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Lipscombe, Diane, Thomas D. Helton, and Weifeng Xu. L-type
calcium channels: The low down. J Neurophysiol92: 2633-2641,
2004; 10.1152/jn.00486.2004. L-type calcium channels couple mem-
brane depolarization in neurons to numerous processes including gene
expression, synaptic efficacy, and cell survival. To establish the
contribution of L-type calcium channelsto various signaling cascades,
investigators have relied on their unique pharmacological sensitivity
to dihydropyridines. The traditional view of dihydropyridine-sensitive
L-type calcium channels is that they are high-voltage—activating and
have slow activation kinetics. These properties limit the involvement
of L-type calcium channels to neuronal functions triggered by strong
and sustained depolarizations. This review highlights literature, both
long-standing and recent, that points to significant functional diversity
among L-type calcium channels expressed in neurons and other
excitable cells. Past literature contains several reports of low-voltage—
activated neuronal L-type calcium channels that parallel the unique
properties of recently cloned Ca, 1.3 L-type channels. The fast kinet-
ics and low activation thresholds of Ca,1.3 channels stand in stark
contrast to criteria currently used to describe L-type calcium channels.
A more accurate view of neuronal L-type calcium channels encom-
passes a broad range of activation thresholds and recognizes their
potential contribution to signaling cascades triggered by subthreshold
depolarizations.

L-type calcium channels regulate numerous
neuronal functions

L-type calcium channels are perhaps the best characterized
of the voltage-gated calcium channels. They were first recog-
nized as essentia for coupling excitation to contraction in
skeletal, cardiac, and smooth muscle cells (Beam et al. 1989;
Franzini-Armstrong and Protasi 1997; Reuter 1985; Schneider
and Chandler 1973; Tanabe et al. 1990). L-type calcium
channels are also expressed in neurons and endocrine cells
where they regulate a multitude of processes including secre-
tion of neurohormones and transmitters, gene expression,
mRNA stability, neuronal survival, ischemic-induced axonal
injury, synaptic efficacy, and the activity of other ion channels
(Ashcroft et a. 1994; Bading et al. 1993; Bean 1989; Charles
et al. 1999; Christie et al. 1997; De Koninck and Cooper 1995;
Deisseroth et al. 1998; Dunlap et al. 1995; Finkbeiner and
Greenberg 1998; Fuchs 1996; Galli et al. 1995; Heidelberger
and Matthews 1992; Kamsler and Segal 2003; Lei et a. 2003;
Marrion and Tavalin 1998; Marshall et a. 2003; Murphy et a.
1991; Norris et a. 1998; Ouardouz et al. 2003; Sand et al.
2001; Schorge et al. 1999; Shinnick-Gallagher et al. 2003;
Smith et a. 1993; Tachibana et a. 1993; Thaler et al. 2001;
Thibault et al. 2001; Weisskopf et a. 1999; Wiser et a. 1999;
Zhang and Townes-Anderson 2002). The unique pharmacol og-
ical sensitivity of L-type calcium channels to dihydropyridine

agonists and antagonists has proved critical for their identifi-
cation in physiological assays and also for their biochemical
isolation (Kanngiesser et al. 1988). Biochemical purification of
the dihydropyridine receptor from skeletal muscle was the
essential step in cloning thefirst voltage-gated cal cium channel
(Tanabe et al. 1987). Sequence information from this landmark
study was then used to screen for and clone Ca, 1.2 and Ca, 1.3
cDNAs (Biel et a. 1990; Hui et a. 1991; Koch et a. 1990;
Mikami et al. 1989; Perez-Reyes et al. 1990; Williams et al.
1992). Functional analyses of cloned channels, primarily of
Ca,1.2, were generally consistent with native cardiac L-type
channels and the following criteria evolved for their identifi-
cation.

1) Activation by strong depolarizations (high-voltage—acti-
vated [HVA]).

2) High sensitivity to dihydropyridine agonists and antago-
nists.

3) Relatively slow activation kinetics.

4) Calcium-dependent inactivation with little voltage-de-
pendent inactivation (long-lasting).

5) Large single-channel conductance.

However, a substantial body of evidence points to hetero-
geneity among neuronal L-type calcium channels that has until
recently received little attention. This review highlights recent
studies of cloned channels, as well as long-standing studies of
native L-type channels, that point to significant deviations from
criteria listed above in the properties of L-type channels.

Ca,1 genes encode L-type calcium channels

Identifying the genes that encode core Ca,a; subunits of
voltage-gated calcium complexes has led to a comprehensive
sequence-based classification scheme (Fig. 1). When se-
guences are compared, voltage-gated calcium channelsfall into
three main groups: Ca, 1 (L-type), Ca,2 (P-type, N-type, and
R-type), and Ca,3 (T-type) (Ertel et al. 2000; Lipscombe
2002b). In genera, these gene families correspond to the
subtypes of calcium channels defined by functional and phar-
macological criteria. Ca,1 and Ca,2 genes are more closely
related to each other when compared with Ca,3 genes. Ca,3
T-type channels possess certain functional properties that set
them apart from other voltage-gated calcium channels (Perez-
Reyes et al. 1998). Low-voltage—activating calcium current
typically marks the presence of Ca,3 T-type channels. How-
ever, as we will discuss, this property is shared by Ca, 1.3, a
member of the Ca,1 gene family, and thus should not be
considered unique to Ca,3 (Avery and Johnston 1996; Kos-
chak et a. 2001; Lipscombe 2002a; Platzer et al. 2000; Scholze
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FIG. 1. Ca,a, subunit gene tree. Full-length amino acid sequences for all
10 human Ca,a; genes were aligned using a branch and bound tree search with
maximum parsimony (Genetic Computer Group, paupsearch and paupdisplay
programs). Accession numbers for sequences used are: Ca,l1.1, L33795;
Ca, 1.2, AJ224873; Ca,1.3, M76558; Ca, 1.4, AJ224874; Ca,2.1, AB035727;
Ca, 2.2, M94173; Ca,2.3, L27745; Ca,3.1, AF190860; Ca,3.2, AF05196;
Ca,3.3, AF211189. Confidence values for each node were determined by
bootstrap analysis. All unlabeled nodes represent 100% confidence. Represen-
tation was rooted using the midpoint method. Scale bar represents 1 substitu-
tion per 100 amino acids. Thistree is essentially the same when we exclude the
variable intracellular loops (11, 11-111) and N- and C-termini (Lipscombe
2002b). Our analysis indicates a stronger similarity between Ca,1.3 and
Ca, 1.4 genes compared with that of other published Ca, gene trees (Ertel et
al. 2000). If we just align sequences of the 4 Ca, 1 genes the confidence value
at the Ca,1.3-Ca, 1.4 node increases to 100%.

et a. 2001; Xu and Lipscombe 2001). Until recently, all
members of Ca,1 and Ca,2 gene families were considered
high-voltage—activated. Ca,1 channels are distinguishable
from Ca,2 channels primarily by their unique pharmacology.
Ca,1 channels are sensitive to dihydropyridine agonists and
antagonists, but are not blocked by w-aga VA or w-conotoxin
GVIA, which inhibit Ca,2.1 and Ca, 2.2 channels, respectively
(Bean 1991; Cruz et al. 1987; Mclntosh et al. 1999; Mintz et a.
1992). However, as we will discuss, dihydropyridine antago-
nists do not completely inhibit all L-type channels.

Four mammalian Cgl genes encode L-type
calcium channels

Four Ca, 1 genes are present in the human genome, referred
to as Ca,1.1-1.4 (Fig. 1). The Ca,1.1 gene, formerly a,g, is
expressed in skeletal muscle. Ca, 1.1 directly links to ryano-
dine receptors in the sarcoplasmic reticulum (Flucher and
Franzini-Armstrong 1996). Ca, 1.1 primarily acts as a voltage
sensor, coupling depolarization to release of intracellular cal-
cium by activating the ryanodine receptor. The influx of
calcium through the ion pore of Ca,1.1 during gating is
secondary to its primary role as a voltage sensor (Schwartz et
al. 1985). The coupling between depolarization and channel
opening isinefficient; Ca,1.1 channels open with slow kinetics
(Almers and Palade 1981; Rios and Brum 1987; Tanabe et al.
1988).

The Ca,1.2 gene, formerly «,c, is expressed in a variety of
cells including ventricular cardiac muscle, smooth muscle,
pancreatic cells, fibroblasts, and neurons (Diebold et al. 1992;
Koch et a. 1990; Mori et al. 1993; Perez-Reyes et al. 1990;
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Schultz et a. 1993; Soldatov 1992; Takimoto et al. 1997;
Welling et al. 1997). This channel opens as the membrane
potential depolarizes beyond about —30 mV. Ca, 1.2 channels
help define the shape of the action potentia in cardiac and
smooth muscle. These channels function primarily as calcium
ion channels and, unlike Ca,1.1 of skeletal muscle, calcium
flow through Ca,1.2 is an essentid step in initiating the
signaling cascade that leads to cardiac and smooth muscle
contraction (Reuter et al. 1988; Tanabe et al. 1990). In neurons
Ca, 1.2 channels are thought to couple membrane depolariza-
tion to regulation of gene expression (Dolmetsch et al. 2001;
Weick et al. 2003).

The Ca, 1.3 gene, formerly a,p, is expressed in many of the
same cells that express Ca, 1.2. In neurons, Ca,, 1.2 and Ca,1.3
are often found in the same general neuronal compartments,
particularly dendrites, but their subcellular distributions appear
distinct (Hell et al. 1993; Westenbroek et a. 1998). Ca, 1.3 has
been found to co-localize with the small conductance calcium-
activated potassium channel (Bowden et a. 2001). Ca,1.3 is
also expressed in pancreatic beta cells, neuroendocrine cells,
photoreceptors, amacrine cells, and hair cells of the inner ear
where it mediates synaptic transmission (Habermann et al.
2003; lhara et al. 1995; Kollmar et al. 1997a,b; Liu et a. 2004;
Morgans 1999; Morgans et a. 1998; Platzer et al. 2000; Russo
et al. 2003; Safa et al. 2001; Scholze et al. 2001; Seino et al.
1992; Taylor and Morgans 1998). In the heart, Ca,1.3 is
present in atrial tissue where it contributes to pacemaking
(Mangoni et a. 2003; Platzer et al. 2000; Takimoto et a. 1997,
Zhang et al. 2002), but not in ventricular muscle that expresses
Ca,1.2.

The Ca,1.4 gene, formerly a,g, is expressed primarily in
retina and is linked to a rare human disorder, stationary night
blindness (Bech-Hansen et al. 1998; Strom et al. 1998). Ca, 1.4
isfound at synaptic terminals of retinal bipolar cells, and RNA
encoding Ca,, 1.4 has a so been PCR amplified from dorsal root
ganglia (Berntson et al. 2003; Murakami et al. 2001). Interest-
ingly, the Ca,1.4 gene sequence is more homologous to
Ca,1.3, based on comparisons among available Ca, clones
(Fig. 1).

L-type calcium channels are functionally diverse

Analyses of Ca, 1 clonesin various heterologous expression
systems have provided compelling data that L-type calcium
channels are a functionally heterogeneous family.

1) Not al L-type calcium channels require strong depolar-
izations for activation; Ca,1.3 and Ca,1.4 channels have low
activation thresholds.

2) L-type calcium channels are not all inhibited equally well
by dihydropyridine antagonists, Ca,1.3 and Ca,1.4 L-type
channels are significantly less sensitive compared with Ca,1.2.

3) Activation kinetics of L-type calcium channels vary.
Ca,1.3 channels activate with fast kinetics, whereas Ca,1.1
channels open slowly.

4) Certain Ca,1.4 L-type channels do not exhibit calcium-
dependent inactivation. Furthermore, in physiological solu-
tions that contain calcium, L-type calcium channels that do
undergo calcium-dependent inactivation are not long lasting.

5) Most L-type calcium channels have relatively large sin-
gle-channel conductances when isotonic barium is the charge
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carrier. However, analyses of single Ca, 1.3 and Ca,, 1.4 chan-
nels are lacking.

Skeletal muscle GA.1 and cardiac Cal.2 L-type channels
are functionally distinct

Although the first Ca,«,; subunit to be cloned, Ca,1.1
resisted functional reconstitution in nonmuscle, heterologous
expression systems (Tanabe et al. 1987). Successful expression
of Ca,1.1 was eventually achieved using embryonic muscle
from dysgenic mice. In a series of classic experiments, Numa,
Beam, and colleagues, rescued excitation—contraction cou-
pling as well as L-type calcium channel currents in dysgenic
muscle by expressing Ca, 1.1 cDNA in these cells (Adams et
al. 1990; Tanabe et a. 1988). Ca,1.1 currents were small and
activated with slow kinetics, properties consistent with native
L-type currents in skeletal muscle. As in skeletal muscle,
contraction depended on the mobilization of intracellular cal-
cium stores. Ca,,1.2 could &l so reconstitute excitation—contrac-
tion coupling in dysgenic muscle, but the features were dis-
tinctly cardiac-like. In this case, calcium flux across the mem-
brane through Ca,,1.2 channels was essential to trigger muscle
contraction (Tanabe et a. 1990). Ca, 1.2 channels opened with
rates that were significantly faster compared with Ca,1.1.
Chimeric analyses demonstrated that sequence differences in
the 11111 intracellular linker region of Ca,1.1 and Ca,1.2
genes imparted the skeletal or cardiac muscle form of excita-
tion—contraction coupling. In subsequent experiments Beam
and colleagues demonstrated that sequence differences in the
domain 1S3-4 linkers of Ca,1.1 and Ca,1.2 genes deter-
mined the gating phenotypes of these two L-type calcium
channels (Nakai et al. 1994). The slow gating phenotype of
Ca, 1.1 channels was transferred to Ca,, 1.2 by swapping in the
IS3HS4 linker of Ca,1.1. Variations in S3-$4 linker se-
guences among other voltage-gated ion channel gene families
and their splice isoforms are similarly important in modulating
channel gating kinetics (Lipscombe 2002b; Mathur et al. 1997;
Tang and Papazian 1997).

Ca,1.2 and Cgl.3 L-type channels are functionally distinct

With the exception of skeletal muscle and perhaps retina, all
excitable cells express one or both Ca,1.2 and Ca,1.3 genes.
The products of these genes constitute the major fraction of
L-type calcium channelsin mammals (Hell et al. 1993; Ludwig
et al. 1997; Takimoto et a. 1997; Williams et al. 1992). Until
recently, the prevailing image of the neuronal L-type calcium
channel was of a high-voltage-activated, slowly activating
channel with high sensitivity to dihydropyridines (Ertel et al.
2000; Hille 2001). These features have developed primarily
from biophysical analyses of heterologously expressed Ca,,1.2
L-type calcium channels (Altier et al. 2001; Bourinet et a.
1994; Charnet et a. 1994; de Leon et a. 1995; Ivanina et al.
2000). Although Ca,1.3 was first cloned in the early 1990s,
low expression levels in heterologous systems limited electro-
physiological studies of this L-type calcium channel (Hui et al.
1991; Williams et al. 1992). Aside from a report that Ca,1.3
L-type channels could be reversibly inhibited by the N-type
calcium channel blocker w-conotoxin GVIA (Williams et al.
1992), aresult that has not been confirmed (Xu and Lipscombe
2001), Ca,1.3 channels were not considered unique.

The Ca, 1.3 knockout mice, however, renewed interest and
provided compelling evidence that the Ca,1.3 gene encodes
L-type calcium channels with unusual properties (Mangoni et
al. 2003; Platzer et a. 2000; Zhang 2002). At the behavioral
level, mice lacking the L-type Ca,1.3 gene experience signif-
icant sinoatrial node dysfunction characterized by sinus brady-
cardia. This unanticipated role for Ca,1.3 in pacemaking
implies that these L-type calcium channels are important in
mediating subthreshold depolarizations in the sinoatrial node.
The absence of a low-threshold activating calcium current in
sinoatrial node cells of Ca,1.3 —/— mice confirmed this
hypothesis (Zhang 2002). Hearing loss and the absence of a
low-threshold activating calcium current in hair cells from
these mice are consistent with prominent expression of Ca,, 1.3
ininner hair cells of the cochlea (Kollmar et a. 1997b; Platzer
et al. 2000). The functional properties of Ca,1.3 clones iso-
lated from neurons and endocrine cells, more recently, confirm
that Ca,1.3 L-type channels activate at subthreshold voltages
(Koschak et al. 2001; Platzer et a. 2000; Safa et al. 2001; Xu
and Lipscombe 2001).

Ca 1.3 L-type channels activate at relatively hyperpolarized
membrane potentials

Figure 2 illustrates that Ca,1.2 and Ca,1.3 channels have
very different activation thresholds. The Ca,1.2 and Ca,1.3
clones used were isolated from neuronal tissue, expressed in
tsA201 cells, and recorded under identical conditions. With
physiological concentrations of extracellular calcium, Ca,1.3
channels start to activate at about —55 mV, a voltage that is
approximately 20—25 mV more hyperpolarized as compared
with Ca,1.2. Low-threshold activation is a prominent festure
of all Ca,1.3 clonesisolated recently, independent of tissue of
origin and of auxiliary subunits (Koschak et al. 2001; Safa et
al. 2001; Scholze et al. 2001; Xu and Lipscombe 2001). Why
was this unique and salient feature of Ca,,1.3 not highlighted in
earlier studies (Bell et al. 2001; Ihara et al. 1995; Williams et
al. 1992)? The most likely explanation relates to the use of high
concentrations of extracellular barium and calcium in these
studies to compensate for low expression levels. Under these
conditions, Ca,1.3 channels would have activated at signifi-
cantly more depolarized voltages as a result of surface charge
screening (Frankenhaeuser and Hodgkin 1957; Hille 2001).
Indeed, when we studied Ca,, 1.3 L-type currents under similar
conditions, 40 mM extracellular barium, the current—voltage
relationship shifted into the range of a high-voltage—activated
L-type calcium channel (Xu and Lipscombe 2001). Additional
factors such as interactions with other subunits, modulation by
second-messenger signaling cascades, and alternative splicing
have the potential to influence channel properties (Birnbaumer
et al. 1998; Lipscombe 2002b; Scholze et al. 2001). However,
low-voltage activation appears to be a sdient feature of
Ca,1.3-containing channels (Koschak et al. 2001; Michna et
al. 2003; Safa et al. 2001; Scholze et a. 2001; Xu and
Lipscombe 2001).

Ca,1.3 L-type channels are only partially inhibited
by dihydropyridines

All L-type calcium channels studied to date are sensitive to
dihydropyridine antagonists and agonists. However, Ca,1.3-
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FIG. 2. Ca,1.3and Ca,1.2 L-type channels have different activation thresh-
olds. Whole cell currents measured from tsA201 cells expressing Ca, 1.3 (A)
and Ca,1.2 (B) together with Ca,«,56, and Ca, 35. Currents were activated by
step depolarizations to the indicated test potentials from a holding potential of
—100 mV; 2 mM Ca2" was the charge carrier. C: averaged current—voltage
relationships for Ca,1.3 (@) and Ca,1.2 (0) channels. Activation V,,, values
calculated from Boltzmann-linear fitswere, —40.4 = 0.9 mV and —16.1 = 0.5
mV for Ca,1.3 and Ca,l1.2, respectively (n = 8, 11). For a more detailed
description of methods see Xu and Lipscombe (2001). All clones were isolated
in our laboratory. Ca,1.3 and Ca,a,06, clones were isolated from a rat
sympathetic cDNA library, Ca,1.2 from mouse brain, and Ca, 5 from rat
brain. Accession numbers are for Ca,1.3: AF370009; Ca,1.2: AY728090;
Ca,B; isidentical to M88751; Ca, «,5,: AF286488.

containing L-type calcium channels appear to be significantly
less sensitive to dihydropyridine antagonists (Koschak et al.
2001; Xu and Lipscombe 2001). This property complicates
identification of Ca,1.3 currents. For example, >90% of
Ca,1.2 current isinhibited by 1 wM nimodipine, but this same
concentration inhibits only 50% of peak Ca,1.3 current (Xu
and Lipscombe 2001). Striessnig and colleagues obtained sim-
ilar results using isradipine (Koschak et al. 2001). The lower
sensitivity of Ca,1.3 channels to dihydropyridine antagonists
becomes even more significant at hyperpolarized membrane
potentials. Inhibition by dihydropyridines is state-dependent:
enhanced at depolarized membrane potentials that open the
channel, but reduced at hyperpolarized membrane potentials
(Bean 1984; Berjukow et al. 2000). Consequently, dihydro-
pyridines become particularly ineffective at inhibiting Ca,1.3
currents activated at the foot of the current—voltage curve (Xu
and Lipscombe 2001). Interestingly, the Ca,1.3 current that
remainsin the presence of dihydropyridines takes on the profile
of an inactivating current with barium as the charge carrier
(Fig. 3) (Xu and Lipscombe 2001). This is consistent with the
state-dependent nature of the block by dihydropyridines (Bean
1984; Berjukow and Hering 2001). In their presence, Ca,1.3
channels generate low-threshold, drug-resistant, inactivating
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currents that resemble the R-type current of many neurons
(Foehring et al. 2000; Randall and Tsien 1995; Tottene et a.
1996; Yasuda et a. 2003; Zhuravleva et al. 2001).

Ca,1.3 L-type channels open with rapid kinetics

L-type calcium channels in neurons are typically thought of
as dowly activating (Mermelstein et al. 2000; Yasuda et a.
2003). If true, this property limits the involvement of L-type
calcium channels to signaling pathways triggered by more
prolonged membrane depolarizations. However, Ca,1.2 and
Ca,1.3 currents shown in Fig. 2 clearly activate with fast
kinetics (Xu and Lipscombe 2001) and, although contrary to
the pervading viewpoint, these data are consistent with certain
other studies. Cloned Ca, 1.2 L-type channels have been shown
to support at least as much calcium influx as Ca, 2 channels, in
response to brief action potential stimuli (Liu et a. 2003) and
native L-type channels mediate spike-induced calcium influx in
hippocampal dendrites (Christie et al. 1995). It is likely that
activation kinetics of L-type calcium channels will vary de-
pending on several factors including cell-type, temperature,
aternative splicing, and the presence of auxiliary subunits
(Birnbaumer et al. 1998; Lipscombe 2002b; Liu et al. 2003).
For example, the Ca, 1.2 clone isolated from rabbit heart used
in our earlier studies (Xu and Lipscombe 2001) activates with
kinetics that are slow as compared with our neurona Ca,1.2
clone (Fig. 2). However, we also suggest that pharmacological
subtraction methods used frequently to isolate L-type calcium
channels from other subtypes of voltage-gated calcium chan-
nels in neurons, might have contributed to the notion that
L-type calcium channels activate with slow kinetics (Fig. 3).

Ca,1.3

4 L

subtracted

20 ms

FiG. 3. Dihydropyridine-sensitive component of the Ca,1.3 L-type current
appears to activate slowly. A: representative Ca,1.3 currents in the absence
(black) and presence (gray) of 1 uM nifedipine. Currents were activated by
step depolarizations to the indicated potentials from a holding potential of
—100 mV. Currents were recorded from Xenopusoocytes expressing Ca, 1.3,
Ca, a6, and Ca,B1,; 5 mM barium is the charge carrier. Additional details can
be found in Xu and Lipscombe (2001). B: subtracted Ca,1.3 currents showing
the dihydropyridine-sensitive component at the indicated test potentials. Cur-
rents appear to activate slowing because of the time-dependent nature of
dihydropyridine block. Scale bars: 0.5 A, 20 ms.
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The L-type calcium current in neurons is defined frequently as
the whole cell calcium current that is inhibited by dihydropyr-
idine antagonists. Pharmacological subtraction is only appro-
priate, however, when inhibition is complete, and independent
of voltage and time; conditions not met for dihydropyridine
block of Ca, 1.3 L-type currents (Figs. 2, 3). Figure 3illustrates
that Ca,1.3 L-type currents open with rapid kinetics, and
inactivate little with barium as the charge carrier. However, in
the presence of nimodipine, inhibition is incomplete and the
remaining current appears to inactivate. These data are consis-
tent with the state-dependent nature of nimodipine block.
Consequently, the dihydropyridine-sensitive, subtracted cur-
rent appears as slowly activating, not because L-type calcium
channels open slowly but because the block is time-dependent
and incomplete (Fig. 3).

Ca,1.4 L-type channels are functionally unique

Ca, 1.4 was recently cloned from human and mouse retinal
tissue and heterologously expressed in mammalian cells (Bau-
mann et a. 2004; Koschak et al. 2003; McRory et al. 2004).
Although currents generated from cells expressing Ca,1.4
clones were small, they had properties similar in severa
respects to those of Ca,1.3. These include rapid activation
kinetics, low activation threshold, and lower sensitivity to
dihydropyridine inhibition (Baumann et al. 2004; Koschak et
al. 2003; McRory et a. 2004). Native L-type currentsin retinal
cells, presumed to be Ca,1.4-containing (Taylor and Morgans
1998; Wilkinson and Barnes 1996), are likewise similar to
recombinant Ca,1.3 and Ca,1.4 channels. They have lower
sensitivity to dihydropyridines and activate at negative thresh-
olds. These data are consistent with the relatively high level of
seguence homology between Ca,, 1.3 and Ca,, 1.4 genes (Fig. 1)
(Lipscombe 2002b). Heterologously expressed Ca, 1.4 L-type
calcium channels are also distinctive in lacking calcium-de-
pendent inactivation (Baumann et al. 2004; Koschak et a.
2003; McRory et a. 2004). The currents in these studies were
al relatively small but calcium entering through a single
channel should be sufficient to support inactivation, if compo-
nents of the calcium-dependent inactivation pathway are
present (Peterson et al. 2000; Yue et a. 1990). The absence of
calcium-dependent inactivation suggests that Ca, 1.4 channels
are functionally distinct from Ca,1.3 and Ca,1.2 channels
(Koschak et al. 2003; McRory et al. 2004).

Native neuronal L-type currents are functionally diverse

Certain cell-types, including hair cells, amacrine cells, and
endocrine cells express a limited number of calcium channels.
Within this background, low-threshold dihydropyridine-sensi-
tive L-type calcium currents are more readily identified (Ash-
croft et al. 1994; Habermann et al. 2003; Liu et al. 2004;
Michnaet al. 2003; Platzer et a. 2000; Schnee and Ricci 2003;
Smith et al. 1993). Severa groups also report low-threshold-
activating dihydropyridine-sensitive L-type currents in hip-
pocampal pyramidal, cortical striatal, suprachiasmatic, tha
lamic, and motor neurons with properties similar to Ca,1.3
channels (Avery and Johnston 1996; Cloues and Sather 2003;
Li and Bennett 2003; Liljelund et al. 2000; Pennartz et al.
2002; Sand et al. 2001; Svirskis and Hounsgaard 1997; Ver-
gara et a. 2003; Zhuravleva et al. 2001). Notably in 1996,
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Avery and Johnston commented that “. . . the designation ‘low-

voltage-activated’ should not be limited to T-type chantiels
These investigators “. . . challenge the traditional designation
of L-type channels as exclusively HVA and reveal a possibl

role in subthreshold C& signaling” (Avery and Johnston 1996).
Single-channel recordings aso indicate differences among
neuronal L-type calcium channels in hippocampal pyramidal
and cerebellar granule cells (Forti and Pietrobon 1993; Kava
lali and Plummer 1996; Schjott and Plummer 2000). Record-
ings distinguish at least 2 gating activities of L-type calcium
channels that may represent different channel subtypes. It will
be interesting to determine their molecular origins.

Physiological significance

Neuronal L-type calcium channels play established roles in
regulating gene expression, cell survival, and synaptic plastic-
ity (Christie et al. 1997; Deisseroth et al. 1998; Gali et a.
1995; Mao et al. 1999; Marshall et al. 2003; Murphy et a.
1991; Norriset a. 1998; Weisskopf et al. 1999). In select cells
and synapses, L-type calcium channels can also regulate exo-
cytosis (Ashcroft et al. 1994; Fuchs 1996; Heidelberger and
Matthews 1992; Liu et al. 2004; Sand et al. 2001; Thaler et al.
2001; Wiser et a. 1999). In addition, data reviewed here
suggest Ca,, 1.3 L-type calcium channels mediate subthreshold
calcium signaling. For example, dihydropyridine antagonists
suppress spontaneous intracellular calcium oscillations and
slow rhythmic firing in several excitable cells, including cere-
bellar Purkinje neurons, suprachiasmatic nucleus neurons, in-
ferior olivary neurons, corticostriatial neurons, pituitary cells,
and GH3 cells (Charles et al. 1999; Giraldez et al. 2002;
Liljelund et a. 2000; Pennartz et a. 2002; Placantonakis and
Welsh 2001; Vergara et al. 2003). These studies and those that
show sinoatrial node dysfunction in Ca,1.3 knockout mice
(Mangoni et al. 2003; Platzer et a. 2000; Zhang et al. 2002)
strongly implicate Ca, 1.3 L-type calcium channels in driving
oscillatory activity. Ca,1.3 channels could also mediate sus-
tained calcium entry during action potential plateaus, as calci-
um-dependent and voltage-dependent inactivation is minimal
at depolarized voltages (Figs. 2 and 3).

Many neurons express low- to mid-threshold activating,
inactivating, and drug-resistant calcium currents collectively
called R-type. These currents are generally attributed to Ca,2.3
channels (Cloues and Sather 2003; Magistretti et al. 2000;
Randall and Tsien 1995; Tottene et a. 1996; Yasuda et a.
2003). The properties of Ca,1.3 channels suggest that distin-
guishing them from Ca,2.3 channels using dihydropyridine
antagonists would be difficult. It is quite likely that Ca,1.3
L-type calcium channels contribute a significant fraction of the
R-type current in many neurons. The prevalence of significant
drug-resistant R-type currents in neurons of Ca, 2.3 knockout
mice strongly supports this proposal (Wilson et a. 2000).
R-type currents contribute to presynaptic transmitter release at
certain synapses (Wu et a. 1999) and to synaptic plasticity in
dendritic spines of hippocampal pyramidal neurons (Y asuda et
al. 2003).

Ca,1.3 L-type channels will activate in response to physi-
ological stimuli that do not open Ca,, 1.2 L-type channels. This
broadens the functional importance of L-type calcium channels
to included neuronal processes triggered by fast, subthreshold
depolarizations. Differences in their primary structure and

J Neurophysiol vOL 92 « NOVEMBER 2004 « WWW.jN.0rg

1%

$T0Z ‘'8 AN UO WO} papeojumoq




Review
2638

subcellular distributions also indicate that Ca,1.2 and Ca,1.3
channels are likely to regulate divergent downstream signaling
pathways. It will be very interesting to know, for example, if
Ca,1.3 channels can couple to transcription factors as effi-
ciently as Ca, 1.2 (Dolmetsch et a. 2001; Weick et a. 2003).
While we wait for the low down on Ca,1.3 channels, a
selective inhibitor to differentiate between L-type calcium
channel subtypes would be invaluable for establishing their
relative contributions to calcium signaling in neurons.
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