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Résumé

Nous considérons ici les méthodes a un bloc développées par W. Couzy, B.P. Sommeijer et P.J. van
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Abstract

In this contribution, we consider the one-block method designed by W. Couzy, B.P. Sommeijer and
P.J. van der Houwen for the purpose of solving ordinary differential cquations (ODEs) on a parallel
computer. We derive a new set of oder conditions, study the stability and exhibit a new class of
parallel methods which are proven to be L-stable up to order seven.

Key-words : ODEs, one-block methods, L-stability, high order, parallelism.

*SIMULOG, 1 ruc James Joule, 78182 ST QUENTIN YVELINES CEDEX
tINRIA/IRISA, Camnpus de Beaulicu, 35012 RENNES CEDEX

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE {URA 227) UNIVERSIIE D RENNES| INSA DE RENNES
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE { UNITE DL RECHERCHE DE RENNES)



1 Introduction

The purpose of this paper is to numerically solve the initial value problem :

y(zq) = Yo, = € [zo, X]

where f is assumed to be continuous and to satisfy a Lipschitz condition on region [zy, X] x R™.

In the literature only a few parallel algorithms for solving (1) have been proposed. Generally
speaking, speeding up the integration of (1) can be achieved by partitioning the tasks either “across
the system of equations” or “across the method”, as exemplified by Gear in [5]. In addition to these
two types of parallelism, A. Bellen and M. Zennaro have introduced a third one called “across the
time” (sce [8]). The cquation segmentation method is straightforward and widely used by enginecrs
in the field of dynamic system simulation. However, its scope is rather limited, since automated
partitioning scems feasible only for application-oriented codes in which the structure of f is accessible.
Parallelism “across the time” means that each processor evaluates f for different values of z. These
values are combined into a recurrence that carries the information from the initial point. This kind
of parallelism may yield large speedups as far as a large number of processors is available. However,
R. Vermiglio reports numerical simulations that suggest severe limitations ! (see [9]).

In this paper, we focus on parallelism “across the method”. More specifically, we consider parallel
block methods. Block methods can be seen as a set of linear multistep methods simultaneously
applied to (1) and then combined to yield a “better” approximation. Numerous block methods have
been proposed : Shainpine and Watts have constructed A-stable implicit one-block methods for very
high orders (sce [15]), whereas Chu and Hamilton have studied the predictor-corrector formulation
of multi-block schetnes (see [14]).

More recently, W. Couzy, B.P. Sommeijer and P.J. van der Houwen have extended some of the
strong stability properties of the backward differentiation formulae (BDF) (A-stability or A(«a)-
stability) to a new class of parallel one-block methods. Their procedure consists in segmenting the
total work per step into a few tasks, so that it actually requires the same amount of work as a
sequential execution of a BDF. By numerically scanning the space of free coefficients, they have
obtained very promising results with respect to A-stability up to order five. From a slightly different
point of view, the search for higher order A-stable multistep methods has been carried out in two
directions : the use of second derivative of the solution {see [12, 13, 6, 7]) and the study of new
“general linear methods” (see [10]). These methods have a better numerical behavior (A-stability up
to order six) but are fully implicit and consequently not appropriate for parallel computers.

Our purpose Is to carry on the work of [4] and more specifically to construct high-order A-stable
schemes that are furthermore easy to implement on a parallel computer. In section 2, we recall the
definition of parallel implicit one-block method introduced in [4] and we derive a new set of order
conditions. Besides, we apply some fairly classic results on stability to get a practical criterium for
A-stability.

Section 3 is devoted to the two-processor case. The use of symbolic calculus gave us an opportunity
to handle rather complicated formulae and therefore to construct a L-stable two-processor method
of order three.

Section 4 discusses a rather different approach. The complexity of order and stability conditions
have led us to leave the frightening jungle of symbolic calculus (at least for a moment). Rather
than trying to solve this large number of algebraic conditions, we designed a new class of methods
by making strong simplifying assumptions. These methods exhibited surprisingly good stability
properties for very high orders. An analytical proof of their L-stability up to order seven has been
given. Evidence of L-stability for orders eight and nine are reported, while it is likely that the
methods remain L-stable for higher orders (we did not find any analytical proof).

! Actually, this approach seems feasible only for equations which solution does not depend too strongly on the initial
condition (see [11}).



Finally, section 5 reports results of accuracy tests and stability tests. These two sets of tests are
in perfect agrecment with the theoretical results.

2 Parallel One-Block Methods

We present a class of methods, introduced by B.P. Sommeijer, W. Couzy and P.J. van der Houwen
(see [4]), which are a direct generalization of the implicit one-step method :

Yntt = Q. Yn + hbf(yn) + h'd'f(y"+1)

as well as a restriction of the multi-block methods of M.T. Chu and H. Hamilton (see [14]).

2.1 Definition

Let us introduce the following vector :
T
c=1(c1, - ck)

with either ¢y = 1 or ¢x = 1 (the cs are assumed to be pairwise distinct), and let y, ; denote a nu-
merical approximation of the exact solution value y(z, +c¢;.h) and Y;, denote vector (yzll, . ~,y’£k)’r.
We then give the following definition:

Definition 1 We call a k-dimensional parallel block method, a method defined by the recursion :
Yarr = (A )Y + h(BRIF(Ya) + h(DQ I)F(Yny1)
where A, B and D are k-by-k real matrices and D is assumed 1o be diagonal.

According to the usual convention, for any given vector v = (vy,---,v)7, F(v) denotes the
vector (f(v1), -, f(vk))T. Let us emphasize that D is diagonal, so that it is possible to decouple the
various components of the solution : if k£ processors are used, each can sclve a system of equations
with Jacobian matrix [,,; — h.D,‘I,'.%l. We can also notice that c is allowed to have £ — 1 noninteger
components. The first or last component of Y, 4; will be retained as the numerical approximation of
the solution at point z, 4.

2.2 Formulation as a “general linear method”

The methods previously defined can be easily recasted into the class of Butcher’s “general linear
methods” (see [3]). Following the presentation of Hairer, Wanner and Norsett (see {1] p.386) , we
may define a forward step procedure, a correct value function and a starting procedure as follows :

Forward step procedure :

o= () {7 (e )om e (T )on e
o = ((A B)el U. + h (D)  F(Va)

So that we have :

A:('g ’g) =D, A=(4A B), B:(

7)



Correct value function:

y(z + (cy = 1)h)

u(z + (cx — 1)h)

:(;z:, h.) = h.yl(z + (Cl - l)h)

hy'(z+ (.ck ~ 1)h)

Starting procedure :

Uo=(h) = (y3 41 .- o9k, byl by hylT)T
where ®(h) approximates zo = z(zg, h).
According to Skeel’s theory, we further define the matrices S = A and E for a preconsistent zero-
stable method.

Definition 2 A k-dimensional block method with matrix S is called zero-stable if S™ 1s uniformly
bounded for all n.

Let T be such that the Jordan canonical form of S is :

1 &2 &
S = T.diay{ ) R yj}T_l
1 €2 &

where & are the cigenvalues of S of modulus one. Then, E is defined as the spectral projector onto
the invariant subspace associated with 1:

E = T.diag(1,0,---,0).T"}

2.3 Reduction to an autonomous system

Problem (1) may be transformed into the following autonomous systermn :

{y=nm

Yo = (o0, 4%

)T (2)

where Y = (2,y7)T € R™! and F(Y) = (1, f(z,y)T)T. When applying a k-dimensional block
method to the reformulated problem, we obtain :

E k
Vi€ (L k) Zar1i = D @iTai+ D bij+hds (3)
j=1 J=1
Equations (3) can be expressed in a vector form by :
zpe + h(c +e) = znAe + h(Ac + Be + De)

These conditions become :

Ae=e
A(c—e)+Be+ De=c

which imply a consistent method of order p > 1 and which are satisfied for all methods of order
p > 2, as shown in the next paragraphs. In the sequel, we only consider methods which satisfy (3)
and therefore restrict ourselves to the study of k-dimensional block methods on autonomous systems.
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Figure 1: Trees up to order 4

2.4 Butcher-series

In order to use Butcher series, we recall a few definitions and notations about trees. For more details,
the reader may refer to the book by Hairer, Wanner and Norsett ([1] p. 145) :

Definition 3 Lel C be an ordered chain of q indices :
C={ii<jz< - <jg}

A labelled tree of order q is a mappingt from C—{j,} into C, such thatt(r) < r foranyr € C~{j}.
The order of t is cqual to the number of ils vertices and is denoted p(t). The set of all labelled trees
of order ¢ is denoted LT,.

Labelled trees that are topologically alike are equivalent and form a class called a tree. The set of
all trees of order ¢ is denoted Ty, while the set of all trees of any order is denoted T. We further
define @ to be the empty tree, T to be the only tree of order one and 7" the n**-order tree recursively
defined ™ = [r,--., 7] (see fig. 2). For sake of clarity, we give the graph of all trees up to order 4

n-1
together with their notations (see fig. (1)). If we denote y’ the j*» component of y and assume that
(1) is autonomous, then we can associate an elementary differential F7* with each tree ¢ defined on

C={j1<j2< - -<jg} .
i=q
o Ji
Fro= 37 1Ak,
Jadgisl

Definition 4 Let a(@),a(7),a(tq1),- - - be a sequence of real coefficients defined for all treesa : T —
R. Then we call the series :

2
o(@)4” + ha(r)£ (W) + 3p.alta)- S G W)+

ho(®)
= ,QZL:T p(t)!a(t)FJ(y) := B’(a,v)

a Buicher-series.

Further results will require the expansion of the correct value function as a Butcher-series. We may
observe that all coefficients a(t) in the expansion of the correct value function depend only on p(t).



We have indeed:

y e+ e = D) =y @) 4 (@ - D END + -+ (—%,U—

(¢ = 1)rhn+!
(n+ 1)

(v (@) + -

h(y’ (z+(ci = 1)) =04+ (v (@)D + -+ (n+1). (v ()" D) + ...

According to Theorem 2.6. of [1] pp. 146, for the ¢** derivative of the true solution, we have:

(/9 een, = Y F()(w0)

teLT,
so that
a‘-(®) =1
ai{r)y=(¢; — 1)
;t,'(T’") =(c; — I)"

for all i from 1 to k and

for all ¢ form k + 1 to 2k.

2.5 P .order consistency conditions

We are now able to derive algebraic conditions on the free parameters (the coefficients of A, B and D)
for p'*-order consistency. In order to avoid tensor products, from now on we assume that (1) is scalar,
whereas all results are obviously valid for systems. However, the definition of a k-dimensional block
method makes sense only if preconsistency conditions are satisfied. By denotinge = (1,---,1)T € R¥,
we have here :

c@= () =) = (S0 = (L)

So that :

Az(Q) = 2(0Q) «=> Ae = e and Az(Q) =e <> Ac = ¢

Hence, the preconsistency conditions sum up to Ae = e. In order to present the order conditions, we
define as in {4] :

Co=Ae—-eand C; = A(c—e) +j[B(c—e) ' + DI~ Y-, j=1,2,---
Theorem 1 A zero-stable and preconsistent k-dimensional block method is of order p > 1 #f :

¥j,0<j<p-1,Cj=0
E(CP?O)T = (O’O)T



/\><>>

t=[u,v]
Figure 2: Recursive definition of trees

proof :  we first recall that the local crror of a general linear method is given by

,u+l =z (1" +h h) ZA‘Jz](mn,h) ZB, JhF(‘UJ

j=1 j=1
where
v = ZA,,z,(a:n,h)+ZB.,hF(u,

i=1

By writing v; and d?*! as Butcher-series, we get from (4) and (5) :

2k k
di(t) = (pzi)(t) - Z-Ai,jzj(t) - Z B jv;(t)
i=1 j=1

2k k
vi(t) = ZAi,jzj(t) + Z By ;vj(t)
ji=1 i=1

where

o(t)
(p2)(t) = Z("( )z

(sce [1] pp. 398). A necessary and sufficient condition for a general linear method to be of order p is
given by the theorem 8.14 in [1] :

VieT,p(t)<p-1,d(t)=0 (6)
vt e T, p(t) =p, Ed(t) =0 (7)
Let us show that under assumption (6) we have the following property (denoted by P,_,) :
Vi e T, p(t) <p—1,0(t) = v(r?D) = P = A(c — )P 4 p()[B(c — )P~V 4 D))

If we assume that P, is valid for ¢ — 1 < p — 2, then we may compute explicitely v(t) and d(t) for
any tree of order ¢ :

v'(t) = p(t)v(ts) - - v(tm)
where t = [t),- -, 1) denotes the tree which leaves over the trees t; when its root and the adjacent
branches are chopped ofl (see fig. 2). From p{t;) < ¢ — 1 and the hypothesis (Py-,) we get :

o(ti) = Pt



This identity nnplies v'(t) = p(t).c(z::":: D) = g.c9~ 1. If we then insert v/(t) into v(t) we get :
w(t) = Az(79) + p(t) Bc* !
This expression can be used to compute d(t) as follows :

d(it) = (pz)(t) — Az(79) - Bv'(79)

() (5 D) () (3o

( ¢ — {A(c— ) + ¢.[B(c — €)l4=V) 4 Dcls- 1]} )
0

Since d(t) = 0, we finally have for any tree of order ¢ :
W(t) = o(r7) = o = A(c - e)? +¢.[B(é - )0~V 4 D4V

We know that the method is preconsistent and that r is the only tree of order one, so that Py is true.

Hence, an induction argument allows us to conclude that P,_,is also valid. Similarly, we can get for
any tree of order p, d(1) = ¢® — {A(c'— €)? 4+ p.[B(c — e)®~1) 4 Dc(P=1]}. This leads to :

fa =0 =g ( T )= (0)

QED. O

Corollary 1 A sufficient condition for a k-dimensional block method to be of order p > 1 is given
by -
Vi€[0,p],C5=0

Remark 1 This result has been obtained by B.P. Sommeijer, W. Couzy and P.J. van der Houwen
in [4] by using a componentwise definition of the order.

In order to completely define the order conditions, we need to compute matrix E. However, its
decomposition as 7T'.diag(l,0,---,0).T"? is not of practical interest, as far as we aim at deriving
purely formal algebraic conditions. The following theorem together with the next lemma give us an
easy way to compute E from the characteristic polynomial of A.

Theorem 2 Let us assume that the method is stable and preconsistent. Lel | be the multiplicity of
the eigenvalue 1 of A, and let Q be the polynomial defined by :

(z - 1)'Q(z) = det(A - 2I)

We may then write E as :
Q(A)
F=—-—=<
Q1)

proof : Let T = [T, Tz] be the decomposition of T onto T} the basis of the eigenspace associated
with 1 and T, the basis of the eigenspace associated with others eigenvalues. Then we have :

(1 0.,
A—T(O R)T



Therefore, det(x.T — A) = (z — 1)".det(z.I = R). It promptly derives that :

e =T( % o) )

Since @ is the characteristic polynomial of R (or its opposite) we have Q(R) = 0. Hence, it follows

that :
Q(A)

)
a
Lemma 1 Under the hypothesis of previous theorem, E may be writlen as :
gg(A'l
0 TOL
where A € R¥*F.
proof : let Ay, Xa be two roots of Q. We have :

A-N] A;

A“*"Iz( 0 (=x)I

) with A; = Bfori=1,2

Hence, (A — M T)(A — A7) may be written as :

< (A= MDA =AI) AB—(A +)B )
0 (=M )(=A2)]

which is of the desired type if we define A = AB — (X, + A;)B. By considering the decomposition of
Q on C, we can conclude similarly for E. O

- 2.6 Stability
Definition 5 A k-dimensional block method is called zero-stable if it exists a constant K such that :
vneN 47| < K

Remark 2 By considering the form of S = A, it is easily seen that this definition is equivalent to
those of the previous section.

The linear stability of block methods can be investigated by applying the method to the test equation
¥ = Ay. This leads to a recursion of the form :

Yo = M(2)Yn (8)

where M(z) := (I — z.D)"'(A+ z.B) is called the amplification matrix and where z = M is defined
as usual. Following the familiar notions of stability, we will define successively :

Definition 6 The stability region of ¢ block method is the region of the complex plane where the
sequence of vectors (Yn), (N remains bounded for any initial vector Ys.

Definition 7 A k-dimensional block method is called A-stable if the stability region contains the left
half plane C~ = {z € C; Re(z) < 0}.



Definition 8 A k-dimensional block method is called L-stable if it is A-stable and if it has an am.
plification matriz with vanishing eigenvalues atl infinity.

By expressing M(z) = (£ — D)='(B + £), we obtain :

lim M(z)=-D"'B

|z]— o0

Therefore, the amplification matrix of an L-stable matrix is such that p(D‘lB) =0,

Here we observe that a point z belongs to the stability region if and only if the eigenvalues of
the amplification matrix M(z) have a modulus less or equal to one and the eigenvalues of modulus
one are non-defective. However, it seems difficult to investigate the stability region from this single
characterization. A more appropriate result establishes sufficient conditions for A-stability. This will
enable us to “verify” that a method is A-stable.

Lemma 2 Let e k-dimensional block method be defined by the matrices A, B and D € Rk"k. Let
P(z,2) = det(M(z) — z.I) denote the characteristic polynomial of M(z), and let oi(2),i=1,..-,2k
be the coefficients of (w — 1)*¥ P(%L )P(L z). Finally, let the matriz H be :

w-1’ w-1?
Qzk-1 *2%k-3 QX2%-5 - - QX241
a2k Qa2k-2 Q2%—-4 - -t O2k42
0 Q2k~] Q2k-3 °° '+ (_2k43
H(z) = 0 Qgk  Q2k-2 v v Qe9k44
0 0 0 e e @0

Then a sufficient condition for the method to be A-stable is given by :
Vi€ [1,2k], Vy € R, det((hij(iy)igij<i) > 0

proof : since the spectral radius of M(z) satisfies the maximum principle, the method is A-stable
if and only if it is stable on the imaginary axis and D has strictly positive coefficients. In order to
work with a real polynomial, we substitute PP to P. For z = iy, (i = —1) we have :

k-1 k-1
P(z,iy)P(z,iy) = (zF + D_ palin)z™)(z* + D _ paliv)z")
=0

n=0
Now, we know that the roots of PP are those of P together with their conjugate. By applying the

mapping z = z—_ti to the unit disc, which is a one-to-one function between the open unit disc |z] < 1
and the left half plane Rew < 0, we obtain the following condition :

:ii,iy)P(Zti,iy)zo = Re(w) <0

Yy €R*, W(w) :=(w-1)2*P(

Now, the result is simply a consequence of the Routh-Hurwitz criterium, applied to the polynom W 0O

3 A Two-Dimensional L-Stable third-order method

In this section we look for L-stable methods of maximum order when & = 2. The preconsistency
condition gives :
ann+az2=1landay +axp =1

10



The free coefficients of the method sum up to a;; and az;. A has the following expression:

A:(al 1—01)
asz 1—02

To get zero-stability, we must have the following condition:
—-1<a;—-az;<1

Therefore, the cigenvalues of A are 1, a; — a3 and 0. The expression of A shows that the eigenspace
associated with 0 is of dimension 2 at least. 0 is consequently a root of multiplicity one of the minimal
polynomiial of A or of multiplicity two if a; ~ az = 0. Hence, we can take @Q(z) = z{z — (a; - ay)]
and compute matrix E :

Q(l):l—m + ag
and :

_ _ _ _ az 1-—a
Q) = AA - (@ —a)) = (22 172
Corollary 2 Let k = 2 and let us suppose that the method is zero-stable and preconsistent. Then, it
s of orderp> 1 iff :
nc, =0

n={ % l—a
“Noaoy l—-ay

By choosing appropriate coefficients, one can find a L-stable method of order 3. An elementary
calculation shows that C;,i = 0,1,2 vanish if :

-1 ., i(2dj —¢j)
le —5(1—C)GJ+_2(1—-;T-

In addition to this, IC3 = 0 implies :

with either :

ifas #0 oray #1, or I =T else.

,bjg=c,-+(1—c)aj—bjl—dj,cl.:c,cQ=1, for j=1,2

3asa:¢® + 9aza,c—3a2a, + 6azby1c—6azby~3a2c3—9ayazc? + 6a1b21c*~18a1barc
+ 12a;by; +a; + 9a2c2—12a2c+ 502—61)2162 + 18b93c—12b21 -1 =0

as far as we assume that a, # 1 or a3 # 0. If we further impose that M (co0) has null eigenvalues, we
get :

b11baz — byabs =0 9)
dibag + dabyy =0 (10)

_S_d_lving the previous relations and stability constraints now gives :

3--147_11.%01,,,4-2000:,;l -8 40043, —360),, ~ 49
A= 280053, - 276005, ~49 280063, 276053, -48 | |
9/5 —4/5
B= 280053, —276055, 49 280003, ~2760b3; - 49

—120 531 (7420b3,) 3 49+280b2,+400b3,
bay —7/40 — 1/2byy
b g—unoo“
D= ( 120280(2);,,-—276017;,,—49 0 )
' 0

11/40 — 1/2by,
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where ¢ = 3/2 aud byy = RootO f(1361 - 364802 + 15880022+4800023) & —3.5308655705748385794.

We shall now study the stability on the imaginary axis. The cgndition of lemma (2) leads to the

following calculations :
P(z,2) = 2% 4+ p1(2)z + po(2)

with :
_ zdy—ay +ag — 1-zbiy 4 2%b11dy + 22dy by~ 2baz—zdiay + 4124,
p(z) = Gdy = 1)(2d5 = 1)
() = ay2baa—22by2b21 + ay2bo) —2by a7 + 23b11b22~2baa2~as + ay + 24y, —2bgy
bolz) = ' (zd; - 1)(zdy - 1)
so that -

(22 + pr(iy)z + po(in))(z? + pr(y) = + po(iy))
2+ (p1 + 51)2° + (Po + Po + IP112)Z? + (P1Bo + Pop1 )z + Ipol?

Pz, iy} Flr.in)

i

The leading cocfficient |1 + py + po] of W is :

_ z(bard3ay—ba1a1dad)—b11dabai —a1 b3 dy + b1aadiday + a1by1dabay—b3 daaa + b3,d)~d2bay2ds + dybaydy)
dlbn(zdl - l)(2d2 - 1)

so that it is non-zero for all z = i.y # 0. Rather than working with W, we prefer to work with
W/I1 4 p1 + pol®. The coefficients of W(w,i.y)/|1 + p1(i.y) + po(i.y)I? = w* + a(y)w® + B(¥)w? +
v(¥)w + 8(y) have the following expression :

aly) = =2(p1(3.9)po(3.y) + poli-y)p1(i-y)) — 4lpo(i-y)1* + 4 + 2(p1(i.v) + pr(i.y))
{14 p1(i-y) + po(i-y)|?
Bly) = 61po(i-y)I + 6 — 2lp1(i-9)I® = 2(po(i-y) + po(i-v))
11+ p1(i-y) + po(i-.y)f?
_ 4 =4|pa(i.y)|? = 2p1(i.y) + pr(3-y)) + 2(po(3-y)p1 (-y) + p1(3-¥)po(i.y))
- 14 pr(i.y) + po(i.)f?

7(y)

(y) = P10:Y) = poliy) — 1
{1+ pi(i.y) + po(i-y)[?

So that the Routh-Hurwitz conditions are :

Vy € R, a(y) >0, a(y)By) ~ 7(¥) > 0, (a(v)B) — v(1)7(v) - *(¥)6(y) >0, §(y) >0 (11)

It is then possible to verify that (11) is satisfied for any y € R* by using symbolic calculus. Since
dy and d; are positive, lemma (2) shows that the method is A-stable. Furthermore, the eigenvalues
of M (oo} are null by construction.

4 Generalized backward differentiation formulas

It soon becomes very tedious to compute the order conditions and to check A-stability or even
stability on the real axis. A way to overcome these obstacles is to perform a numerical search in the
space of free coeflicients, once the conditions for zero-stability and order p have been derived. This
technique has been investigated by B.P. Sommeijer, W. Couzy and P.J. van der Houwen in [4]. They
have reached the fifth order with almost A-stability. However, no formal proof of these results was
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given. In addition to this, it seems hard to go further owing to the considerable amount of work
needed to find optimal coefficients. This is why we have turned to the more simple case where B
is null, even if it dramatically reduces the number of free coefficients : for a given block-size k and
a given vector ¢ € R¥, there are (k + 1)k unknowns coefficients in A and D instead of (2k + 1)k.
Since every order condition C; = 0 corresponds to k linear equations, we do not expect more than
k**.order methods.

4.1 Construction

Let us define the following k£ x k matrices :

1 ¢ -1 (1 =12 o (e —1)F1?
1 -1 (ea=12 o (c2—1)F!
v=l: : :
I ek —~1 (ck-1 -—1)2 oo {eg-y — l)k_1
1 -1 (k=12 - (cx—1)1
and
1 —d; 4 ¢ —2d101 + C% s —'(k et l)dlck—2 + Cf—l
1 —da + €2 —2dacq + C% v -—(k — 1)d2C2_2 + C;_l
v : : :
1 —di-y+ceor —2dg-rch-r+ci_y - —(k- l)dk-lc::f'fcfj
1 A —2dics +CZ coe (k- l)dkc:'2+cZ"1
where (d;)1<i<k are the diagonal elements of D. For a given diagonal matrix D, the set of conditions
C; =0,j=0,---,k—1can be expressed by the matrix relation A.U = V. Since U is a non-singular

Vandermonde matrix (the ¢;'s are assumed to be pairwise distinct), A is entirely determined and the
resulting method is at least of order k — 1.

Definition 9 We call M(k) a k-dimensional parallel block method where :
ec=(1,2,--, k)T e€R*
e B=20

e D has the following expresstion :

€y 0 0
1 0 ¢ O 0 1 .
D= - . +-I, reR
r : r
0 Ck

e A=VU-!

4.2 Zero-stability and stability at infinity

Theorem 3 Let us assume that r > £. Then the method M(k) satisfies :
o M(k) is of order at least k —~ 1.
o M(k) ts zero-stable.

o M(k) is stable in the left-half plane z < ! mimcicrc; — ||D71A]).

13



proof : by definition of 4, the method is of order p = k — 1. Since (¢;)1<i<k are pairwise distinct
e,c, -, c*"1 is a basis of R* where matrix A has a reduced form. According to the order conditions
of Corollary 1 we indeed have:

nel
n n o
Ae=eand ¥n € [1,.,p], Ac” = (1 - <)c" — —c"~1 = Y~ CP(-1)""T Ad
e=eand Vn € [1,..,p], Ac” = ( r)c . 2 (=17 A

Hence, an easy induction argument shows that A is upper-triangular. We may observe that D is has
also a very simple expression in this basis. As a matter of fact, we have :

Vn € [0,p], Dc* = %(c""’l +c™)

so that :

1 0 .. 0 o)

1 1 0 0 as

D= 110
r . . .

o ... ... 0 1 ap_y

o -« -+« 0 1 14a;
where (a;)1<i<k are the components of ¢* in basis {e,c, -+, c*~!}. From the expression of 4 we can
see that the eigenvalues of A are 1 — j/r for j = 0,---,p. They are pairwise distinct and of modulus

less or equal to one, so that M(k) is zero-stable. Finally, by considering the Laplace transform £ /
of f(t) = etP7 D14 we get :

oo
Lf(~2) /0 e~tP7 D=1 4e*Ydt
oQ
= / e~ =) p=1 g gy
0

= (I—Z.D)_IA
= M(2)

It follows that :

1M ()]

IA

D14 / e+ gy
0

1D~ 1Al
z+cfr

where ¢ = minjgicrciet z = -z +idy. O

4.3 L-stability

The estimation of the previous theorem shows that when Re(z) tends to infinity, ||M(z)]| tends to
zero. In fact, this result is also valid when |z| tends to infinity, since p(D~!B) = 0 (see section 2.6).
It follows that L-stability is implied by A-stability for methods M(k). Nevertheless, A-stability can
not be easily obtained, and we actually did not find any direct proof. All we can show is indeed that
methods M(k) satisfy the conditions of lemma 2 for certain values of r with respect to k. This can
be done by using an efficient symbolic calculus system.
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Block size | Order r Error Constant
2 2 1 (172,1/6)T
3 2 | 11/2 (=1/6,1/3,11/24)T
4 4 5 (1/12,-1/12,1/4,13/12)T
5 ) 6 (=1/20,1/30, —1/20, 1/5,77/60)T
6 5 6 (1/30,-1/60,1/60,—1/30,1/6,223/140)T
7 6 6 (—1/42,1/105, —1/140, 17105, —1/42,1/7, 481/280)7
8 7 7 (1/56,—1/168,1/280,—1/280,1/168, —1/56,1/8,4889/2520)7

Table 1: Normalized error vectors and values of r

Remark 3 Parameter r is first estimated numerically and then rounded to an integer. When more
than one choice was possible, we tried 1o “minimize” the error constant.

We present in appendix H a program written in Maple which purpose is to build methods AM(k)
for any value of k and ». This program then assembles matrix H and computes all its minors, which
are known to be polynomials of real variable y. By definition of H and of the resulting polynomials,
it is known that only even exponents of y appear, so that an easy criterium to check for A-stability
is to verify that all coefficients in det(H; ;)i1<ij<n! =1, --,2k are positive. This has been done up
to k = 8. Higher values of k would require more than a week of computations on a SPARC station
2. That is why such values of £ have not been investigated. The program returns 1 if A-stability is
achieved, whereas 0 means that the criterium used is not satisfied. '

Remark 4 For higher values of k we can investigate the stabilily on the real azis in a similar manner
(here we have lo compute the matriz H directly from P, instead of PP). This work has been carried
oul withr = k — 1 up to k = 12, showing that M(k) is Ag-stable at least up lo order 11.

As in [4] we introduce the normalized error vectors in order to compare their components with
the error constants corresponding to conventional linear multistep methods :
C:
Ej = — ]
j'De

where the division of vectors is meant componentwise. We now conclude with a survey of the results
obtained up to k = 8 and we give the root locus curves and the matrices A and D for the different
methods in appendix from A to G. It should be noticed that for k¥ = 2 and k = 4 the order of
the method is k instead of k — 1 as stated in Theorem 3. As a matter of fact, we have chosen r
such that EC, = 0. As seen in Theorem 1, this additional condition is sufficient for order k. A
close look at condition ECy = 0 shows that there exists a solution » for k = 1,-..,8. However, it is
generally not integer and not even a rational, so that the resulting method has no longer nice rational
coefficients. As mentionned above, for k > 8 no result has been obtained, owing to the amount of
computations needed. An alternative approach is however possible, provided we consider a combined
local-numerical analysis is sufficient. Though it does not seem possible to conclude on the L-stability
of M(k), k > 8 only from the graph of p(M{(z) on the imaginary axis (see for instance fig. 3), we may
observe that outside a neighborhood of the origin, p(M(i.y) is less than one. In this neighborhood,
we may use the following result :

Lemma 3 Let us assume that M(k) is a zero-stable method of order p with r > p/2 and let A(2)
be the continuation of the eigenvalue 1 of A. If we denote by 1 — Ky.2Pt! 4 Kp.2P%2 4 O(2P13)
the truncation of series e=%.X(z), then M(k) is strongly zero-stable if one of the following two cases
occurs :

e Jge N p=2qand(-1)9.K,>0
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Figure 3: p(M(i.y)} in log-log scale for M(9) with r = 8

e 3geNp=29+1and (1) .K; >0

proof : since r > p/2, we know that all eigenvalues of A have a modulus strictly less than 1
except for the one-fold eigenvalue 1, so that there exists a neigborhood of the origin, in the complex
plane, in which these eigenvalues are bounded in modulus by 1 (by continuity of the roots). As for
eigenvalue 1, we may write it as a truncated Taylor series since it is a simple root of the characteristic
polynomial of A. Since M(k) is of order p, we have :

™ Mz) = 1 = K1.zP* 4 K,.2P%2 4+ O(27%3)
Let z = iy. For p = 2¢ + 1 we have:
™ A = 1= 2(=1)7 Ky + K3 4 K3y + 0(4+)
so that, |e=%.A(z)| < 1 in a neighborhood of 0 if and only if (-1)¢.K; > 0.
Asforp=2¢q:
et AR = 14 2(=1)7F Koy + K32 4 KIH+ 4 0(y41+)

so that, |e"*.A(z)] < 1 if and only if (-1)7.K2 > 0. O

By computing Taylor series of eigenvalue 1, one can prove that Methods M(k), k = 9,10 with
respectively » = 8,9 satisfy the conditions of previous lemma. This result together with stability
- plots are strong presumptions for their L-stability.
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k [ h=1/4 | h=1/8 | h=1/16 | h=1/32 | h=1/64 | h=1/128 | h=1/256
2| 257 | 3.13 375 437 4.98 5.58 6.18
3] 263 | 323 3.83 443 5.03 5.64 6.24

4] 375 | 4.74 5.89 7.08 8.28 9.48 10.68

5| 3.85 | 4.91 6.07 7.26 | 8.46 9.66 10.86
6| 547 | 697 8.94 9.86 11.22 12.69 13.96

7] 534 | 6.90 8.68 10.50 | 12.33 13.78 ¥

8| 6.96 | 873 | 1042 | 12.40 | 13.47 ¥ ¥

Table 2: Values of A for the methods M(k), k=2,---,8

5 Numerical experiments

5.1 Accuracy tests

In order to numerically verify the order of methods M (k) we integrate the test problem proposed by
Kaps [16], and used in [4] :

n=-C+e Ny +e 'y
vi=u —2(l+y)

v1(0) =1 (12)
0<z< X

with the following exact solution for any value of € :

y2=e" %

In Table 2 we have listed the values of A, where A denotes the number of correct digits of the numer-
ical solution at the end of the interval (i.e. A = —log,o(max;=1 2 [¥(X) — yn;il)). All experiments
have been done with ¢ = 1078 and X = 4, in order to avoid the influence of the starting procedure
(in this case, the k first approximations are actually exact) 2. These values have been plotted on
a graph (see Figure 4), and a good adequation between theoretical and real order can be observed.
However, for very high precision (more than 10~!4), rounding errors become predominent (see Figure
4). A star * indicates unreliable results.

5.2 Stability tests
The stability of the methods is tested by integrating a problem in which the Jacobian matrix J has

purely imaginary eigenvalues :

¥ = —ay2 + (1 + a)cos(z)
¥h = ayy — (1 + a)sin(z)

y1(0) =0 (14)
¥2(0) =1
0<e <X
with exact solution :
v = sin(z)
{nos (13)

2Experiments were performed with a MATLAB written code in double precision (precision parameter= 2.10—16)
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Figure 4: Error distributions for the methods M(k), k = 2,.--,8 of Table (1)

for any value of the parameter «. Therefore, J has the following expression :

=0 7)

so that the eigenvalues of J are i.a and —i.a. In Table 3, we give the values of A, which has been
defined above, as a function of the stepsize. We finally illustrate the better behavior of methods
M(k) over BDF’s (Backward Differentiation Formulas) for orders 4,5 and 6. The second order BDF
is indeed A-stable, whereas for orders higher than 6, the BDF’s are no longer zero-stable. Overflow
is indicated by oo and values of A corresponding to stepsizes that are theoretically unstable are
underlined.

Method | h=4/5 | h=2/5 | h=1/5 [ h=1/10 | h=1/20 | h=1/40
M(2) 1.43 1.73 2.05 239 v 2.81 3.33
[ M) [ 18 [ 242 | 2901 | 340 | 395 [ 453 |

BDFy 2.2 00 00 o0 29 8.2
M(4) 2.29 3.13 3.95 4.79 5.73 6.73

[M(5 ]| 262 | 381 | 492 | 588 | 682 | 7.66 |

BDF;s -0.1 0o o0 fo'e} 8.5 10.3
M(6) 2.93 446 5.97 7.25 8.74 9.79
BDFg 00 00 o0 00 9.64 11.48

M(7) ] 320 [ 5.06 | 7.03 8.34 9.62 10.79
[ M8 [ 345 | 569 | 831 | 960 | 11.73 | 13.01 |

Table 3: Values of A for X = 100 and o = 10

6 Conclusion
In this paper, we have tried to improve the results obtained by B.P. Sommeijer, W. Couzy and P.J.

van der Houwen in [4]. They introduced a class of seemingly very promising block-methods suitable
for integrating ordinary differential equations on parallel computers. On a first step, we analyse
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these methods by considering them as “general linear methods”. We applied the different results of
Butcher and Skeel theory, and we obtained a refinement of the order conditions that gave much hope
for higher order A-stable methods. On a second step, we got a practical condition for A-stability by
applying well-known results of complex analysis. This led us to an “experimental” search for A-stable
methods based on symbolic calculus. We got a third-order L-stable method using two processors
that compares favorably with its BDF equivalent. However, even for very low order, the amount of
computation soon becomes a barrier. Moreover, our criterium for A-stability does not furnish trivial
indications for the choice of free coefficients. Consequently, a fruitful application of this approach
to higher orders seems particulary hard and tedious (though, we are still convinced that it can give

~some. interesting results for order 4 and maybe for order 5). That is why we turned to a more

systematic search whose aim was to find a generic method with good stability properties. We have
designed a new class of parallel block methods which can be very easily implemented on a parallel
computer, and we have also proved that they are L-stable up to order 7. Numerical results and local
analysis both indicate that these methods are likely to be L-stable for higher orders. Finally, have
integrated two initial value problems in order to confirm the favourable behavior of the methods.
These experiments are in total agreement with the theoretical results. So far, we have constructed a
class of methods with the same stability properties as the Gauss-Lobatto Runge-Kutta methods, but
which are far less complex with respect to implementation. More precisely, the (s.m)!*-order system
3 of Gauss-Lobatto methods (s the stage number) has been transformed into s systems of order
m which can be solved simultaneously. This should breed very substantial speedups on a parallel
computer.
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A M(2) withr =4

= () o= (0 ) 2= (30)

We have here Cy = (1/2,1/4)T and :

%%2:(:: Z) = EC;=0.

so that the method is of order 2.

B  M(3) with r =11/2

2/11 1 -2/n 4/11 0 0 -1/6
A=| -3/11 L 2/11 |, D= 0o &£ 0], E=| 1/3
-1/ -y g 0o 0. % B

The equation E(r)C3(r) = 0 has the following expression :
6r® — 63r? +185r — 144 =0

3Each new approximation of the solution requires the solution of an implicit system.
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It has no rational solution. However, r = 3.184850644 “seems” to lead to a third-order L-stable

method.

C M(4) with r =5

2/15  6/5 -=2/5 1/15 2/5 0 0 0 1/12
| -t 35 L -1/ | o 35 0 o | 112
A= & -6/5 1?9 -& D=1 0 0o a5 0| ET| 1
5/6 -3 7/2 -1/3 0 0 0 1 i3
We have here C4 = (4/5,—6/5,24/5,26)T and :
35 _% [ _%
A ¥ & & _4
%: ¥ & B A |=EC=0
£ A 8 _4
36 6 12 9
so that M(4) is of order 4.
D M(5) withr =6
/12 B -1/2 1/6 -1/36 1/3 0 0 0 O -1/20
—-1/24 1/3 1 -1/3 1/24 0 1/2 0 0 0 1/30
A= 1/18 -~1/3 1 4/9 -1/6 {, D= 0o o0 2/3 o o |, E=]| -1/20
-?5- igg -5/2  10/3 —?—; 06 0 0 5/6 0 1/5
S A | S 172 TR A 0 0 o0 0 1 &
The equation E(r)Cs(r) = 0 is here :
120r° — 3000r* + 26650r° — 102850r% 4 166904r — 86400 = 0
E M(6) withr =6
1/15 P23 Y3 -1/9 & /3 0 0 0 0 O
-1/40 1/4 7/6 -1/2 1/8 -% 0 1/2 0 0 0 0
Ao | 145 -1/8 2/3 I -1/3 1/30 0 0 2/3 0 0 O
-1/24 & -5/6 5/3 5 -1/6 |’ 0 0 O 5/6 0 0
/5 -5/4 10/3 -5 5 —ﬁ 6 0 0 o0 1 O
8 3 4 3 1 X 0o 0 0 ©0 0 7/6
1/30
_1
g‘
E=1 _1/30
1/6
223

The equation E(r)Ce(r) = 0 has the form :

360r° — 1242075 + 161250r* — 992475¢3
+2987647r2 — 4037154r + 1814400 = 0

L
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F M(7) withr =6

257 S 1
l/IIS I —21/6 5/9 -& 1/12 5
-& 1/ 3% -2/3 1/4 -1/15 15
o —1/10 1/2 1 -1/2 1/10 -
A= =% 19 -5 2 & -1/3 1/36
/30 —1/14  5/6 -5/3 5/2 - -1/6
-z 7/5 _35 70 38 7 22
_ % 704 _486 i& _ 6_:14_ 188 _ ”8
15 13 3 9 5 5
/3 0 0 0 0 0 0 —-1/42
0 1/2 o0 0 0 0 0 l-g)—?
6 0 2/3 0 0 0 O -
D=} o6 0 o0 560 0 0 |, E= g
0 0 0 0 1 0 O —1/42
6 0 o0 0 0176 0 1/7
0 0 o6 0 0 0 4/3 129

As before, to get one order higher, r should satisfy :

—87442264r°-254393394r + 18305175r* 4+ 218041817r2—2044770r>
+101606400 + 114660r5—2520r7 = 0

r = 6.107690185 is likely to lead to an 7**-order L-stable method.

G M(8) withr=7

[ & £ -6/ 5/1 —é—‘; 3/14 -% Wlf
—- 1/7 BLo-5/1 & -7 1/28 -
£ 2 Woos iy & o 1
73? 35 35 7 23 35 105 24?
a=| 7% 1/21 -3/14 57 % -3/7 /14 -3
= -l 21 -5/1 2 2 -2/1 1/49
-1/42 1/ -3/4 5/3 -5/2 3 -5 -7
X -4/3 A 10 L 12 g 38
\ 2 _er b _amr adte _sos se2 A%
980 35 70 7 28 35 70 245
(2/1 0 0 0 0 00 0) [ 516; )
0 37 0 0 0 00 O ~ 768
0 0 4/7 0 0 0 0 O 25
_} o o o s/7 0 o0 o0 0 | -5
D=1"9% 0o o o 6/7 0 0 0o}’ E= TZ-;
0 0 o0 0 0 100 -
L o o o0 o o0 o0 28 0 k 1/8
© 0 0 0 0 00 2/ sess |
For sake of completness, we give the condition on r for order 8 :

2289061754r2 + 5066650482r—580819883r*—4907763545r2 + 83919360r°
—6850200r° — 1828915200 4+ 292320r"—-5040r% = 0
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H Program Maple ADM

ADM:=proc(kp,r) local i,j,1;

#

# kp is the size of the bloc

8 and r the parameter introduced above
#

:=array(i..x,1..k):
:=array(sparse,1..k,1..X):
ID:=array(identity,1..k,1..k):
c:=array(1..k,1..1):
8
# Construction of c,e,D,U,V
8
for i from 1 to k do
eli,1):=1:
D[i,1):=(1+i)/x:
for j from 1 to k do
Uli,j}:=(cli,1]-1)"(j-1):

with(linalg):
k:=eval(kp):

8
A:=array(1..k,1..k):
e:=array(i..k,1..1):
U:=array(1..k,1..k):
v

D

Vi, 33 :=-(j-1)+D[i,ils(cli,11) " (§-2)

+(c(i,1])°(j-1):
od:
od:
for i from 1 to k do
cli, 1) :=i:

Q
[«

Computes A and M
:=multiply(V, inverse(U)):

jm?z?:

:=multiply(inverse(add(ID,D,1,-2)) ,A):

i='x?:

:=numer (charpoly(M,x)):

Eliminates zexro from the roots of P

% % UM 8 % % XN >80

if (subs(x=0,P)=0) then
P:=gimplify(factor(P)/x):
k:=k-1:

fi:

Computes the characteristic polynomial of M

rmIsy:
:=avalc(P*conjugate(P)):
rm(u+1)/(u-1):

1m28k:

:=array(sparse,1..q,1..q):

or i from 0 to q do
p.i:=evaln(p.i):

#
z
qQ
x
Q
#
8
*
q
H
b4

od:
for i from 1 to k do
for j from 1 to k do

:mcollect (simplify(Qe(w-1)"(2%k)),w):

Construction of the Hurwitz-matrix H

H(2#i-1,j-1+i):=p. (q-28j+1):
H[2#i, j-1+i) :=p. (q-2#(j-1)):

od:
H[2#¢i,k+i]:=p0:

od:

#

for i from 0 to q do
p.i:i=coeff(Q,v,i);

od:

8

# Checks for A-stability

#

flag:=1:

for i from 1 to q do
print (i);

R.i:=det (submatrix(H,1..i,1..

vimlop(R.i)]:

j:=nopa(R.i):

for 1 from 1 to j do

if (sign(v[1])=-1) then
flag:=0:
break:
fi:
od:
it (flag=0) then
break:
fi:
od:

flag;
end;

22
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I Root locus curves

Figure 6: Root locus curve for M(3) with »r = 11/2
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Figure 9: Root locus curve for M(6) with r =6
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Figure 10: Root locus curve for M(7) with r =6
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