
1(yi, ŷi

⋆)

− 1
n
α⊤

n
∑

i=1

m
∑

p=1

(

γph
⋆
ipbp − γpĥ

⋆
ipap

)

≤ ξ + ε

13: return(α, γ , ξ )

Alg. 2 iteratively constructs a working setW of constraints.
In each iteration, the algorithm computes the solution over
W (Line 3), finds the most violated constraint (Lines 4-7)
and adds it to the working set. The algorithm stops when
no constraint can be found that is violated by more than the
desired precision ε (Line 12).

C. DISCUSSION

As mentioned before, the n−slack and the 1−slack formula-
tions of our problem are equivalent. Therefore, the objective
functions of Alg. 1 and Alg. 2 are equal. That means the
theoretical results for those algorithms are consistent. The
proof can be found in Theorem 1mentioned in reference [32].
Unlike in the n−slack algorithm Alg. 1 where the number
of constraints increases exponentially in the solving process,
only a single constraint is added in each iteration of 1−slack
algorithm Alg. 2. So the 1− slack algorithm is more efficient

than the n−slack algorithm. For this reason, we implement
Alg. 2 to validate the high efficiency and effectiveness of our
work in Section 4.
From Fig. 2(a) we can see that the computation time

increases linearly with the number of iterations. It can be seen
from Fig. 2(c) that the objective function value of the cutting
plane based optimization Alg. 2 (denoted as CP-SAMKL) is
monotonic, while the alternate coordinate descent-based opti-
mization of Eq. 23 (denoted as ACD-SAMKL) is not. There-
fore, the classification performance of CP-SAMKL is much
more stable compared to ACD-SAMKL with the number of
iteration increases. Besides, from Fig. 2(d), we can see that
the CP-SAMKL is easier to converge than ACD-SAMKL.
For these reasons, the cutting plane based optimization of
SAMKL is used in Section 4.

IV. EXPERIMENTAL RESULTS

All of the experiments were carried out on a computer with a
3.6GHz Intel Xeon E5-1620 CPU and 48GB of memory with
Matlab R2014a (64bit).

A. DATASETS

A wide range of image datasets used in our experiment is
summarized in Table 1. The number of datasets classes ranges
from 2 to 37, the sample number reaches up to 2,600, the
views of each dataset scales from 7 to 14. Besides, two
datasets used for protein subcellular localization are given in
Table 2, including psortPos and plant datasets. These protein
datasets have been widely used by MKL algorithms [37] and
can be downloaded from website.1

Caltech256:2 It is a collection of 256 object categories
containing a total of 30,607 images. These categories are
grouped by animate and inanimate and other finer distinc-
tions [45]. And the animate objects - 69 categories in all - tend
to be more cluttered than the inanimate objects, and harder to
identify. The air animals of the animate objects are used in our
experiment except for iris and hawksbill-101, which are not
air animals. That is to say, a subset of Caltech256 with a total
of 1,032 samples in 9 classes are used in our experiments.
These categories are depicted in Fig. 3(b).

Birds200:3 It is an image dataset with photos of 200 bird
species (mostly North American). A total of 882 sam-
ples in 15 birds categories are selected in our experiments.
These 15 categories are easy to be confused by the human
eye and we get this subset by clustering. These categories are
depicted in Fig. 3(a)

STL-10:4 It is an image recognition dataset for develop-
ing unsupervised feature learning, deep learning, self-taught
learning algorithms. A total of 2,600 samples from this
dataset are selected, with each of the two classes (dog and
cat) has 1,300 samples.

1http://mkl.ucsd.edu/dataset/
2http://www.vision.caltech.edu/Image_Datasets/Caltech256/
3http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
4https://cs.stanford.edu/~acoates/stl10/
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FIGURE 2. Comparison between proposed CP-SAMKL and ACD-SAMKL on 15birds_confuse_hybrid dataset. The regularization
parameter C is set to 108 and 1 for CP-SAMKL and ACD-SAMKL, respectively. m0, ε and the maximum iterations is set to 2, 10−6

and 500 for these algorithms.

Cifar-100:5 This dataset has 100 classes contain-
ing 600 images each. The 100 classes in the CIFAR-100
are grouped into 20 superclasses. Each image comes with a
‘‘fine’’ label (the class to which it belongs) and a ‘‘coarse’’
label (the superclass to which it belongs). A total of
1,100 samples from this dataset are randomly selected in a
balancedmanner, with each of the 11 classes has 100 samples.
The 11 classes are easy to be confused by the human eye,
including aquarium fish, crocodile, dolphin, flatfish, otter,
ray, seal, shark, trout, turtle, and whale, and they are depicted
as Fig. 3(c).
Vgg Pets:6 It is a collection of pets, covering 37 different

breeds of cats and dogs, with roughly 200 images for each
class. A total of 1480 samples from this dataset are selected,
with each class has 40 samples.
For the image datasets, we extracted features using tra-

ditional machine learning methods and deep learning algo-
rithms. Six features are extracted from all images using

5https://www.cs.toronto.edu/~kriz/cifar.html
6http://www.robots.ox.ac.uk/~vgg/data/pets/

TABLE 1. Image datasets used in the experiments and their feature
descriptions.

TABLE 2. Protein datasets used in the experiments.

the toolbox downloaded from.7 These features are color
(dim 420) [46], [47], gist (dim 512) [48], dense hog2 ×
2 (dim 420), dense hog3 × 3 (dim 420) [33], [49], lbp
(dim 1239) [35] and dense sift (dim 420) [34]. Tex-
ture features are extracted using the statxture function by

7https://github.com/adikhosla/feature-extraction
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FIGURE 3. Details of dataset.

matlab [50]. These seven features are denoted as normal
features in our experiments. Besides, we extract another
seven features using the pretrained models downloaded
from,8 including imagenet-resnet-50-dag model, imagenet-
googlenet-dag model, imagenet-vgg-f model, imagenet-vgg-
s model, imagenet-vgg-m model, imagenet-caffe-ref model
and imagenet-vgg-verydeep16 model. These features are
denoted as deep features in our experiments. For each image
dataset, we construct 3 subsets with 7 normal features, 7 deep
features and 14 hybrid features (7 normal features and 7 deep
features) respectively.
For all of these image data sets, we randomly split the

data into 10 groups, with 50% : 50% for training and test.
In all experiments, the Gaussian kernels were used to build
the similarity matrix for each individual view. The standard
deviation (parameter σ ) was set to the median of the pairwise
Euclidean distances between every pair of data points for all
datasets.

8http://www.vlfeat.org/matconvnet/pretrained/

B. BASELINES

We compare the proposed algorithms with state-of-the-art
MKL algorithms.

UMKL: It is a uniformly weighted MKL algorithm. And
we implement it based on the LIBSVM 9 package.
SimpleMKL: [6] It is a well-known baseline with

max-margin principle. Its Matlab implementation is available
from.10 Its formulation of the MKL problem results in a
smooth and convex optimization problem, which is equiva-
lent to other MKL formualtions available in the literature.
The main added value of the smoothness of the new objec-
tive function is that descent methods become practical and
efficient means to solve the optimization problem that wraps
a single kernel solver. It provides optimality conditions, ana-
lyzes convergence and computational complexity issues for
binary classification.

ℓq-MKL: [4] It is an efficient algorithm for multiple kernel
learning by discussing the connection between MKL and
group-lasso regularizer. It calculates the kernel weights by
a closed-form formulation, which therefore leverages the
dependency of previous algorithms on employing compli-
cated or commercial optimization software. It is a general
max-margin MKL framework with ℓq-norm constraint on
kernel weights. We consider q = 1, 2, 4 and use its Matlab
implementation.

SAMKL: [3] In this algorithm, the base kernels are
allowed to be adaptively switched on/off with respect to each
sample. A latent binary variable was assigned to each base
kernel when it is applied to a sample. The kernel combination
weights and the latent variables are jointly optimized via the
margin maximization principle.

C. RESULT ANALYSIS

Following [37], F1-score is used to measure classification
performance on psortPos data set, while the matthew corre-
lation coefficient (MCC) is used for the plant data set. The
results of SAMKL are reported from the original paper [3],
while the others are obtained by us running the released
code. For these protein data sets, we randomly split the data
into 20 groups, with 50%: 50% for training and test. For our
proposed algorithm, C is chosen from [103, 104, . . . , 1012]
by five-fold cross-validation and m0 is chosen adaptively
in the optimization of the algorithm. As seen in Table 3,
our proposed algorithm achieves superior performance to the
baselines on the protein data sets.

Precision is used to measure classification performance on
the image datasets used in our experiments. Table 4 shows
the classification results of the proposed algorithm and the
baselines on each data set. Each cell represents mean pre-
cision and standard deviation. Boldface means the best one.
From this table, we can see that the image datasets using only
normal features achieve inferior classification performance
compared with that using deep features. It also can be seen

9https://www.csie.ntu.edu.tw/~cjlin/libsvm/
10https://github.com/maxis1718/SimpleMKL
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TABLE 3. Experimental comparison of the proposed 1-slack CP-SAMKL
and the baselines on protein data sets. The two rows of each cell
represent mean accuracy(standard deviation) and training/test time (in
seconds). Boldface means the best one.

TABLE 4. Experimental comparison of the proposed 1-slack CP-SAMKL
and the baselines on data sets.

TABLE 5. Experimental comparison of the proposed 1-slack CP-SAMKL
and the baselines on data sets with rub kernels.

that all the algorithms achieve excellent performance on the
datasets using deep features. And the performance achieved
by the uniformly weighted MKL is comparable to that of
SimpleMKL and Lp-normMKL. But our proposed algorithm
can further improve the classification performance compared
to the baselines.
Table 5 shows the classification results of the proposed

algorithm and the baselines on data sets with rub kernels.
These rub kernels are generated by setting a ratio of samples
of several views to 0. 30% of the samples are selected ran-
domly and their values of the randomly selected 50% views
are set to 0. From this table, we can see that the proposed
algorithm can further improve the classification performance
compared to the baselines.
The learned latent variable h is shown in 4. The h on each

classification task is shown as an n×mmatrix, where n andm
are the number of training samples and base kernels, respec-
tively. As can be seen, the active latent variables indicating
‘‘1’’ are in blue while the others indicating ‘‘0’’ are in red.
The blue color indicates those latent variables which switch
off the base kernels whole weights are nonzeros. As shown,
h switches on/off the base kernels differently across training
samples. Due to the constraint ||hi − h0|| ≤ m0,∀i, each
row of these matrices has a fixed number of ‘‘0’’s. They are
6 and 10 for 15birds_hybird and STL_dogcat, respectively.
It also can be seen that the blue area is on the left side of
Fig. 4(a) and Fig. 4(b), which means most of the kernels
extracted from the normal features are switched off. That
means, combining the kernels extracted using deep features,

FIGURE 4. The latent varible h learned for each sample of a training
group on different data sets.

we can get superior classification performance. This rule
can be seen from Table. 4. Besides, our proposed algorithm
achieves comparable results on the data sets using hybrid
features. These experiments preliminarily demonstrate the
effectiveness and the properties of the proposed ℓq-norm
SAMKL.

D. PARAMETER SELECTION

For the image data sets using only normal features or deep
features, m for our proposed algorithm is chosen from
[0, 1, 2, 3, 4] by 5-fold cross-validation. For the data sets
using hybrid features, m0 is selected from [0, 2, 4, 6, 8]. The
penalty parameter C for our proposed 1-slack CP-SAMKL
is set to a fixed value of 108. Each base kernel matrix is
normalized to have a unit trace.

We perform 5-fold cross-validation on training data sets to
select the regularization parameterC ∈ {10−1, 100, 101, 102,
103, 104} for UMKL, SimpleMKL and ℓq-norm MKL.

Fig. 5 shows the effect of the iterations on the 1st split
of 15 birds data set using hybrid features. And in this setting,
the value of regularization parameterC and selected channels
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FIGURE 5. Effect of the iterations on the 15 birds dataset using hybrid
features.

m0 are fixed to 108 and 2 for convenience, respectively. As the
Fig. 5(a) shows, the classification precision increases as the
number of iterations of the proposed algorithm increases.
And the performance is relative stable when the iteration
is too large. It can seen from Fig. 5(b) that the objective
function value increases with the number of iteration mono-
tonically increasing. Fig. 5(c) the stop criterion (the value of
1
n

∑n
i=1 1(yi, ŷi

⋆)− 1
n
α⊤

∑n
i=1

∑m
p=1

(

γph
⋆
ipbp − γpĥ

⋆
ipap

)

−

ξ ) monotonically decreases dramatically with the number of
iteration increases. So, we set the value of iterations to 20 for
our proposed algorithm 1-slack CP-SAMKL.

V. CONCLUSION

This work proposes an efficient ℓq-norm SAMKL problem
which jointly performs MKL and infers the base kernel sub-
sets that are useful for the classification of each sample.

By allowing each sample to adaptively switch on/off each
base kernel, ℓq-norm SAML achieves clear improvement
over the comparable MKL algorithms in recent literature.
In this paper, we solve the optimization problem using cut-
ting plane methods, and construct datasets using mainstream
machine learningmethods and deep learningmethods. Exten-
sive experiments exhibit the effectiveness of our proposed
algorithm. Further improving the classification performance
of the proposed SAMKL is another piece of our future work.
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