l_’__l
TILBURG 0% ¢ UNIVERSITY
l“jf’l

Tilburg University

L-structured matrices and linear matrix equations
Magnus, J.R.

Published in:
Linear and Multilinear Algebra

Publication date:
1983

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Magnus, J. R. (1983). L-structured matrices and linear matrix equations. Linear and Multilinear Algebra, 14(1),
67-88.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
» You may not further distribute the material or use it for any profit-making activity or commercial gain
» You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. aug.. 2022


https://research.tilburguniversity.edu/en/publications/ef9a74f0-816a-4079-8211-113fba8daf68

Linear and Multilinear Algebra, 1983, Vol. 14, pp. 67-88
0308-1087/83/1401-0067 $18.50/0

® 1983 Gordon and Breach Science Publishers, Inc.
Printed in the United States of America

| -structured Matrices and
Linear Matrix Equations™

JAN R. MAGNUS
The London School of Economics, London WCZ2A 2AE, UK
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Conditions for the existence of solutions, and the general solution of linear matrix
equations are given, when it is known a priori that the solution matrix has a given
structure (e.g. symmetric, triangular, diagonal). This theory is subsequently extended to
matrix equations that are linear in several unknown ‘structured’ matrices, and to
partitioned matrnx equations.

1. INTRODUCTION AND NOTATION

Linear matrix equations can take a variety of forms, simple exam-
ples of which are

AXB = C, AX + XB = C,
A'X+XA=C, AX,—X,B=C.

Conditions for the existence of solutions and the general solution of
these equations are well-known [22, 2], either directly from the matrix
equation, or indirectly from the equivalent vector equation.

The purpose of this paper is to solve linear matrix equations, when
it is a priori known that the solution matrix X (or the solution
matrices X, ... X,) has a given structure (symmetric, triangular,
diagonal, or otherwise).

*] am grateful to H. Don, H. Neudecker and an anonymous referee for useful
comments on an earlier version of this paper. They are not responsible for remaining
errors.
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68 J. R. MAGNUS

Patterned matrices (with equality relationships only among their

elements) were studied by Tracy and Singh [29] with the purpose of
finding matrix derivatives of certain matrix transformations, and to

use these in evaluating their Jacobians. Vetter [31] discussed lincar
matrix equations where the solution matrix is known to be symmetric,
while Henderson and Searle [9] and Magnus and Neudecker [15]
recently derived many new results that are relevant for transforma-
tions involving symmetric or lower triangular matrices.

In all these papers, only equality relationships among the elements
of the solution matrix X are assumed. In the present paper any set of
linear relationships between the elements of X is permitted. The
totality of real matrices of a given order that satisfy a given set of
linear restrictions forms an L-structure (“L” stands for linear). This
concept 1s defined and discussed in section 2. In section 3 the
equation Q vec X = vec C 1s solved, where X is L-structured. A more
general class of matrices, the “extended” L-structure, is introduced
and the solution of Qvec X = vec C provided for that case. Also, the
solution of a system of equations in one L-structured X is discussed.
Section 4 solves the linear equation in several unknown L-structured
matrices and section 5 deals with partitioned matrices. In section 6
some well-known L-structures (e.g., symmetry and triangularity) are
characterized. An appendix, listing some properties of the Moore-
Penrose inverse, concludes the paper.

This paper deals with L-structured matrices. Since, however, the
class of L-structured matrices embodies ‘unstructured’” matrices
(where no restrictions are placed on its elements) as a special case, the
theorems derived in this paper apply to unstructured matrices in
particular.

All matrices are real; capital letters represent matrices; lowercase
letters denote vectors or scalars. An (m,n) matrix is one having m
rows and n columns; A * denotes the Moore-Penrose (MP) inverse of
A; the 1dentity matrix of order s 1s denoted /.. If 4 is an (m,n)
matrix, then vec A4 1s the (mn, 1) vector that stacks the columns of A
one underneath the other. Thus, for a, i=1...n, being the n
columns of A4,

A= (aja, ...a,) and vecA =
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The Kronecker product of an (m,n) matrix A = (a;) and an (s,1¢)
matrix B 1s the (ms, nt) matrix

A®B=(GUB).

Well-known properties of the Kronecker product, see e.g. [3, p. 235],
[16, p. 8] or [20], include

(A®B)CO®D)=ACQ® BD, (A®B)Y=A4"® B’
(A®B) '=4A'®B"', (A®B)"'=A4A"®B",

If the necessary rank and conformability conditions in these expres-
sions are satisfied. A standard result on vecs, due to Roth [24] and
rediscovered by Neudecker [20], 1s

vecABC = (C'® A)vec B, (1.1)

If the matrix product A BC exists.

The commutation matrix K__, a row-permutation of the identity
matrix /. was introduced by Tracy and Dwyer [28] and studied n
detail by Magnus and Neudecker [14]. Tt 1s an orthogonal (mn, mn)
matrix, defined implicitly by the relationship

K, vecA =vecA’ (1.2)

where 4 1s an arbitrary (m, n) matrix.
In the following, orders of matrices are deleted when clear from the

context or irrelevant.

2. L-.STRUCTURED MATRICES

The object of this section 1s to define the concept of an L-structure,
and to discuss some of 1ts properties. The discussion will be based on
the 1dea of a subspace. Throughout the present section I denote by R”
the real vector space of finite dimension p >0, and by & a given
subspace (or linear manifold) of R?” of dimension s < p. Let
d,, ..., d; be a set of basis vectors for &/, then the ( p,s) matrix

A___"(dl """ d'.)

will be called a basis matrix for &/. Such a basis matrix 1s, of course,
not unique. The following lemma gives necessary and sufficient
conditions that two matrices A, and A, are basis matrices for the same
subspace <.
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LEMMA 2.1 Let &, and &, be s-dimensional subspaces of R’. Let A,
and A, be basis matrices for &\ and 7, respectively. Then any of the
following four conditions is necessary and sufficient for &' = /'y

(i) A, = A,E for some nonsingular (s,s) mairix E:

(i) A,A7 A, =4,;

(iii) A\A] = AAS;

(iv) (QAN QAT =( QA QA" for all matrices O with p col-

umns.

Proof 2, = Z,<>A, and A, span the same subspace ©& A, = AL
for some nonsingular E. Further, (iv)— (iii) by choosing Q =1,
(iii) = (ii) by postmultiplying (i) with A,, (ii)—(1) by letting E
= A A,, and (i) — (iv) since (ABYAB)* = AA ™ holds for any A and
nonsingular B (Lemma A.l in the Appendix), and therefore in partic-
ular for 4 = QA, and B = E. [

Let X be a real (ym, n) matrix. Suppose that among its mn elements
x, there exist mn — s linear relationships. If these restrictions are
linearly independent, then X has only s “free” variables, the other
mn — s being determined by the linear restrictions. The collection of
all real (m,n) matrices that satisfy a given set of linear restrictions
constitutes an L-structure. The following definition formalizes this

concept.

DerINITION 2.1 Let 2 be an s-dimensional subspace of R™, and A
any (mn,s) basis matrix for Z. The subset of real (m,n) matrices
given by

L(A)= {X]|vecX € ¥}

will be called an L-structure, and s will be called the dimension of the
L-structure.

Thus s. the dimension of the subspace <, is equal to the number of
“free’” variables in X. It is, of course, obvious from Lemma 2.1(1) that
if Ais a basis matrix for &, then so is AE for any nonsingular £E.
Hence L(A) = L(AE) for each nonsingular E. This fact suggests that
it might be more convenient to regard L as function of &/ rather than
A. However, the basis matrix A is relevant in any discussion on matrix
equations, and I prefer, therefore, to retain Definition 2.1 as it stands.

One example of an L-structure 1s the class of real symmetric (n,n)
matrices. The linear restrictions are simply the n(n — 1)/2 equalities

X = X, and so the dimension of the L-structure is n(n + 1)/2. For
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n = 2, one choice for A would be

S o=l > G =

1 0
0 1
0 I
0 0

By saying that the class of real symmetric matrices constitutes an
L-structure, 1t 1s understood, of course, that symmetry 1s the only
structure 1imposed. Consider, for example, the following three classes

of symmetric matrices:

(X p I I iy
X'_()’ 2)’ Xz_(y vz)’ XJ_(y l)'

=

with x, y,z € R. Clearly X, 1s an L-structure, but X, and X, are not
since, in view of Definition 2.1, only /inear combinations of the “free”
parameters are permitted. Thus, no powers (as in X,) or constants
other than zeros (as in X;). In section 3 *“extended” L-structures are
introduced which allow constants such as in X,.

Other examples of L-structures are (strictly) triangular, skew-
symmetric, diagonal, circulant, and Toeplitz matrices. Also L-
structured (of dimension 4) 1s

X Z X+ 2
v 4 v+ y )

XTre Z9Y XTOHZTTY

[f 5, the dimension of the L-structure, 1s zero, then the L-structure is
the null matnx. If s = mn, then no restrictions are placed on the
elements of X. In this paper I will assume that | < s < mn, thus
excluding the null matrix but including the unstructured case.

Each basis matrix A defines an L-structure, and several of these
A-matrices have been studied in the literature. A A-matrix associated
with symmetry was first studied in [29] and, more extensively, in [9]
an [15]. The latter paper also deals with a A associated with the class
of lower triangular matrices. A-matrices for strictly lower triangular,
skew-symmetric, and diagonal matrices were studied in [21].

The main result of this section 1s

THEOREM 2.1  Consider the tlass of real (m,n) matrices defined by the
L-structure L(A) of dimension s. Then the following three statements are
equivalent :

(1) X € L(Q);
(1) there exists an (s, 1) vector (X)) such that vec X = AY(X); the
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vector y(X ) is uniquely determined and (X)) = At vec X;
(i11) (I — AA" )vec X = 0.

Further, let A and B be square matrices of orders (n,n) and (m,m)
respectively. Then the following two statements are equivalent:

(iv) BXA' € L(A) for all X € L(A):
(v) AAY (A ® B)A = (A D B)A.

Finally, if A and B are nbnsfngular, either (1v) or (v) implies

(vi) [A*(A® B)A] '=A* (4 '® B ")A and [A(A® B)A]
=A* (4 '® B Hat"

Proof (1)e>(il): X € L(A)©>vecX lies in the space & spanned by
A<> a vector y exists such that vec X = Ay. Since A has full column
rank s, At A= I, and ¢ is uniquely given by A™ vec X.

(i) & (i11): AY(X) = vec X for Y(X)= At vec X & AAT vec X
= vec X.

(iv) & (v): AAT(AQ® B)A=(A® B)Ae AAT (A @ B)AY(X)
= (A ® B)Ay(X) for all values of Y(X)>AA" (A ® B)vec X = (A X
B)vec X for all X € L(A)e>AA" vec BXA' = vec BXA' for all X
€ L(A)«> BXA' € L(A) for all X € L(A).

(V)= (vi): A*(AT'®@ B HAAT(A®@B)A=A"(A '®B A ®
B)A = A* A= ].. The second assertion follows from the symmetry of
AA™. 72

Two comments are in order. First, the converse of (vi) does not
hold., that is nonsingularity of 4 and B, and [A" (A ® B)A]
= A* (4~ '® B ~")A together do not imply that BXA" and X belong
to the same L(A)-structure. To see this, let

A=B'=(‘ ‘) i) A’=(' 0 0 0)_
0 | 0 0 0 |

Then,
A* (A® B)AAT (A '@ B HA=1,,
but
(1 —AA™T ) (A ® B)A+0.

Secondly, matrices A and B where BXA' has the same L-structure as
X are often easy to find. If, for example, X is (skew-)symmetric, then
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so 18 AXA'. Also, if X is (strictly) lower triangular, and P and Q are
lower triangular, then PXQ is (strictly) lower triangular.

We are now ready to deal with linear matrix equations where the
solution matrix X is known to be L-structured.

3. THE EQUATION Qvec X = vecC

The linear matrix equation
AXB,+ A XB,+ - - - + A XB.=C (3.1)

In X, of order (m,n), is a generalization of many matrix equations
discussed in the literature, the most famous being the Lyapunov

equation
AX + XA’ = C.

Equation (3.1) was first studied almost a century ago by Sylvester
[27), who considered it as a system of mn equations for the mn
elements x, of X, but did not recognize the matrix of this system of
equations as a sum of Kronecker products. A review of the literature
before 1932 is provided in [13, section 46]. Roth [24, Theorem 4] gives
necessary and sufficient conditions for consistency. A general solution
of (3.1) 1s implicit in [22, p. 409], and explicit in [12], where much of
what is known about the solution of (3.1) is brought together, using
mainly methods of contour integration. In [32], equation (3.1) is
attacked via Taylor’s formula for matrix functions, see also [33].

More general still is the equation

) [
2. AXB+ > DX'E=C, (3.2)

(= | /=
special cases of which include
A'X +* X'A=C
as studied n [10]. Using the vec-operator and the commutation

matrix K as defined in (1.2), the matrix equation (3.2) can be
transformed into one vector equation, as in [31]:

D (B ®A,)+ E(E; ® D )K,, [vec X = vecC.
J :

!

All these cases and more are embodied in the vector equation
QvecX = vecC. (3.3)
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The conditions for consistency and the general solution of (3.3) are

well-known [22], also if Q is singular.
In case X is L-structured, the consistency and solution of (3.3) are

more complicated. For symmetric X, this problem was raised in [31],
but not solved satisfactorily. The first complete solution for symmetric
(and lower triangular) X was provided in [15, Lemma 7.1} This
solution is now generalized to arbitrary L-structures.

THEOREM 3.1 Let L(A) be a given L-structure. The equation
Qvec X =vecC

has a solution in L(A) if and only if
QA( QA)+vec C = vec C,
in which case the general solution is
vec X = A( QA) vec C + Al T = ( 0A)” QA |vec P,
where P is an arbitrary matrix of appropriate order. In particular:

(1) The solution—if it exists—Iis unique iff QA has full column rank,
in which case

vec X = A(A'Q'QA) 'A'Q'vec C;
(i1) A solution exists for all C iff QA has full row rank, in which case
vec X = AA' Q' QAA’Q')*'vecC + A[! - A'Q( QM’Q’)"QA]V&C %

Proof Since X s L-structured, we have vec X = Ay(X) and thus
QAY(X ) = vecC.

The consistency condition and solution of this vector equation follows
from Lemma A.2 in the Appendix. Thus, if a solution exists, it takes
the form

Y(X)=(QA) vecC+[1—(Q4)" QA]vecP,

for arbitrary P. Premultiplication by A gives the solution for vec X. If
the equation is consistent, the solution is unique iff (QA)T QA =1,
that is iff QA has full column rank. In that case

(QA) = (4'Q'Q48) 'AQ
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and (i) follows. A solution exists for all C iff (QAX QA)" = I, that is
iff QA has full row rank. In this case

(QA)" =4'Q'(QAN Q")
and (11) follows. B

An alternative way of solving the vector equation Q vec X = vecC
under the constraint X € L(A) would be to use the fact, established 1n
Theorem 2.1, that X € L(A)e (I — AA" )vec X = 0. The constrained

problem can thus be written as

(9 Juecx=(vecC)
I — AA” 0

where / — AA" 1s an idempotent matrix which in view of Lemma
2.1(i11) is uniquely determined by Z/. It turns out, however, that this
representation of the problem leads to more cumbersome expressions
than in Theorem 3.1. Accordingly, I do not explore this avenue

further.

[t was noted before that the only constants that an L-structured
matrix may contain are zeros. This restriction, however, can easily be
removed by introducing “extended” L-structures as follows:

DerFINITION 3.1  Let L(A) be a given L-structure, and A a given
(m, n) matrix of real constants. The set of real (m,n) matrices defined

by
L(ALA)Y={X|X—- A€ L(Q))
will be called an exrended L-structure.
Thus, L(A,A) contains all matrices X for which vecX € & +
vec A. The space &/ + vec A 1s a linear (affine) vanety of R™, that 1s,

a translation of the subspace & by vec A. Note that L(A) = L(A,0).
Simple examples of extended L-structures are

(I x) and ) 4N
x | xs1 pe=)
and the corresponding “A’-matrices are respectively
(l O) s d (0 0 )
0 1 | -1

The following result can now be proved as a corollary to Theorem
3.1,
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COROLLARY 3.1 Ler L(A,A) be a given extended L-structure. The
equation Q vec X = vec C has a solution in L(A, A) if and only if

QA( Q&)+ (vecC — QvecA)=vecC — QvecA,
in which case the general solution is
vecX =[1—A(QA)" Q]vecA + A 0A) " vec C
+A[1 - (Q4)" QA]vecP,
where P is arbitrary.

Proof Let X=X—-—A.then X € L(A)e X € L(A, A), and
Q vec X = vec C, X E L{aA)

1s equivalent to

QvecX =vecC — QvecA, X € L(A).
The result now follows from Theorem 3.1. [

Theorem 3.1 also provides the framework to solve simultaneously
several equations in one L-structured matrix X. Suppose we are given
r equations in one unknown L-structured matrix X,

Q,vec X = vec(,, f=liuais r,. X & L&Y (3.4)
Let
Q'=(01.Q7,---,Q/) and C=(C,. 6,000 G,

then (3.4) reduces to Q vec X = vec C, which is the equation solved in
Theorem 3.1. The special case r =2 has received relatively little
attention in the literature, with the exception of the equations
AX = C, XB = D, see [5] and [23, Theorem 2.3.3]. More recently [4,
pp. 208-209], the pair of consistent linear equations Ax = a, Bx = b
was considered, and their common solutions, if any, studied. Using
Cline’s [6] results on the Moore-Penrose inverse of a partitioned
matrix, it is possible to study the case r =2 in more detail. The
following theorem deals with this situation where two equations are
given in one common X. Notice that, since the theorem applies to
L-structured X, it applies in particular to unstructured X, where no
restrictions are placed on the elements of X and A = /.
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THEOREM 3.2 Let L(A) be a given L-structure. A necessary and
sufficient condition for the equations

Q,vecX =vecC, and (Q,vecX = vec(,,

each of which is consistent in L(Q), to have a common solution in L(A),
Is that

(I — SSTYP;P,"vee Cy= ([ — 8857 JVeeiC,,
where
P, = QA4
P, = 0,4,
§= P(F= PP}
in which case the general solution is
veceX = A1 — ST P)P"vee C, + AS ™ vee C,
+A(fF — Py Py — 8™ SveeP,
where P is arbitrary.

Proof We write the equations Q vecX =vecC, (i =1,2) as one

equation:
[oapn=(c]
or, for short,
Ox = c.
et
U=(QA) and V=(0A).
Then

Q' =(U,V) O =(U,V) "
Q0 =(U.V) (UV), Q*Q=(UV)UV)".

Using the results and notation of Lemma A.3, we find
I-00*=1-(UV) (U V)
_(1—- UtU+ U*VZ(I—~R*R)WV'U*"

-Z(I - RY*RYV'U"’

~-U*V(I-R*R)Z
(I—R*R)Z )
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Consistency requires (I — QQ ™ )c =0, that 1s
(I-U*U)vecC,+ UTVZ(I - R*R)'U™ 'vecC,
_U*V( - R*R)ZvecC,=0

and

—~Z(I - R*RYW'U™*'vecC,+ (I — R"R)Zvec(, =0
Now, Z is nonsingular, and (/ — R"R)Z = Z(I — R * R). Also, con-
sistency of the equation Q,vec X = vecC, implies (/ — U T U)vec C,
— 0. The two equations thus have a common solution iff

(1—R+R)V'U+’VECCI=(I-R*R)vecC:,_. (3.6)

Recalling that Q' = (U, V'), the general solution of (3.5) 1s, for arbi-
trary P,

vec C,

'~P(X)=(U~V)+’( )+[1-—(U‘V)(U,V)+]vecP

vec C,

(U+—g+VH)(mg')+(1— UU* — RR* )vec P
vec C,

U*'vecC,— H'(V'U" 'vecC, — vec (})
+ (I — UU* —RR ™ )vecP.

Using the condition for consistency (3.6) and the definition of H, we
find

y(X)=U"*"vecC,— R*'(V'U"'vecC, — vec(})
+ (I - UU* —RR ™ )vecP
=(I - R*"'V)HU" 'vecC, + R 'vec (,
+ (I — UU* - RR " )vecP
Premultiply with A, and define
P = U’ P,= V', S

[
2

and the results follows. i)

4. THE CASE OF SEVERAL UNKNOWN MATRICES

Roth [24] studied the consistency of the linear matrx equation

A X B, + A X,B,+ -+ + A, X,B =C (4.1)
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but he did not provide a general solution for the X, (i=1...r). In a
later paper [25], he studied a special case of (4.1), viz. the equation
AX — YB = C, (4.2)

and he provided an elegant and simple condition for consistency.
New proofs of the consistency condition of (4.2) were derived in [7]
and [1]. The latter paper also gives the general solution of (4.2).

Both (4.1) and (4.2) are special cases of the linear equation

O,vec X, + Q,vec X, + - -+ + Q,vec X, = vec(, (4.3)

which can be written as a simple vector equation by defining

Q=(0,,0..:> 0,) and X =(X,,A;,..., A, )-

The equation (4.3) then reduces to Q vec X = vec C.
In case the X, are L-structured (rather than unstructured), there

exist vectors . (X,;) and matrices A, (i = 1...r) such that
Ay.(X,)=veckX,, i=1...r.
Thus, defining
A, 0 Vi(X)
A, Va( X2)
A= * and Y(X)=
0 A, v.(X,)

(4.3) further reduces to QAY(X)=vecC. Note that X 1s an L-
structured matrix with Ay(X) = vecX. Hence, Theorem 3.1 applies

straightforwardly.
I shall now take up the linear equation

Q,vec X, + Q,vec X, = vec(,

where only two matrices are unknown. Although this equation can be
solved using Theorem 3.1, as outlined above, it seems potentially
useful to provide a more detailed solution. This i1s done in the
following theorem, which embodies the solution of (4.2) as a special
case.

THEOREM 4.1 Let L(A,) and L(A,) be two given L-structures. A
necessary and sufficient condition for the equation

Q|VCCX| . QZVE:C XZ = V6CC (44)
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to have a solution for X, € L(A)) and X, € L(4,) is that
(P,P;* + RR ™ )vecC = vec(,
where
P, = Q\4,

Py = Q10;,
R=(!—"‘P|P|+)P2,

in which case the general solution is

_ . . | vecC
(Vecxl) =(A| 0) Pl+ - Pl PZH I SII ! Slz vec Wl
vec X, 0 A4, H I Si2 | Sa 1| vec W,

where
H=R*+(I— R*R)ZP;P;"'P}(I— PsR™),
Z=[14(I = R*RYPIPH PPl = R*R)]™,
S, =1— PP + P}P,Z(I— R*R)P;P",
S,=—P}*P(I-R*R)Z
S,,=(I— R7R)Z,

and W, and W, are arbitrary matrices.

Proof We can write equation (4.4) as

X
(P ZPE)(%( '))=vecC.
' Vo(X5)

From Lemma A.2 we know thal consistency requires

-+

(P, - Py)( P - P,) vecC = vecC.

a— e

For a consistent equation, the general solution 1s

(%(Xl)
Va(X2)

+ a +

)=(P, . Py) vecC+|1—(P . Py) (P ':F'z)qveC W,

where W is arbitrary. The theorem then follows from Lemma A3 B
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COROLLARY 4.1 (Continuation of Theorem 4.1). If (P,
column rank, equation (4.4) has a solution if and only if

M:[I - Pl(PfM:PI)_IPf]Mz"ECC:O
or, equivalently,
Ml[! — PZ(P;MIPE)"'P;]M,vecC= 0,
where
M|=['P1(P;P1)“1Pf~
and

M,=1— Py,(P;P,) 'P;.

81
. P,) has full

If this is the case, the solution is unique and takes the form

vecX, =4, (P M,P)) '"P,M,vec C

= A((P{P;) P[] = Py(PiM\Py) 'P;M,]vec C,

vec X, = A,(P;P,)" ' P;

ril a

= A,(P;M,P,)” ' P;M vecC,

Proof Immediate from Lemma A.4.

[1 - P,(P;‘MEP,)*"P;ME}uecC

COROLLARY 4.2 (Continuation of Theorem 4.1). A solution of (4.4)
exists for all C iff (P, - P,) has full row rank, in which case the general

solution 15

vecX,\ (4, O\[P/T|I-PTP

vec X,

where

T=(PP|+ PP}
and W, and W, are arbitrary matrices.

Proof Immediate from Lemma A.5.

—P/TP,
I~ PiTP;

vec C
vec W,

vec W,
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5. PARTITIONED MATRICES

Consider the matrix equation AXB = C, where X 1s partitioned as
FXII il e X!r |
X=1" ;s (5:1)
X X

rt

rl

The equation AXB = C may of course be solved by Theorem 3.1. It
seems, however, that a more fruitful approach is available, one that
preserves the structure of the submatrices X, . For example, suppose
X, is symmetric, while the other submatrices are unstructured. One
would wish for an operator which stacks the elements of X in such a
way that vec X, would appear as its first subvector. The vec operator,
then, is inappropriate. At this point a new matrix product must be
introduced.

A new matrix product (Tracy-Singh)

This new product was defined by Tracy and Singh [30] and.
independently, by McDonald and Swaminathan [17]. Both papers
develop this product in the context of matrix differentiation. For my
purpose a special case of their product suffices. Let

A=(A,:...:A) and E=(E :...:E))

be two partitioned matrices. Let the order of 4, be (p,m,) and the
order of E, (q,n). 1 = l...r,j=1...1 Further,

r [

m=2mf- and n=2nj.
o= | J=1

Then A and E have orders (p,m) and (g,n) respectively. The new

product 18

AKIE=(A,®@E,:A,®E, :...:A,®FE 1A, ® L
A RE,:...:A, O E)), (5:2)

r

which is a ( pg, mn) matrix, just as A @ E. In (26, p. 95] it 1s wrongly
alleged that this product is the same as the matrix product introduced
in [11), and generalized in [23, p. 12]. Many properties of the new
product 4 [X] E are similar to those of the Kronecker product, see [30].
In particular, let X be as in (5.1), where the order of X, 1s (m,,n,) so
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that the order of X is (m,n). Define the mn-vector
w(X)=[(vecX, ), (vecX ), ..., (vecX, ) (vecXy),
5 5 A VECK 35 Vi 5w 5 (VECA )’]' (5.3)

The matrnix equation AXB = C, where
A=(A,:...:A,) and B'=(B,:...:B),
and X is partitioned as in (5.1), can now be written as
(B'XJA)w(X )= vecC, (5.4)
which has the advantage over the equivalent expression (B'® A)
vec X = vec C that the ordering of the elements of X 1s more sensible.

[f the submatrices of X are L-structured, there exist basis matrices &,.j
and vectors ¢, (X,) such that

ﬁu%()(y)=vec)(,-j. j=) b, Jml,..l.
Define
A V(X )

A Vi2(X12)
A= | and Y(X)= _

arl i "Prl( er )

- -

then the vector equation (5.4) reduces (o
QAY (X )= vec(, (5.5)

where O = B'[X] 4. Theorem 3.1 can be applied to (5.5) to yield the
solution of the partitioned matrix equation AXB = C.

It 1s clear that more complicated partitioned !inear matrix equa-
tions can be solved by analogy with the procedure of this section.

6. EXAMPLES OF A

In order to simplify implementation of the theory developed in this
paper, | present in this section A-matrices for eight L-structures that
are most likely to appear in practical situations. Each defines a class
of square matrices, say of order (n,n). The L-structures are (with their
dimensions 1n brackets): (1) symmetric [n(n + 1)/2], (2) lower trian-
gular [n(n + 1)/2], (3) skew-symmetric [n(n — 1)/2], (4) strictly lower
triangular [n(n — 1)/2], (5) diagonal [n], (6) circulant [n], (7) Toeplitz
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[2n — 1], and (8) symmetric Toeplitz matrices [n]. For the case n = 3
sensible choices for A are (with dots representing zeros):

. A
|
[
[
|
[
| o
|
-

g
§

e
o

1

o i
I

o e e e 1 - s

>
o~
|
B
|
i
|

APPENDIX: SOME PROPERTIES OF THE MOORE-PENROSE
INVERSE

The Moore-Penrose (MP) inverse of a matrix was introduced by
Moore [18, 19] and rediscovered by Penrose [22].
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DEFINITION  An (m,n) matrix X is the MP inverse of an (n,m)
maltrix A4 if

AXA=A, XAX =X, (AX) =AX, (XA) = XA.

The MP inverse of A 1s denoted as A *.

The MP inverse exists and is unique. In this appendix, some
properties of the MP inverse which are used in the text, are presented.
The reader who 1s not familiar with general properties of MP inverses
1s referred to [4] and [23]. All matrices are taken to be real.

LEMMA A.1  For any A and nonsingular B,
AB(AB) = AA*.
Proof Since AB= AB(AB)" AB, and B is nonsingular, we have
A=AB(AB)" A, and hence AA* = AB(AB)*AA™* = (AB)* (AB)Y

AAT = (AB)Y'B'A'AA* = (AB)T"'B'A’ = (AB)*(AB) = AB
(AB)™. 3|

LEMMA A.2 [22] A necessary and sufficient condition for the vector
equation Ax = b to have a solution is that

AAYb = b,

in which case the general solution is
x=A+b+(l—A+A)q,
where g is an arbitrary vector of appropriate order.

LEMMA A.3 [6] The MP inverse of the partitioned matrix (U, V') is
(U,V)+=(U+ _U+VH)

H
with
H=R™%{lI—= R RYZV'UT ' UT(I=¥FR™)
R=(1-UU")V
Z=[I1+(I-R*R)VU*'U*V(I-R*R)]
Further,

(U VYU V)" =UU*+RR*
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and
(U,V) (U.V)
(U*U—- Ur*VZ(I- R "RYV'U™'

Z(I- R*R)V'U* [—{I~R*R)Z

U*V(!—R*R)Z)

LEMMA A.4 If the partitioned matrix (U, V') has full column rank, its
MP inverse is

N (UM U) 'U'M,
(U’V) - | =
(V'v)y V1= UUMU) U'M, ]
(U U= vvmyy vm,)
(VM V) 'V'M,
where
M,=1-UUU) U
M =1-VWVV)y'v
Further,

(U, VU V) =1-M][I- U(U'M.U) U |M

L (

=] — Mu[! - V(V'M, V) "V’]M“.

Proof 1f (U, V') has full column rank, then

: : .7 7.
vy =lwvywn] wyy =87 U") (U).
(UV) =[(u.vywu.n] Wwvy=(,., v \p
The inverse of (U, V) (U, V) can be expressed in two equivalent ways,
VIZ.

(UM U) ™’ (UM U) 'UVVV)

(VVy 'VUouUM Uy 'Y vy T vy 'UUM U U Ry

or

F(("'U} '+(l"L’) '("l-"{L"M“l'} "VUU U = (UU) 'U'l"{l”ﬁ-f“l') 3

(VM. Vy 'vuuuy (VM V)

The result follows. |
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LEMMA A.5 If the partitioned matrix (U, V) has full row rank, its
MP inverse is

(U,V)+=(U’P),
V' P

where

P=(UU + VvV .

Further,

(U1V)+(U,V)=(U’PU U’PV)_
V'PU V'PV

Proof 1f (U, V) has full row rank, then
(U VY = (U VY[(U VYU VY]
= ( U:)(UU’ + Vvl
V
The result follows. =
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