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Abstract

L-selectin is a cell adhesion molecule consisting of a large, highly glycosylated, extracellular domain, a single span-
ning transmembrane domain and a small cytoplasmic tail. It is expressed on most leukocytes and is involved in their
rolling on inflamed vascular endothelium prior to firm adhesion and transmigration. It is also required for the con-
stitutive trafficking of lymphocytes through secondary lymphoid organs. Like most adhesion molecules, L-selectin
function is regulated by a variety of mechanisms including gene transcription, post-translational modifications, asso-
ciation with the actin cytoskeleton, and topographic distribution. In addition, it is rapidly downregulated by prote-
olytic cleavage near the cell surface by ADAM-17 (TACE) and at least one other "sheddase". This process of
"ectodomain shedding" results in the release of most of the extracellular portion of L-selectin from the cell surface
while retaining the cytoplasmic, transmembrane, and eleven amino acids of the extracellular domain on the cell. This
review will examine the mechanism(s) of L-selectin ectodomain shedding and discuss the physiological implications.
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Discovery of ectodomain shedding of
L-selectin

In 1989, it was found that treatment of neutrophils
with phorbol ester or chemotactic factors
(Complement factor C5a or leukotriene B4
(LTB4)) resulted in the downregulation of L-
selectin (Mel-14 antigen) surface expression with-
in minutes and a corresponding inability of these
neutrophils to migrate effectively into sites of
inflammation [1, 2].  Accompanying the reduced
surface expression was a corresponding increase

in soluble L-selectin (sL-sel) in the conditioned
media (Fig. 1). Since chemotactic factors have
other effects unrelated to L-selectin shedding, neu-
trophils were treated with low doses of several dif-
ferent proteases in an attempt to specifically
cleave L-selectin without stimulating neutrophil
activation. While most of the proteases tested had
little effect, chymotrypsin produced a specific
decrease in surface expression of L-selectin while
having no effect on the expression of four other
surface antigens, most notably the 2 integrin Mac-
1 (CD11b/CD18) [3]. Along with the decrease in
L-selectin expression, there was a corresponding
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Fig. 1 Structure of L-
selectin and the shedding
of L-selectin from
microvilli of leukocytes.
A) Structure of Human L-
selectin, composed of an
N-terminal lectin domain,
an epidermal growth fac-
tor (EGF) domain, two
consensus repeats (CR)
with homology to com-
plement regulatory pro-
teins, a transmembrane
domain, an a cytoplasmic
tail. B) L-selectin shed-
ding from leukocytes fol-
lowing PMA treatement.
L-selectin is cleaved in
the membrane proximal
region.



inability of the lymphocytes to bind to high
endothelial venules in peripheral lymph nodes
using an ex vivo model and neutrophils to home to
an inflamed peritoneum using an in vivo model.
The results of these studies indicated that L-
selectin could be cleaved from the surface of neu-
trophils and this alters the ability of these cells to
interact with high endothelial venules and migrate
into inflamed tissues.

Similar to neutrophils, L-selectin is also
cleaved from the surface of lymphocytes in
response to a variety of stimuli. Jung and Dailey
treated lymphocytes with phorbol ester and
observed that L-selectin expression decreases on
the cell surface and soluble L-selectin (sL-sel) can
be immunoprecipitated from the conditioned
media [4]. The sL-sel was found to be 12 KDa
smaller than that bound form on the surface. These
results appear to parallel those for neutrophils with
two distinctions. First, while almost complete
shedding of L-selectin on neutrophils occurs with-
in the first five minutes, similar decreases in sur-
face expression in lymphocytes take over 30 min
[3, 4]. Second, since the extracellular domain of L-
selectin on neutrophils is more highly glycosylat-
ed [5, 6], it results in a larger molecular weight
complex being released into the supernatant.

Enzymatic cleavage of L-selectin
shedding by 
TNF- αα converting enzyme (TACE)

Once it was clearly established that L-selectin was
shed from the surface of neutrophils and lympho-
cytes, it took several years before there was any sig-
nificant advancement in our understanding of the

enzyme(s) involved with this process. It was known
that certain exogenous proteases, such as chy-
motrypsin, stromelysin, and collagenase could
cleave L-selectin, but these did not appear to be the
physiological mediator for a number of reasons, as
originally outlined by Ager and coworkers [7].
First, these proteases are generally regulated tran-
scriptionally following treatment with phorbol ester
and no known mechanism existed to explain their
rapid (< 5 min.) activation which would be required
if they were the L-selectin sheddase [7]. Second,
the activation-induced L-selectin sheddase operated
only on the stimulated cells and not on adjacent,
non-stimulated, cells [7]. This is referred to as
operating in the cis, not in the trans, position and
implies that a membrane associated factor or pro-
tease is involved. Third, the protease inhibitor pro-
file did not appear to match any known protease
[7]. In particular, TIMP-1, a natural inhibitor of all
known matrix metalloproteinases, the most likely
class of proteases involved with this process, had
no effect on L-selectin shedding. These results
indicated that the sheddase was not one of the typ-
ical proteases associated with the extracellular
degradation of proteins.

Starting in 1995, there were several important
papers which began to shed light on the nature of
the sheddase. First, the exact cleavage site of
human L-selectin was determined to be between
Lys321 and Ser322 following phorbol ester treatment
of COS cells transfected with the cDNA for L-
selectin (Fig. 2) [8]. This was quickly followed by
three groups modifying the cleavage site to deter-
mine the sequence specificity of the sheddase
[9–11]. They all reported a very relaxed sequence
specificity. The length of the membrane proximal
region appeared to be much more important than
the specific amino acid sequence. Altering any of
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Fig. 2 Structure of L-selectin and the shed-
ding of L-selectin from microvilli of leuko-
cytes. A) Structure of Human L-selectin,
composed of an N-terminal lectin domain,
an epidermal growth factor (EGF) domain,
two consensus repeats (CR) with homology
to complement regulatory proteins, a trans-
membrane domain, an a cytoplasmic tail. B)
L-selectin shedding from leukocytes follow-
ing PMA treatement. L-selectin is cleaved in
the membrane proximal region.



the amino acids in the membrane proximal region
had little effect on shedding except if proline was
inserted, suggesting that primary structure was of
little importance. Deletion of several amino acids in
this region essentially eliminated shedding, at least
in response to PMA [12]. Stoddart and coworkers
transfected L1-2 cells, a pre-B-cell line, with an L-
selectin mutant which contained a 9 amino acid
deletion (321.9) [9]. This mutant was resistant to
cleavage in response to PMA, as predicted by the
previous studies. However, it was still shed follow-
ing cross-linking of L-selectin using antibodies,
suggesting that more than one L-selectin shedding
mechanism may exist. They went further and
demonstrated that cross-linking induced shedding
was resistant to staurosporine, a PKC inhibitor,
while PMA induced shedding was inhibited. These
results suggest that more than one mechanism
exists for L-selectin shedding.

In 1997, two groups independently isolated and
cloned a member of the A Disintegrin and
Metalloprotease (ADAM) family, designated
ADAM17 [13, 14]. This protease shed the TNF-α
precursor from the surface to produce the active
cytokine and is also referred to as TNF- α convert-
ing enzyme (TACE). While a number of ADAMs
have been identified in mammalian tissues, this was
first to have a known function. Peschon, et al., [15]
created mice with a targeted mutation in TACE
which deletes the Zn2+ binding domain and inacti-
vates the protease. While these mice were not
viable, cells from the homozygous (taceΔZn/ΔZn)
embryos failed to efficiently release TNF- α. They
examined the shedding of a number of proteins and
found that PMA-induced shedding of L-selectin
from thymocytes of these mice was dramatically
reduced. This study clearly demonstrated TACE is
responsible for L-selectin shedding at least in
mouse thymocytes following PMA stimulation.

Other L-selectin sheddases

While there is substantial evidence demonstrating
that TACE is the protease responsible for the shed-
ding of L-selectin from the surface of thymocytes
following activation with PMA, this does not elim-
inate the possibility that other proteases also play a
role under a variety of conditions. As discussed

above, shedding due to cross linking of L-selectin
by antibodies does not have the same structural
requirements suggesting that other proteases may
be involved. While mutating L-selectin by eliminat-
ing 9 amino acids prevented its cleavage due to
PMA, it had little effect on cleavage due to cross-
linking using an antibody to the extracellular
domain (DREG 200) [9]. In addition, proline sub-
stitution at the P2' or P3' (2 or 3 amino acids down-
stream from the cutsite) completely blocks phorbol
ester induced cleavage but had no effect on basal
shedding [16]. Interestingly, deletion of the epider-
mal growth factor (EGF) domain also eliminates
PMA-induced shedding, suggesting that the extra-
cellular domains of L-selectin and TACE may inter-
act. Walcheck and associates recently extended
these studies to look at L-selectin shedding in
fibroblasts deficient in TACE and reconstituted
with TACE retroviral transfection [17]. While
TACE-reconstituted fibroblasts shed approximately
three times more soluble L-selectin than fibroblasts
from TACE-deficient animals, there was still sig-
nificant shedding from these TACE-deficient
fibroblasts. Of this, there appears to be a small frac-
tion (19%) that is not inhibited by a protease
inhibitor (KD-IX-73-4, 50 μg/ml), suggesting that
there may be more than one additional sheddase.
While this provides evidence that other proteases
may play a role, it supports the hypothesis that
TACE is the major L-selectin sheddase following
PMA stimulation.

The importance of TACE in L-selectin shedding
under physiological conditions remains unclear.
While TACE appears to be essential for the shed-
ding of tumor necrosis factor (TNF- α), it has also
been implicated in the cell surface shedding of over
thirty other proteins (Table 1) and more are being
added to this list. While most of these studies sug-
gest TACE is required, they do not necessarily
show that TACE is the actual sheddase. TACE's role
as a sheddase is also surprising since it is predomi-
nantly localized in the perinuclear compartments,
similar to TNF- α [18]. In the original report impli-
cating L-selectin cleavage as a TACE-dependent
mechanism [15], TACE cleaves a peptide corre-
sponding to the TNF- α cut site approximately 2250
times more efficiently than it cut a peptide corre-
sponding to the L-selectin cut site. Mohan and
coworkers did side-by-side comparisons of peptides
corresponding to the cleavage site of a number of
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Protein Abreviation Ref.
Amphiregulin AR [53]

Amyloid-beta precursor protein APP [54]

AXL Receptor Tyrosine Kinase AXLr [55]

CD30 CD30 [56]

CD40 CD40 [57]

CD117 (cKIT) CD117 [58]

Cellular prion protein PrP [59]

Epiregulin [60]

Fractalkine (CX3CL1) CX3CL1 [61]

glycoprotein GP of Ebola virus EBOV GP [62]

Glycoprotein IB α GP IB α [63]

Glycoprotein V GP V [64]

Growth hormone receptor GHR [65]

Heparin binding epidermal growth factor proHB-EGF [60]

Human Epidermal Growth Factor Receptor 4 HER4 [66]

Human Meprin [67]

IL-6 Receptor α IL-6r α [68]

Interleukin-1 receptor 2 IL-1 R2 [55]

interleukin-15 receptor α IL-15R α [69]

Low Density Lipoprotein Receptor LDLr [55]

L-selectin L-sel [15]

Macrophage Colony Stimulating Factor Recept MCSF-R [70]

Mucin 1 MUC1 [71]

Neuregulins [72]

Neurogenic locus notch homolog protein Notch [73]

P75 neurotrophin receptor p75NTR [74]

Sortilin-related receptor SorLA [55]

Transforming Growth Factor α TGF α [15]

TNF-related activation-induced cytokine TRANCE [19]

Transforming Tyrosine Kinase Protein TrkA [75]

Tumor Necrosis Factor α TNF α [13]

Tumor Necrosis Factor Receptor I TNFR-I [15]

Tumor Necrosis Factor Receptor II TNFR-II [76]

Vascular Cell Adhesion Molecule 1 VCAM-1 [77]

Table 1 Proteins in which evidence exists to indicate that TACE is either the sheddase or required for shedding



hypothesized TACE substrates and found that only
the TNF- α substrate is processed under their exper-
imental conditions [19]. TACE exhibited little or no
processing of any of the other peptides examined.
It is possible that TACE, rather than cleaving L-
selectin directly, is required to activate other pro-
teases in a cascade-like fashion.

There are also questions about why all these pro-
teins and possibly many others would be shed by
the same protease. Mohen and associates had sug-
gested that the presence of additional factors may
play a role in alternate substrate presentation [19].
Cui et al., identified ARTS-1 (aminopeptidase reg-
ulator of TNFR1 shedding-1) as an additional fac-
tor regulating the shedding of TNF receptor 1
(TNFR1), Interleukin 6 receptor (IL-6 R), and Type
II IL-1 Decoy [20–22]. Whether this protein or oth-
ers are involved with L-selectin shedding is cur-
rently not known. There is solid evidence that
TACE is required for efficient L-selectin shedding.
However, there may be other sheddase and/or addi-
tional factors involved with L-selectin shedding
that have yet to be fully examined. In addition, the
sheddase/cofactors used may be dependent on the
type of activation.

Agents inducing L-selectin shedding

Two agents which elicit L-selectin shedding on
both neutrophils and lymphocytes are phorbol
esters and antibodies which crosslink adjacent L-
selectin molecules on the surface of leukocytes.
Others, such as synthetic sulfonated glycoproteins
containing multivalent ligands presumably operate
via the same mechanism as the crosslinking anti-
bodies [23]. In addition, there are a number of other
agents which induce L-selectin shedding, including
LPS, both hypertonic and hypotonic shock, and
chemotactic factors [2, 24, 25]. There are others
that induce shedding of L-selectin without general
cell activation which provide important information
about this process. For example, Diaz-González
and associates have investigated the nonsteroidal
anti-inflammatory drugs' (NSAIDs) ability to shed
L-selectin without affecting neutrophil viability,
activation, or expression levels of other surface
molecules [26–28]. Their initial report demonstrat-
ed in an in vitro system that NSAIDs prevented

neutrophil attachment to endothelial cells due to
shedding of L-selectin [26]. In addition, certain
diphenylamine-based NSAIDs' were more effective
at inducing shedding than other NSAID, especially
if the diphenylamine group contained a carboxylic
acid [28]. They hypothesize that this may have sig-
nificant implications and may explain some of the
differences observed clinically between various
NSAIDs. These compounds also decreased neu-
trophil ATP concentrations that correlated with their
ability to induce shedding. NSAID-induced down-
regulation of L-selectin occurs by a TACE depen-
dent mechanism, based on studies using a TACE-
deficient murine monocytic cell line [28].

Bennett et. al. reported that thiol-oxidizing or -
blocking reagents promoted L-selectin shedding
while reducing agents inhibited it [29]. From these
results, they hypothesized that regulatory molecules
capable of forming and rearranging disulfide bonds,
such as protein disulfide isomerase (PDI), could
regulate this process. While this hypothesis has not
been fully explored, PDI is expressed on the cell
surface of neutrophils and altering its function
using inhibitors and antibodies resulted in L-
selectin shedding. This is supported by evidence
that other domains of the L-selectin molecule,
including the EGF domain [16], are involved in reg-
ulating shedding.

Role of the cytoplasmatic tail in 
L-selectin shedding

As discussed above, various regions of the L-
selectin molecule appear to be important in its shed-
ding. The cytoplasmic tail has received consider-
able attention. Zhao and associates have simply
truncated the cytoplasmic tail and found that PMA-
induced shedding was reduced from 88% to 44%
[16]. Kishimoto and associates examined three dif-
ferent antibodies to the fragment of the L-selectin
retained by the cell following shedding (Fig. 3) [30,
31]. JK924 recognized the remaining approximate-
ly 10 amino acid fragment of the extracellular por-
tion, JK564 recognized the entire cytoplasmic
domain, and CA21 recognized the C-terminal 8
amino acids of the cytoplasmic tail. They found that
a 17 KDa protein coprecipitated with L-selectin
when they used either JK924 or CA21, but not
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when they used JK564, which suggested that the
unknown 17 KDa protein bound to the membrane
proximal region of the cytoplasmic tail. Based on
the unusual observation that this 17 KDa protein
was not retained by PVDF membranes following
immunotransfer, they suspected and later confirmed
that it was calmodulin. They then blocked this inter-
action using calmodulin inhibitors and found a dra-
matic increase in L-selectin shedding in less than
five minutes. Calmodulin is constitutively bound to
the cytoplasmic tail of L-selectin and when it is
removed, L-selectin is shed suggesting a general
pathway for L-selectin shedding.

Ivetic et al. [32], recently created an affinity col-
umn using a peptide corresponding to the 17 amino
acid cytoplasmic tail of L-selectin. They then
applied either untreated or PMA-treated lymphocyte
cell extracts and determined which proteins bound
to the column. While ezrin was found adhering to
the column following addition of either unstimulat-
ed or stimulated lymphocytes, moesin from only
stimulated lymphocytes bound to the column. Erzin
and moesin are members of the Ezrin-Radixin-
Moesin (ERM) family of proteins which are
believed to be important in the interaction between
actin and the cell membrane in participate in the for-
mation of microvilli. Whether this family is directly
involved in L-selectin shedding is still being inves-
tigated.

Since it is well established that L-selectin is
selectively localized on the tips of microvilli, two

groups have independently investigated whether its
topographic distribution plays a role in its shedding.
One group transfected either wild type L-selectin, or
chimeric molecules consisting of the ectodomain of
L-selectin connected to the transmembrane and
intracellar domains of CD44 or CD31 into murine
L1-2 cells [33]. Unlike the wild type L-selectin, the
L-selectin-CD44 and the L-selectin-CD31 are
excluded from the microvilli and randomly dis-
tributed, respectively. All three are shed to similar
degrees following PMA treatment suggesting that
subcellular localization is not important for PMA-
induced L-selectin shedding. As expected, the
calmodulin inhibitor, trifluoperazine, was much
more effective at inducing wild type L-selectin
shedding than either of the other two constructs
[33]. At high concentrations, trifluoperazine did
induce shedding suggesting that at least two mecha-
nisms were involved with calmodulin inhibitor-
induced shedding.

Another group examined shedding in Jurkat cells
following crosslinking of L-selectin using antibod-
ies [34]. They found that crosslinking enhanced the
percentage of the L-selectin in lipid rafts and this L-
selectin was exclusively tyrosin phosphorylated.
Using various inhibitors, they provided evidence to
indicate that this process was independent of p56lck

tyrosine kinase activity, but required other tyrosine
kinases and the neutral sphingomyelinase. This sug-
gests that the mechanisms behind shedding induced
by different agents are different.
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Fig. 3 Specificity of Anti-L-selectin
Antibodies. The membrane proximal,
transmembrane, and cytoplasmic domains
of L-selectin are enlarged to show the
specificity of three anti-L-selectin anti-
bodies. Since both JK924 serum and
CA21 MAb did not block the binding site,
but JK564 serum did, Calmodulin must
bind in the region depicted [31].



Functional implications of 
L-selectin shedding

Once it was clear that L-selectin shedding occurred,
investigators began trying to decipher its implica-
tions. Kishimoto and associates were the first to
report on inhibitors which prevented this shedding.
They found that a hydroxamic acid-based peptide
inhibitor of matrix metalloprotease (KD-IX-73-4)
inhibited the downregulation of L-selectin follow-
ing either fMLP (formyl-methionylleucylpheylala-
nine) or phorbol ester but had no effect on neu-
trophil activation [35, 36]. This group went on to
demonstrate that this inhibitor reduced neutrophil
rolling velocities on immobilized peripheral lymph
node vascular addressin substrates from human ton-
sils under hydrodynamic flow resulting in increased
neutrophil accumulation. Allport and associates,
using another hydroxamic acid-based peptide
inhibitor, Ro 31-9790, reported that L-selectin
shedding did not affect neutrophil rolling, adher-
ence, or transmigration on TNF- α activated human
vascular endothelial cells [37]. These studies were
extended to an in vivo model of leukocyte rolling in
mouse cremaster venules [38, 39]. KD-IX-73-3 did
not alter rolling velocity of leukocytes after treat-
ment (2.5 to 3 hours) with TNF- α. However, this
inhibitor did decrease the rolling velocity in both
untreated wild-type mice and TNF- α treated E-
selectin-deficient mice. Additional studies using E-
and P-selectin knockout mice and L-selectin conju-
gated to microbeads indicate that inhibition of L-
selectin shedding prevent the "jerkiness" (variabili-
ty in velocity over time) of leukocyte rolling. These
studies, using synthetic inhibitors of L-selectin
shedding, indicate that L-selectin shedding partici-
pates in regulating neutrophil rolling.

For leukocytes to firmly adhere and transmigrate
into tissues, they must be activated. A number of
groups have demonstrated that L-selectin can par-
ticipate in this activation [40–44]. In one study,
antibodies were used to crosslink L-selectin on neu-
trophils and several indicators of activation were
monitored. This crosslinking altered the neu-
trophil's ability to deform and enhanced β2 integrin
activation. Shedding of L-selectin limits this activa-
tion and thus may limit inflammation [39].

A third mechanism by which L-selectin shed-
ding may regulate inflammation has been proposed.
Plasma of healthy humans and mice contains

approximately 1.6 μg/ml of soluble L-selectin [45].
This is an extremely high level, especially consid-
ering that the lectin domain, by itself, has been
shown to inhibit leukocyte rolling and migration in
vivo [46–49]. The level of soluble L-selectin is very
consistent between several mouse strains even
though L-selectin levels on their leukocytes vary by
2.5 fold suggesting that soluble L-selectin levels are
controlled [45]. At a concentration of 0.9 μg/ml,
soluble L-selectin reduced lymphocyte migration to
peripheral lymph nodes by over 30% indicating that
soluble L-selectin, presumably derived from shed-
ding, regulates normal lymphocyte trafficking and
possibly the inflammatory response. Intravenous
injection of LPS resulted in septis and shedding of
L-selectin from both neutrophils and lymphocytes.
However, soluble L-selectin was not elevated ver-
sus injection of vehicle. Even though this study
failed to demonstrate soluble L-selectin levels were
elevated in inflammatory conditions, there are clin-
ical studies which suggest that soluble L-selectin
levels are elevated during sepsis [50].

Transgenic mice expressing 
shedding-resistant L-selectin

Recently, two papers report the creation of trans-
genic mice with shedding-resistant L-selectin. In
the first, the membrane proximal region of the gene
was replaced with the analogous region of P-
selectin producing the LΔP mouse [51]. Trangenic
mice expressing either LΔP or wild type L-selectin
under the human CD2 promoter were crossed with
L-selectin knockout (L-sel+/-) mice generating mice
that expressed either shedding resistant (LΔPT-cell)
or wild type (WTT-cell) L-selectin only on T-cells.
This mutation appears to prevent both PMA-
induced and basal shedding. While there was still a
small amount of L-selectin in the plasma of 
LΔPT-cell mice, it was less than 5% of that of 
WTT-cell and actual wild type (C57BL/6) mice and
may represent L-selectin contained within
microparticles generated from evagination of the
cellular membrane and not a cleavage product. The
levels of L-selectin in the plasma of the WTT-cell

were about 70% of the actual wild type mice sug-
gesting that a majority of the shed protein is from
lymphocytes. The cellularity and composition of
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secondary lymphoid organs were not altered in L
PT-cell mice versus those expressing WTT-cell-L-
selectin. Two functional differences were noted
between T-cells from the WTT-cell and the LΔPT-cell

mice. First, T-cells from the LΔPT-cell mice transmi-
grated high endothelial venules (HEV) more slow-
ly resulting in a consistently lower number of T-
cells outside the HEV. Second, since T-cells nor-
mally shed their L-selectin following TCR engage-
ment, once activated, they lose their ability to reen-
ter the PLN. In the LΔPT-cell mice, L-selectin was
retained on the surface of activated T-lymphocytes
and these cells were still able to enter the lymph
nodes. These results suggest that the main function
of L-selectin shedding on T-cells is to prevent these
cells from reentering the PLN once activated.

In the second paper, several knock-in mice were
generated [52]. The first, denoted L, had seven
amino acids deleted from the membrane proximal
region and knocked into the L-selectin locus. This
form of L-selectin was undetectable on leukocytes
but was increased two fold in the plasma suggesting
that it was readily cleaved. Another, denoted L(E),
replaced 7 amino acids from wild type L-selectin
with 7 amino acids from E-selectin in the mem-
brane proximal domain and was overexpressed in
blood cells (168%), spleen (214%), and PLN
(178%) but significantly less was in the plasma ver-
sus wild type mice. To produce a mouse with
approximately the same amount of L-selectin on
various cell types as wild type mice, the L(E) mice
were crossed with the LΔ mice producing the
L(E)same mice which resulted in roughly equivalent
levels of L-selectin on cells of the blood, spleen,
and PLN. Lympophocytes from these mice did not
shed L-selectin in response to either PMA or
calmodulin inhibitors. Lymphocytes from wt, L(E),
and L(E)same mice were labeled and injected into
wild type mice. Lymphocyte migration into the
PLN, mesenteric lymph node (MLN) and Peyer's
patch (PP) were examined at one and 48 hours. At
one hour, mice expressing the shedding resistant L-
selectin had approximately a 33% decrease in
labeled lymphocytes in these tissues and an
increase in the blood. After 48 hrs, these differences
disappeared.  In in vitro experiments, L(E) and wild
type lymphocytes had similar rolling properties
over a wide range of shear rates, while L(E)same

lympocytes rolled faster and had lower rolling
capacity. While the ability of lymphocytes to shed

L-selectin did slightly alter its function in unstimu-
lated lymphocytes, as in the previous study, the
major differences appear following lymphocyte
activation. Following CD3-induced T-cell activa-
tion in vitro, there was a dramatic decrease in L-
selectin surface expression on wild type but not
L(E)same mice. However, by three days, cell surface
levels of L-selectin were similar, implying that
shedding controls L-selectin expression shortly fol-
lowing activation, but eventually transcription reg-
ulation controls this process. Using activated
labeled T-cells, the authors found that T-cells from
L-selectin shedding resistant mice were about four
times more likely to enter the PLN than T-cells of
wild type mice. Similar to the results in the previ-
ous paper [51], L-selectin ectodomain shedding
alters the migration of activated lymphocytes.

In the knockout mice, all cells normally express-
ing wild type L-selectin express shedding resistant
L-selectin, which allows one to examine the impor-
tance of L-selectin shedding on other cell types,
most notably neutrophils [52]. On wild type neu-
trophils, most of the cell surface expression of L-
selectin is lost following entry into an inflamed
peritoneum, but L-selectin is retained on neu-
trophils from the L(E)same mice. Neutrophil interac-
tions with inflamed vascular endothelium were not
altered in L(E)same mice, but lack of shedding pre-
vented the leukocytes, presumably mostly neu-
trophils, from migrating into the tissue following
activation with keratinocyte-derived cytokine (KC).   

Conclusion

L-selectin downregulation by ectodomain shedding
has been the subject of intense study. While it appears
that TACE is at least one of the protease needed for L-
selectin shedding following PMA stimulation, it is
unclear how important this sheddase is under more
physiological conditions. Other sheddases and acces-
sory molecules are probably involved. L-selectin
shedding has a role in minimizing reentry of T-cells
into PLN following activation and limits neutrophil
adhesion at sites of inflammation. However, mice
lacking the ability to shed L-selectin on neutrophils
show reduced neutrophil migration to inflammatory
chemokines, suggesting that L-selectin shedding is
required for efficient transendothelial migration.
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