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Abstract—This paper investigates the problem of minimizing
an 2-sensitivity measure subject to 2-norm dynamic-range
scaling constraints for one-dimensional (1-D) as well as a class
of two-dimensional (2-D) state–space digital filters, where the
2-D digital filters are described by a transposed structure of the
Fornasini–Marchesini second local state–space model. In each
case, a novel iterative technique is developed to solve the constraint
optimization problem directly. The proposed solution methods
are largely based on the use of a Lagrange function and some
matrix-theoretic techniques. Numerical examples are presented to
demonstrate the effectiveness of the proposed techniques.

Index Terms—A class of 2-D state–space digital filters, La-
grange’s function, 2-norm dynamic-range scaling constraints,
2-sensitivity minimization, optimal realization, state–space

digital filters.

I. INTRODUCTION

FOR over three decades, the issue on finite word length
(FWL) effects has been a significant research topic in the

implementation of fixed-point state–space digital filters. A great
deal of effort has been made to synthesize the optimal FWL
state–space filter structures that minimize the FWL effects on the
efficiency and performance of the filter actually implemented.
This paper is concerned with the problem of minimizing coef-
ficient sensitivity in state–space digital filters. Given a transfer
function with infinite accuracy coefficients that meets specifica-
tion requirements, we often need to implement its state–space
model using a finite binary representation. This requires the
truncation or rounding of coefficients in the state–space model to
fit the FWL constraints. As a result, the characteristics of a stable
filter might be so altered that the filter may become unstable.
This motivates the study of the coefficient sensitivity minimiza-
tion problem. In the literature, techniques for synthesizing the
state–space descriptions that minimize the coefficient sensitivity
can be divided into two main classes: -mixed sensitivity
minimization [1]–[5] and -sensitivity minimization [6]–[10].
In [6]–[10], it has been argued that the sensitivity measure
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based on the -norm only is more natural and reasonable
relative to the -mixed sensitivity minimization. For 2-D
state–space digital filters, the -mixed sensitivity mini-
mization problem [11]–[15] and -sensitivity minimization
problem [10], [16]–[19] have also been investigated. However,
to our best knowledge, little has been done for the minimization
of -sensitivity subject to the -norm dynamic-range scaling
constraints for state–space digital filters [20], although it has
been known that the use of scaling constraints can be beneficial
for suppressing overflow oscillations [21], [22].

This paper investigates the problem of minimizing an -sen-
sitivity measure subject to -norm dynamic-range scaling
constraints for state–space digital filters as well as a class of
2-D state–space digital filters. To this end, an expression for
evaluating the -sensitivity is introduced, and the -sensi-
tivity minimization problem subject to the scaling constraints
is formulated in each case. An iterative algorithm is then devel-
oped in each case to solve the constraint optimization problem
directly. Our solution methods are largely based on the use of a
Lagrange function and some matrix-theoretic techniques. Next,
the coordinate transformation matrix is adjusted without altering
the -sensitivity to satisfy the scaling constraints, and is used to
construct the optimal state–space filter structure that minimizes
the -sensitivity measure subject to the scaling constraints. Two
numerical examples are presented to demonstrate the utility of
the proposed algorithms.

Unlike the work reported in [20], the proposed iterative tech-
nique relies on neither converting the problem into an uncon-
strained optimization formulation nor using a quasi-Newton al-
gorithm. From computer simulation results, it has turned out that
the proposed iterative technique requires less than half amount
of computations to attain practically the same convergence ac-
curacy as compared with the technique reported in [20].

Throughout this paper, denotes the identity matrix of di-
mension . The transpose (conjugate transpose) of a matrix

and trace of a square matrix are denoted by and
, respectively. The th diagonal element of a square matrix

is denoted by .

II. -SENSITIVITY MINIMIZATION FOR 1-D FILTERS

A. -Sensitivity Analysis

Consider a stable, controllable, and observable, state–space
digital filter described by

(1)
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where is an state-variable vector, is a scalar
input, is a scalar output, and , , and are real constant
matrices of appropriate dimensions. The transfer function of the
filter in (1) is given by

(2)

The -sensitivity of the filter in (1) is defined as follows.
Definition 1: Let be an real matrix and let

be a scalar complex function of , differentiable with respect
to all the entries of . The sensitivity function of with respect
to is then defined as

(3)

where denotes the th entry of matrix .
Definition 2: Let be an complex matrix-valued

function of a complex variable and let be the th
entry of . The -norm of is then defined as

(4)

From (2) and Definitions 1 and 2, the overall -sensitivity
measure for the filter in (1) is defined as

(5)

where

The term in (2) and the sensitivity with respect to it are coor-
dinate independent, and therefore they are neglected here.

It is easy to show that the -sensitivity measure in (5) can
be expressed as

(6)

where

The matrices and in (6) are called the controllability
and observability Gramians, respectively, and can be obtained
by solving the following Lyapunov equations [23]:

(7)

In order to evaluate the term in (6), one only needs
to compute with . However, the general solution
method for computing with an arbitrary positive-definite
matrix will be required in our subsequent development. We
shall address this issue shortly.

If a coordinate transformation defined by

(8)

is applied to the filter in (1), then the new realization
can be characterized by

(9)

From (2) and (9), it is clear that the transfer function is
invariant under the coordinate transformation in (8). In addition,
under the coordinate transformation in (8), the Gramian
becomes and the -sensitivity measure in (6) is
changed to

(10)

where . Noting that

(11)

where

and denoting the observability Gramian of the system in (11) by
, it can be shown for an arbitrary , the matrix

can be obtained by solving the Lyapunov equation

(12)

and then taking the lower-right block of as , i.e.,

(13)

Moreover, if the -norm dynamic-range scaling constraints are
imposed on the new state-variable vector , it is required that

for
(14)

The problem of -sensitivity minimization subject to
-norm dynamic-range scaling constraints can now be for-

mulated as follows: For given , , and , obtain an
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nonsingular matrix that minimizes the sensitivity measure
in (10) subject to the scaling constraints in (14).

B. -Sensitivity Minimization

The problem of minimizing in (10) subject to the con-
straints in (14) is a constrained nonlinear optimization problem
where the variable matrix is . If we sum the constraints in
(14) up, then we have

(15)

Consequently, the problem of minimizing (10) subject to the
constraints in (14) can be “relaxed” into the following problem:

minimize in

subject to (16)

Although clearly a solution of problem (16) is not necessarily a
solution of the problem of minimizing (10) subject to the con-
straints in (14), it is important to emphasize that the ultimate so-
lution we seek is not matrix but a nonsingular matrix that is
related to the solution of the problem of minimizing (10) subject
to the constraints in (14) as . If matrix is a solution
of problem (16) and denotes a matrix square root of ,
i.e., , then it is easy to see that any matrix of
the form , where is an arbitrary orthogonal ma-
trix, still holds the relation . As will be shown shortly,
under the constraint in (16), there exists an or-
thogonal matrix such that matrix satisfies the
constraints in (14), where is a square root of the solution
matrix for problem (16).

It is for these reasons, we now address problem (16) as the
first step of our solution strategy. To solve (16), we define the
Lagrange function of the problem as

(17)

where is a Lagrange multiplier. It is well known that the so-
lution of problem (16) must satisfy the Karush–Kuhn–Tucker
(KKT) conditions and ,
where the gradients are found to be [24]

(18)

where can be obtained by solving the following Lya-
punov equation:

and then taking the upper-left block of , i.e.,

Note that matrix corresponds to the controllability Gramian
of the system in (11).

Hence, the KKT conditions become

(19)

where

The first equation in (19) is highly nonlinear with respect to
. An effective approach to solving the first equation in (19)

is to “relax” it into the following recursive second-order matrix
equation:

(20)

where is assumed to be known from the previous recursion.
Noting that has the unique solution [5]

(21)

where and are symmetric, the solution of
(20) is given by

(22)
To derive a recursive formula for the Lagrange multiplier , we
employ (19) to write

(23)

which naturally suggests the following recursion for :

(24)

In the above algorithm, is obtained from the previous itera-
tion. The iteration process starts with and any value of

and continues until (19) is satisfied within a prescribed
numerical tolerance.

As the second step of the solution strategy, we now turn our
attention to the construction of the optimal coordinate transfor-
mation matrix that solves the problem of minimizing (10) sub-
ject to the constraints in (14). As analyzed earlier, the optimal

assumes the form

(25)

where is the square root of the matrix obtained above,
and is an orthogonal matrix to be determined as follows.
From (9) and (25), it follows that

(26)

In order to find an orthogonal matrix such that the matrix
in (26) satisfies the constraints in (14), we perform the eigen-
value-eigenvector decomposition for the positive definite matrix

as

(27)
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where with and is an
orthogonal matrix. Next, an orthogonal matrix such that

. . .
...

...
. . .

. . .
(28)

can be obtained by numerical manipulations [22, p. 278]. Using
(26), (27), and (28), it can be readily verified that the orthogonal
matrix leads to a in (26) whose diagonal elements
are equal to unity; hence, the constraints in (14) are now satis-
fied. This matrix together with (25) gives the solution of the
problem of minimizing (10) subject to the constraints in (14) as

(29)

III. -SENSITIVITY MINIMIZATION FOR 2-D DIGITAL FILTERS

A. -Sensitivity Analysis

Consider a local state–space model [25]
for a class of 2-D state–space digital filters that is described by

(30)

where is an local state vector, is a scalar
input, is a scalar output, and , , , , and are
real constant matrices of appropriate dimensions. The 2-D filter
in (30) is assumed to be stable, locally controllable, and locally
observable. The transfer function of the 2-D filter in (30) is given
by

(31)
A block diagram of the local state–space (LSS) model in (30)

is shown in Fig. 1. It is interesting to note that

(32)

can be viewed as a transfer function of the Fornasini–Marchesini
second LSS model [26]. Since , the
LSS model in (30) corresponds to a transposed structure of the
Fornasini–Marchesini second LSS model.

From (31) and Definition 1, it can easily be verified that

(33)

Fig. 1. LSS model for 2-D filters.

where

The term in (31) and its sensitivity are independent on the LSS
coordinate, and therefore they are neglected here.

Definition 3: Let be an complex matrix
valued function of the complex variables and . The
norm of is then defined as

(34)

where for 1, 2.
From (33) and Definition 3, the overall -sensitivity mea-

sure for the 2-D filter in (30) is evaluated by

(35)

The -sensitivity measure in (35) can be written as

(36)

where
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Matrices , , and are called 2-D Gramians and can
be derived from

(37)

where

or

with the partial ordering for integer pairs used in [27, p.
2].

If a coordinate transformation defined by

(38)

is applied to the 2-D filter in (30), we obtain a new realization
characterized by

(39)

Noting that the coordinate transformation in (38) transforms the
Gramian into , (36) becomes

(40)

where . Moreover, if the -norm dynamic-range
scaling constraints are imposed on the LSS vector , then

for
(41)

are required.
The problem considered here is as follows: For given ,
, , , and , obtain an nonsingular matrix which

minimizes (40) subject to the scaling constraints in (41).

B. -Sensitivity Minimization

In order to minimize (40) over an symmetric pos-
itive-definite matrix subject to the “relaxed” constraint

derived from (41), we define the Lagrange
function

(42)

where is a Lagrange multiplier. As is well known, the solution
of the minimization problem of (42) must satisfy the KKT con-
ditions and , where the
gradients are found to be [24]

(43)

where is derived from

Hence the KKT conditions become

(44)

where

The first equation in (44) is highly nonlinear with respect to
. An effective approach to solving the first equation in (44)

is to relax it into the following recursive second-order matrix
equation:

(45)

where is assumed to be known from the previous recursion
and then the solution is given by

(46)
To derive a recursive formula for the Lagrange multiplier , we
use (44) to write

(47)

that naturally reveals the following recursion for :

(48)

The iteration process starts with and any value of
and continues until (44) is satisfied within a prescribed

numerical tolerance.
Finally, the process in (25)–(29) is applied to the resulting

optimal matrix in order to construct the optimal transforma-
tion matrix minimizing (40) subject to the con-
straints in (41).
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IV. NUMERICAL EXAMPLES

Example 1: Let a state–space digital filter in (1) be specified
by

Performing the computation of (7), (12) and (13), the Gramians
, , and are calculated as

The -sensitivity measure in (6) is then computed as

Choosing and in (22) and (24) as the initial
estimates, it took the proposed iterative algorithm 500 iterations
to converge to

which yields

In this case, the Gramian is computed from (12) and (13)
as

and the -sensitivity measure in (10) is minimized subject to
the scaling constraints in (14) to

Profiles of the -sensitivity, parameter , as well as
during the first 500 iterations of the algorithm are shown in
Figs. 2 and 3, respectively. Together, these figures clearly re-
veal a two-stage convergence behavior of the algorithm in that
the first stage (which consists of just one iteration) of the algo-
rithm reduces the -sensitivity drastically without maintaining

Fig. 2. L -sensitivity and � performances.

Fig. 3. tr[KKK PPP ] performance.

the constraint , and the second stage of the al-
gorithm is able to restore the constraint while
further reducing the -sensitivity slightly.

For comparison purposes, only the iterative algorithm in (22)
is applied by letting for any and setting in
order to minimize the -sensivivity measure in (10) (without
considering the scaling constraints in (14)), and after 500 itera-
tions it converges to

which yields

and . Note that this method is essentially the
same as in [10]. The above coordinate transformation matrix
is then scaled by an appropriate nonsingular diagonal matrix, so
that the scaling constraints in (14) are satisfied. Then, the result is
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where and

Applying the technique reported in [20] yields

where

From these results, it is observed that the proposed technique of-
fers a smaller value of the -sensitivity measure subject to the
scaling constraints relative to a method (which is essentially the
same as in [10]) for performing the scaling so as to satisfy the
constraints in (14) after minimizing the -sensitivity measure
in (10) as well as the existing method in [20]. It has also turned
out that the proposed iterative technique requires less than half
amount of computations to attain practically the same conver-
gence accuracy as compared with the method reported in [20].

Example 2: Consider a class of 2-D digital filters in (30)
specified by

Using (37), the Gramians , , and are calculated
as

where the infinite sums in (37) were truncated with
. The -sensitivity measure in (36) is then com-

puted as

Choosing and in (46) and (48) as the
initial estimates, it took the proposed iterative algorithm 2000
iterations to converge to

which yields

In this case, the Gramian is computed from (37) as

over , and the -sensitivity mea-
sure in (40) is minimized subject to the scaling constraints in
(41) to

Profiles of the -sensitivity, parameter , as well as
during the first 2000 iterations of the algorithm are shown in
Figs. 4 and 5, respectively. From these figures, a two-stage con-
vergence behavior similar to that of Example 1 can also be ob-
served.

For comparison purposes, only the iterative algorithm in (46)
is applied by letting for any and setting in
order to minimize the -sensivivity measure in (40) (without
considering the scaling constraints in (41)), and after 2000 iter-
ations it converges to

which yields

and . The above coordinate transforma-
tion matrix is then scaled by an appropriate nonsingular diag-
onal matrix, so that the scaling constraints in (41) are satisfied.
Then, the result is
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Fig. 4. L -sensitivity and � performances.

Fig. 5. tr[KKK PPP ] performance.

where and

From the above result, it is observed that the constrained opti-
mization technique proposed here offers smaller -sensitivity
subject to the scaling constraints relative to a method for car-
rying out the scaling so as to satisfy the constraints in (41) after
minimizing the -sensitivity measure in (40).

V. CONCLUSION

The problem of minimizing an -sensitivity measure subject
to -norm dynamic-range scaling constraints for state–space
digital filters as well as a class of 2-D state–space digital filters
have been investigated. In each case, a novel iterative algorithm
has been developed to solve the constraint optimization problem
directly. This has been performed by using a Lagrange function
and some matrix-theoretic techniques. The optimal state–space

filter structure has been constructed by applying the coordi-
nate-transformation matrix ajusted to satisfy the scaling con-
straints without altering the -sensitivity. In addition, it has
been shown that the 2-D LSS model used to describe a class of
2-D state–space digital filters corresponds to a transposed struc-
ture of the Fornasini–Marchesini second LSS model. Our com-
puter simulation results have demonstrated the effectiveness of
the proposed techniques compared with the existing methods.
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