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Abstract In this article we derive an inequality of Łojasiewicz–Siciak type for certain sets
arising in the context of the complex dynamics in dimension 1. More precisely, if we denote
by dist the Euclidean distance inC, we show that the Green function G K of the filled Julia set
K of a polynomial such that K̊ �= ∅ satisfies the so-calledŁS conditionG A ≥ c·dist(·, K )c′

in
a neighborhood of K , for some constants c, c′ > 0. Relatively few examples of compact sets
satisfying the ŁS condition are known. Our result highlights an interesting class of compact
sets fulfilling this condition. For instance, this is the case for the filled Julia sets of quadratic
polynomials of the form z �→ z2 + a, provided that the parameter a is parabolic, hyperbolic
or Siegel. The fact that filled Julia sets satisfy the ŁS condition may seem surprising, since
they are in general very irregular and sometimes they have cusps. However, we provide an
explicit example of a curve which has a cusp and satisfies the ŁS condition. In order to prove
our main result, we define and study the set of obstruction points to the ŁS condition. We
also prove, in dimension n ≥ 1, that for a polynomially convex and L-regular compact set
of non-empty interior, these obstruction points are rare, in a sense which will be specified.

Keywords ŁS condition · Green function · Pluricomplex Green function · Complex
dynamics · Filled Julia set · Potential theory

Mathematics Subject Classification 37F50 · 37F10 · 31C99 · 32U35

B Frédéric Protin
fredprotin@yahoo.fr

1 Institut Mathématique de Toulouse, INSA de Toulouse, 135 Avenue de Rangueil, 31400 Toulouse,
France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-018-0752-x&domain=pdf
http://orcid.org/0000-0003-1702-9451


1846 F. Protin

1 Introduction

We call pluricomplex Green function G A of a compact set A ⊂ C
n , n ≥ 1, the plurisubhar-

monic function defined as

G A := sup∗
{
v ∈ PSH(Cn) : v|A ≤ 0, v(z) ≤ 1

2
log

(
1 + ‖z‖2) + O(1)

}
,

where sup∗ denotes the upper semi-continuous regularization of the upper envelope, and
PSH(Cn) denotes the set of plurisubharmonic functions in Cn . The set A is called L-regular
if G A is continuous. In this case, the set {G A = 0} is the polynomially convex envelope Â of
A. We also consider, for an open bounded setU ⊂ C

n , the Green function of A ⊂ U relative
to U defined by

G A,U := sup∗{v ∈ PSH(U ) : v ≤ 1, v|A ≤ 0
}
.

The reader should pay attention to the fact that in [9] the Green function of A relative to U
is defined as G A,U − 1.

Let Ua := {G A < a} for a ∈ R
+\{0}. If A is not pluripolar and Â ⊂ Ua , then a relation

between G A and G A,Ua holding in Ua is given by Proposition 5.3.3 in [9]:

G A = G A,Ua . (1)

A compact A ⊂ C
n is said to satisfy the ŁS condition if there exists an open set U

containing it and two constants c, c′ > 0 such that its pluricomplex Green function G A

verifies the following regularity condition :

∀z ∈ U, G A(z) ≥ c · dist(z, A)c′
,

where dist denotes the Euclidean distance (see for instance [6] or [2]).
On a compact set A ⊂ C

n verifying the ŁS condition, as well as the HCP condition (i.e.,
the Hölderian continuity of G A, for example a semialgebraic compact set), we have the rapid
approximation property of continuous functions by polynomials. Relatively few examples
of compacts satisfying the ŁS condition are known. Some examples are given in [13]. Let
us also note that Pierzchała showed in [14] that a compact verifying the ŁS condition is
polynomially convex. Białas and Kosek [3] construct such sets using holomorphic dynamics.

Along the same vein, we show that the so-called filled Julia sets in C satisfy the ŁS
condition. More precisely, our main goal is to show the following result concerning the filled
Julia set of a polynomial f : C → C, i.e., the set of points z ∈ C whose orbit ( f n(z))n is
bounded :

Theorem The filled Julia set of a polynomial f : C → C of degree ≥ 2, if its interior is
non-empty, satisfies the ŁS condition.

Recall that a compact set in C is polynomially convex if and only if its complement is
connected, so the filled Julia set of a polynomial is polynomially convex. The differentials
operators ∂ and ∂ will be understood in the sense of currents. Recall that a continuous function
u from an open set of Cn into R is pluriharmonic (harmonic if n = 1) if and only if ∂∂u = 0
(see for example Theorem 2.28 in [11]).

In Sect. 2, we recall some definitions and elementary facts about holomorphic dynamics
in one dimension, and we give a useful lemma concerning the regularity of filled Julia sets.
More precisely, this lemma shows that the filled Julia set K of a polynomial of degree d ≥ 2

with non-empty interior satisfies K̊ = K . In Sect. 3, we define in C
n , n ≥ 1, the set of
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ŁS condition for filled Julia sets in C 1847

obstruction points to the ŁS condition, and we prove that the complement of this set is big, in
a sense whichwill be specified.We also study explicitly the ŁS condition on several examples
of compact sets in C. In particular, we provide an example of a curve which has a cusp and
satisfies, however, the ŁS condition. Section 4 is devoted to the proof of the main theorem
previously stated.

2 Dynamics in C

We start by recalling some definitions related to one-dimensional holomorphic dynamics.
Let us consider a polynomial f : C → C of degree d ≥ 2.

We call Fatou set of f , denotedF , the largest open subset in which the family of iterations
f n is equicontinuous.

The Julia set of f , denoted J , is the complement of F in C. Let us note for what follows
that J is not a polar set.

We call filled Julia set of f the set K of points z ∈ C whose orbit ( f n(z))n is bounded.
Note that K is compact, as ∞ is a superattractive fixed point of f , hence belonging to F .
The complement of K is the basin of attraction of infinity. We have ∂K = J and G K = G J .

There are many situations where the set K is of non-empty interior. Consider, for instance,
the case where f (z) = z2 + a with a ∈ C. By Sullivan’s classification theorem (see, e.g.,
Theorem 2.1 in [4] or Theorem 3.2 of [12]), we can distinguish three cases where K̊ �= ∅.
The first case is when a is chosen in the interior of the Mandelbrot set in such a way that f
is hyperbolic in the sense of [4] p. 89. By Theorem 4.7 in [12], f is hyperbolic if and only if
some iterate f k of f has a fixed point z0 ∈ C for which |( f k)′(z0)| < 1. The second case is
when a is chosen on the boundary of the Mandelbrot set such that some iterate f k of f has
a fixed point z0 ∈ C for which ( f k)′(z0) is a root of the unity. By Theorem 6.5.10 of [1] and
Theorem 4.8 of [12], this corresponds to the parabolic case in the Sullivan’s classification.
By Theorem 4.8 of [12], the last case is when a is chosen on the boundary of the Mandelbrot
set such that K̊ contains a Siegel disk and all its preimages in the sense of Definition 7.1.1 of
[1].

We construct the subharmonic function G : C → R
+, limit in L1

loc of the sequence
(log(1+| f n |)/dn)n (see [8] for a general construction). It is known that G is continuous (and
even Hölderian [10], see also Theorem 3.2 of [4]), harmonic in F , that it verifies G(z) = 0
if and only if z ∈ K , and also that G(z) − log |z| = O(1) at infinity. By uniqueness, G is
therefore the pluricomplex Green function of K (and of J ). It satisfies by construction the
invariance property

G ◦ f = d · G. (2)

The measure i
π
∂∂G is a probability measure of support exactly J (see, e.g., [7]). We will

use the following preliminary lemma about filled Julia sets.

Lemma 1 The filled Julia set K of a polynomial of degree d ≥ 2 with non-empty interior

satisfies K̊ = K .

Proof Suppose, by contradiction, that there exists x ∈ ∂K having a neighborhood U which
does not intersect K̊ . Then, there exists n0 ∈ N such that K ⊂ f n0(U ) (see for example
Theorem 4.2.5. of [1]). But this contradicts the fact that f n0(U ∩ K ) ⊂ ∂K . Thus, every

open subset of C intersecting J = ∂K also intersects K̊ . In other words, K̊ = K . ��
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1848 F. Protin

3 Study of the obstruction to the ŁS condition

For n ≥ 1, let

Oc := {
z ∈ C

n : dist(z, A) < 1, G A(z) < c · dist(z, A)1/c} . (3)

Note that the sequence of open sets Oc is increasing with c for c < 1. The ŁS condition is
satisfied by a compact non-pluripolar set A ⊂ C

n , L-regular and polynomially convex, if
and only if the set

I :=
⋂
c>0

Oc ⊂ ∂ A

is empty. We call I the set of obstruction points to the ŁS condition.

Example 1 [3] If A is the union of two disks of radius 1, tangent to each other at the origin,
then it does not satisfy the ŁS condition; the set of obstruction points to the ŁS condition is
I = {0} �= ∅.
Example 2 The previous set A is mapped by the function g : z → z2 onto a filled cardioid C,
and we have g−1(C) = A. We deduce from Theorem 5.3.1 of [9] that the set of obstruction
points to the ŁS condition for C is I = {0} �= ∅.
Example 3 For ε ∈ ]0, 1[ fixed, consider the sets Lε := {(1 + i)t, t ∈ [−ε, ε]}, L ′

ε :=
{(1 − i)t, t ∈ [−ε, ε]}, and Xε := Lε ∪ L ′

ε ⊂ B(0, 2ε). We show that Xε satisfies the
ŁS condition, i.e., I = ∅. Indeed, the function g : C → C defined by g(z) = i

2 z2 maps
Xε onto [− 1, 1]. On the other hand, g−1([−1, 1]) = Xε. Theorem 5.3.1 of [9] implies
G Xε = G[−1,1] ◦ g. Since the segment [− 1, 1] is convex, it satisfies the ŁS condition (see
[6]). Moreover, it follows from Theorem 1 in [5] that ∀z ∈ C,

dist (g(z), [−1, 1]) ≥ 1

4
|z|dist (z, Xε) ≥ 1

4
dist (z, Xε)

2 .

We deduce that Xε also satisfies the ŁS condition.

Considering the previous examples, one may think that a cusp prevents the ŁS condition to
hold. However, we show in the counter-example below that this is not the case.

Example 4 Wewill use here the notations of Example 3.Define f : B(0, 2ε) → f (B(0, 2ε))
by f (z) := ez − z −1.We suppose that ε > 0 is sufficiently small such that f is a proper map
with only one critical point at the origin. The curve f (Lε) = {(cos t − 1) + i(sin t − t), t ∈
[−ε, ε]} has a cusp at the origin, in the sense that

lim
t→0+

∂
∂t f ((1 + i)t)∥∥ ∂
∂t f ((1 + i)t)

∥∥ = − lim
t→0−

∂
∂t f ((1 + i)t)∥∥ ∂
∂t f ((1 + i)t)

∥∥ = −1.

However, we prove that the set f (Lε) satisfies the ŁS condition. Indeed, note that this set
is invariant by conjugation. But ∀z ∈ Lε, f (z) = f (z), hence f (Lε) = f (L ′

ε). Take
y ∈ f (Xε)\{0}. Thanks to the previous considerations, there exist two preimages x ∈ Lε

and x ′ = x ∈ L ′
ε of y by f . Since the order of f at the origin is 2, for ε sufficiently small

there is no other preimage of y in B(0, 2ε). Thus, f −1( f (Xε)) = Xε .
Take now y ∈ f (B(0, 2ε), and x ∈ B(0, 2ε) a preimage of y by f . By Proposition 4.5.14

in [9] we have
G f (Xε), f (B(0,2ε))(y) = G Xε,B(0,2ε)(x). (4)
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ŁS condition for filled Julia sets in C 1849

Let x0 ∈ Xε which attains the distance dist(Xε, x). Recall from Example 3 that Xε satisfies
the ŁS condition. Together with (4), this leads to

G f (Xε), f (B(0,2ε))(y) ≥ e · dist(Xε, x)
1
e = e · dist(x0, x)

1
e ,

for some e > 0 independent of y. The finite-increment theorem then implies the existence
of some constant e′ > 0, depending only on ε, such that

G f (Xε), f (B(0,2ε))(y) ≥ e′ · dist( f (x0), y)
1
e′ ≥ e′ · dist( f (Xε), y)

1
e′ .

Since the hypotheses of Proposition 5.3.3 of [9] are verified, the functions G f (Xε),B(0,2ε)
and G f (Xε) are comparable in the sense of this Proposition. This allows us to conclude that
f (Xε) = f (Lε) fills the ŁS condition.

This example illustrates the fact that it is not so surprising that filled parabolic Julia sets
can satisfy the ŁS condition, even if they have cusps.

The following result provides more insight into the structure of the complement of Oc.
We prove it for any n ≥ 1. Recall that, given an open set U ⊂ C

n , a set E ⊂ U is called
pluripolar if for each a ∈ E there exist a neighborhood V ⊂ U of a and a plurisubharmonic
function v : V → R ∪ {−∞} such that E ∩ V ⊂ {v = −∞}.

Proposition 1 Let A ⊂ C
n, n ≥ 1, be a non-pluripolar, L-regular and polynomially convex

compact set. Suppose that the pluricomplex Green function G A is pluriharmonic outside of
A (harmonic if n = 1).

Then, there exists c0 > 0 such that ∀c ∈ ]0, c0], ∂ A is included in the boundary of the
open set {z ∈ C

n : G A(z) > c · dist(z, A)1/c}.

Proof Let μ denote the positive measure
i

π
∂∂G A ∧ ωn−1 on C

n , where

ω := i

2π
∂∂ log(1 + ‖z‖2)

is the Fubini–Study form. Note that the support of the measure μ is exactly ∂ A. Indeed,
supp(μ) ⊂ ∂ A since i

π
∂∂G A = 0 in C

n\∂ A by hypothesis. On the other hand, if there
existed x ∈ ∂ A\supp(μ), then G A would be (pluri)harmonic in a neighborhood of x , hence
null in this neighborhood, which cannot happen because A is polynomially convex.

Let us suppose by contradiction that ∀c0 > 0, ∃c ∈]0, c0], ∃x ∈ ∂ A, ∃r > 0, B(x, r)∩
{z ∈ C

n, G A(z) > c · dist(z, A)1/c} = ∅.

Thus, we can take c′ ∈
]
0,

1

4n

[
, x ′ ∈ ∂ A, and r ′ > 0, such that

G A(z) ≤ c′ · dist(z, A)
1
c′ , ∀z ∈ B(x ′, r ′).

Denote r0 := r ′
2 . Let us establish the following Chern–Levine–Nirenberg-type inequality

: ∀r < r0, ∀x ∈ B(x ′, r0) ∩ ∂ A,

μ
(
B(x, r)

) ≤ k · r−2n sup
B(x,2r)

G A ≤ c′ · k · (2r)
1
c′ −2n

, (5)

for some constant k > 0 independent of r , r0, x ′ and c′. Let indeed ξ : Cn → R
+ be a positive

test function ≡ 1 in B(0, 1) and having its support in B(0, 2). There exists a decreasing
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1850 F. Protin

sequence (Gn)n of C∞ plurisubharmonic functions converging toward G A (Theorem 2.9.2
in [9]). Theorem 3.4.3 in [9] and Stokes’ theorem imply that ∀r < r0, ∀x ∈ B(x ′, r0) ∩ ∂ A,

μ
(
B(x, r)

) ≤
∫
Cn

ξ
( z1

r
, . . . ,

zn

r

)
dμ (z1, . . . , zn)

= lim
m→+∞

∫
Cn

Gm

r2n
(∂∂ξ)

( z1
r

, . . . ,
zn

r

)
∧ ωn−1.

Then, the monotone convergence theorem implies that ∀r < r0, ∀x ∈ B(x ′, r0) ∩ ∂ A,

μ
(
B(x, r)

) ≤
∫
Cn

G A

r2n
(∂∂ξ)

( z1
r

, . . . ,
zn

r

)
∧ ωn−1 ≤ k · r−2n sup

B(x,2r)

G A,

where k depends only on the sum of the supremumnorms of the coefficients of the differential
form ∂∂ξ . Therefore, (5) holds.

With the notation ν := μ

μ
(
B(x ′, r0)

)1B(x ′,r0), where 1B(x ′,r0) is the characteristic function

of B(x ′, r0), the measure ν is a probability measure, and we can rewrite (5) : ∀r > 0,
∀x ∈ B(x ′, r0) ∩ ∂ A,

ν
(
B(x, r)

) ≤ c′ · k

μ
(
B(x ′, r0)

) · (2r)
1
c′ −2n

.

Then, by Frostman Lemma (see for example Lemma 10.2.1 in [1]), the Hausdorff dimen-
sion of ∂ A ∩ B(x0, r0) is strictly greater than 2n for our choice c′ < 1

4n , which gives a
contradiction. (Recall that Frostman Lemma ensures that, if m is a probability measure on a
metric space E verifying m

(
B(x, r)

)
< q · rα for all x ∈ E , r > 0, with fixed q > 0, α > 0,

then the Hausdorff dimension of E is greater than α).
We thus conclude that ∃c0 > 0, ∀c ∈]0, c0], ∀x ∈ ∂ A, ∀r > 0:

B(x, r) ∩
{

z ∈ C
n, G A(z) > c · dist(z, A)1/c

}
�= ∅,

which proves the statement. ��

4 Proof of the main theorem

Wewill need the following result of Poletsky (Corollary p. 170 in [15], see also [16], or The-
orem 2.2.10 and Corollary 2.2.13 in [18]), generalized by Rosay [17]. Let U be a connected
complex manifold of dimension n ≥ 1. We denote byHz,U the set of holomorphic functions
h : Vh → U from a neighborhood Vh of Δ = {|z| ≤ 1} ⊂ C (possibly depending on h)
into U such that h(0) = z. We also denote by PSH(U ) the set of plurisubharmonic functions
defined on U .

Proposition 2 Let u : U → R be an upper semi-continuous function. With the previous
notations, the function defined by

ũ(z) := 1

2π
inf

f ∈Hz,U

∫ 2π

0
u

(
f
(

eiθ
))

dθ,

if it is not everywhere equal to −∞, belongs to PSH(U ) and verifies ũ ≤ u. Moreover, this
function ũ is maximal among all the functions in PSH(U ) verifying this inequality.
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ŁS condition for filled Julia sets in C 1851

Remark 1 We deduce from Proposition 2 the following property of antisubharmonic func-
tions, i.e., functions with subharmonic opposite. Let B := B(a, r) ⊂ C be an open ball,
u : B → R a continuous function, antisubharmonic in B. Then, û : B → R is an har-
monic function, with the same boundary values as u, in the sense that limz→z0 û = u(z0) for
z0 ∈ ∂ B.

Indeed, given a continuous function g : B → R, denote by g̃ : B → R the solution of the
Dirichlet problem in B with boundary condition g|∂ B , that is to say, the unique continuous
function defined on B which is harmonic in B and equal to g on ∂ B. Then, v := max(ũ, û)

is a subharmonic function with the same values as u on ∂ B. Since u is antisubharmonic, we
have ũ ≤ u. Thus,

û ≤ v ≤ u.

Since û is maximal among the subharmonic functions which are ≤ u in B and equal to u on
∂ B, we conclude that û = v, and hence ũ = û.

Thanks to Theorem 3.1.4 in [9], the conclusion is the same if B is a ball in C
n , when

substituting the expression “harmonic function” by “maximal plurisubharmonic function,”
and the expression “antisubharmonic function” by “antiplurisubharmonic function”.

LetU ⊂ C
n , n ≥ 1, be a bounded open set. Denote by λ the normalized Lebesguemeasure

on the unit circle ∂U ⊂ C. Denote also by Λz,U the set of measures of the form h∗λ(·) :=
λ(h−1(·)), where h : Vh → U is an holomorphic function defined in a neighborhood Vh

(possibly depending on h) of the closed unit disk U, such that h(0) = z. Note that the Dirac
measure δz belongs to Λz,U . (This corresponds to the case where the function h is constant,
equal to z.) An immediate consequence of Proposition 2 is the following corollary, where 1G

denotes the characteristic function of G ⊂ C
n :

Corollary 1 Let U ⊂ C
n be a bounded open set, and A ⊂ U a L-regular non-pluripolar

compact set satisfying Å = A. Then

1

2π
inf

f ∈Hz,U

∫ 2π

0
−1 Å ◦ f (eiθ )dθ = − sup

μz∈Λz,U

μz( Å) = G A,U (z) − 1.

Recall that we denote by K the filled Julia set of a polynomial application f : C → C of
degree ≥ 2, and dist(·, ·) the Euclidean distance on C

n . Let us prove the main result stated
in the introduction :

Theorem 1 Let K ⊂ C be the filled Julia set of a polynomial f : C → C of degree d ≥ 2,
of non-empty interior. Then, K satisfies the ŁS condition.

Proof For b ∈ R
+\{0}, denote Ub := {G K < b} ⊂ C. For l ∈ R

+\{0}, denote also
Kl := {z ∈ C | dist(z, K ) ≤ l}. Then choose a > 0 such that K2 ⊂ f −1(Ua). Note
that f −1(Ua) = U a

d
⊂⊂ Ua by (2). Denote by Ca the annulus Ua\ f −1(Ua). There exists

δ ∈]0, 1[ such that
G K2,Ua

≥ δG K ,Ua on Ca . (6)
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1852 F. Protin

Take c ∈
]
0,

δ

2a

[
, sufficiently small to have Oc ⊂ f −1(Ua) and

(
1
c2

)c
< 2. We have

∀ε ∈]0, 2], ∀y ∈ Ua ,

c · dist(y, K )
1
c ≥ inf

μy∈Λy,Ua

∫
Ua

c · dist(·, K )
1
c dμy

≥ inf
μy∈Λy,Ua

∫
Ua\K̊ε

c · dist(·, K )
1
c dμy

≥
(

min
Ua\Kε

c · dist(·, K )
1
c

)
inf

μy∈Λy,Ua

∫
Ua\K̊ε

dμy

= cε
1
c G Kε,Ua (y).

The first inequality comes from the fact that the Dirac measure δy belongs to Λy,Ua . The
last inequality comes from Corollary 1, whose application is allowed by Lemma 1, and from

Corollary 4.5.9 in [9]. Then taking ε =
(

1
c2

)c
< 2, we obtain in Ua :

c · dist(·, K )
1
c ≥ 1

c
G Kε,Ua . (7)

Now suppose, by contradiction, that Oc �= ∅ [see Eq. (3) for definition]. Recall that c < δ
2a .

Note that there exists a constant e ∈]0, 1[ such that ∀z ∈ Ua\{dist(·, K ) < 1},
G K (z) ≥ e · c · dist(z, K )

1
c . (8)

Recall that the function c �→ c · dist(x, K )
1
c is increasing. Up to diminishing c, we can thus

suppose that c < δe
2a .

We can then choose x ∈ Oc\{G K < 2ac2
δe dist(·, K )

1
c }.

Let us control the growth of the iterates of f . Note that z ∈ Oc implies a “slow growth” of
( f n(z))n , in the sense that ∀n ≥ 1 such that f n(z) ∈ {dist(·, K ) < 1}\Oc, we have

1

dn
c · dist( f n(z), K )

1
c ≤ G K (z) < c · dist(z, K )

1
c ,

and hence
dist( f n(z), K ) < dncdist(z, K ). (9)

Moreover, by a similar reasoning, Eq. (8) implies that for all z ∈ Oc and n ≥ 1 such that
f n(z) ∈ Ua\{dist(·, K ) < 1}, we have

dist( f n(z), K ) <

(
dn

e

)c

dist(z, K ). (10)

Finally, by (9) and (10), for all z ∈ Oc and n ≥ 1 such that f n(z) ∈ Ua\Oc, we have

dist( f n(z), K ) <

(
dn

e

)c

dist(z, K ). (11)

Conclusion Recall that we have chosen x ∈ Oc\{G K < 2ac2
δe dist(·, K )

1
c }. Since Ua\K =⋃

i≥0

f −i (Ca) by (2), there exists N > 0 such that f N (x) ∈ Ca . Equations (11), (7), (6), (1),
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ŁS condition for filled Julia sets in C 1853

then (2), give

c

e
· dist(x, K )

1
c ≥ c

d N
dist

(
f N (x), K

) 1
c

≥ 1

cd N
G Kε,Ua ◦ f N (x)

≥ δ

cd N
G K ,Ua ◦ f N (x)

= δ

ca
G K (x).

But this contradicts our assumption x /∈ {G K < 2ac2
δe dist(x, K )

1
c }.We conclude that Oc = ∅.

In other words, K satisfies the ŁS condition. ��
Remark 2 We note that if f is assumed to be hyperbolic, that is to say if f do not have
critical points in J , there exist a constant b > 0 and a neighborhood of K in which

dist ( f (·), K ) ≥ b · dist(·, K ). (12)

Indeed, it is sufficient to establish this inequality outside K . Let then V be a neighborhood of
K in which | f ′| ≥ a for some a > 0, let z ∈ V \K , and z0 ∈ J such that f (z0) ∈ J achieves
the distance dist( f (z), J ). Then, Theorem 1 of [5] shows the existence of a constant k > 0
(depending only on the degree of f ) and of a point z1 ∈ J = ∂K , such that

dist( f (z), K ) = dist ( f (z), f (z0)) ≥ a · k · dist(z, z1) ≥ a · k · dist(z, K ).

In the particular case where b ≥ 1 in (12), we obtain a simpler proof of Theorem 1, and a
more quantitative estimation for c in Eq. (3). Indeed, suppose Oc �= ∅ with Oc ⊂⊂ V . We
can choose x ∈ Oc such that f (x) /∈ Oc. Then, (11) together with (12) give

c >
log b

log d
e

.
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