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ℓ0 MINIMIZATION FOR WAVELET FRAME BASED

IMAGE RESTORATION

YONG ZHANG, BIN DONG, AND ZHAOSONG LU

Abstract. The theory of (tight) wavelet frames has been extensively studied
in the past twenty years and they are currently widely used for image restora-
tion and other image processing and analysis problems. The success of wavelet
frame based models, including balanced approach and analysis based approach,
is due to their capability of sparsely approximating piecewise smooth functions
like images. Motivated by the balanced approach and analysis based approach,
we shall propose a wavelet frame based ℓ0 minimization model, where the ℓ0

“norm” of the frame coefficients is penalized. We adapt the penalty decom-
position (PD) method of Lu and Zhang to solve the proposed optimization
problem. Some convergence analysis of the adapted PD method will also be
provided. Numerical results showed that the proposed model solved by the PD
method can generate images with better quality than those obtained by either
analysis based approach or balanced approach in terms of restoring sharp fea-
tures as well as maintaining smoothness of the recovered images.

1. Introduction

Mathematics has been playing an important role in the modern developments
of image processing and analysis. Image restoration, including image denoising,
deblurring, inpainting, tomography, etc., is one of the most important areas in
image processing and analysis. Its major purpose is to enhance the quality of a given
image that is corrupted in various ways during the process of imaging, acquisition
and communication, and it enables us to see crucial but subtle objects residing
in the image. Therefore, image restoration is an important step to take towards
accurate interpretations of the physical world and making optimal decisions.

1.1. Image restoration. Image restoration is often formulated as a linear inverse
problem. For the simplicity of notation, we denote the images as vectors in R

n

with n equals to the total number of pixels. A typical image restoration problem
is formulated as

(1.1) f = Au+ η,

where f ∈ R
d is the observed image (or measurements), η denotes white Gaussian

noise with variance σ2, and A ∈ R
d×n is some linear operator. The objective is

to find the unknown true image u ∈ R
n from the observed image f . Typically,
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the linear operator in (1.1) is a convolution operator for image deconvolution prob-
lems, a projection operator for image inpainting and partial Radon transform for
computed tomography.

To solve u from (1.1), one of the most natural choices is the following least square
problem

min
u∈Rn

‖Au− f‖22,

where ‖ · ‖2 denotes the ℓ2-norm. This is, however, not a good idea in general.
Taking an image deconvolution problem as an example, since the matrix A is ill-
conditioned, the noise η possessed by f will be amplified after solving the above least
squares problem. Therefore, in order to suppress the effect of noise and also preserve
key features of the image, e.g., edges, various regularization based optimization
models were proposed in the literature. Among all regularization based models
for image restoration, variational methods and wavelet frame based approaches are
widely adopted and have been proven successful.

The trend of variational methods and partial differential equation (PDE) based
image processing started with the refined Rudin-Osher-Fatemi (ROF) model [45]
which penalizes the total variation (TV) of u. Many of the current PDE based
methods for image denoising and decomposition utilize TV regularization for its
beneficial edge preserving property (see e.g., [41, 46, 42]). The ROF model is
especially effective on restoring images that are piecewise constant, e.g., binary
images. Other types of variational models were also proposed after the ROF model.
We refer the interested readers to [36, 17, 41, 42, 22, 2, 23, 53] and the references
therein for more details.

Wavelet frame based approaches are relatively new and came from a different
path. The basic idea for wavelet frame based approaches is that images can be
sparsely approximated by properly designed wavelet frames, and hence, the regu-
larization used for wavelet frame based models is the ℓ1-norm of frame coefficients.
Although wavelet frame based approaches take similar forms as variational methods,
they were generally considered as different approaches than variational methods be-
cause, among many other reasons, wavelet frame based approaches are defined for
discrete data, while variational methods assume all variables are functions. Some
studies in the literature (see for example [51]) indicated that there was a relation
between Haar wavelet and total variation. However, it was not clear if there exists
a general relation between wavelet frames and variational models (with general dif-
ferential operators) in the context of image restorations. In a recent paper [9], the
authors established a rigorous connection between one of the wavelet frame based
approaches, namely the analysis based approach and variational models. It was
shown in [9] that the analysis based approach can be regarded as a finite difference
approximation of a certain type of general variational model, and such approxima-
tion will be exact when image resolution goes to infinity. Furthermore, through
Gamma-convergence, the authors showed that the solutions of the analysis based
approach also approximate the solutions of the corresponding variational model.
Such connections not only grant geometric interpretation to wavelet frame based
approaches, but also lead to even wider applications of them, e.g., image segmen-
tation [27] and 3D surface reconstruction from unorganized point sets [29]. On
the other hand, the discretization provided by wavelet frames was shown, e.g., in
[18, 20, 10, 11, 9, 28], to be superior to the standard discretizations for some of the
variational models, due to the multiresolution structure and redundancy of wavelet
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frames which enable wavelet frame based models to adaptively choose a proper
differential operator in different regions of a given image according to the order of
the singularity of the underlying solutions. For these reasons, as well as the fact
that digital images are always discrete, we use wavelet frames as the tool for image
restoration in this paper.

1.2. Wavelet frame based approaches. We now briefly introduce the concept
of tight frames and tight wavelet frames, and then recall some of the frame based
image restoration models. Interesting readers should consult [44, 24, 25] for theories
of frames and wavelet frames; see [47] for a short survey on theory and applications
of frames, and [28] for a more detailed survey.

A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑

h∈X

〈f, h〉h ∀f ∈ L2(R),

where 〈·, ·〉 is the inner product of L2(R). The tight frame X is called a tight
wavelet frame if the elements of X are generated by dilations and translations of
finitely many functions called framelets. The construction of framelets can be ob-
tained by the unitary extension principle (UEP) of [44]. In our implementations, we
will mainly use the piecewise linear B-spline framelets constructed by [44]. Given a
1-dimensional framelet system for L2(R), the s-dimensional tight wavelet frame sys-
tem for L2(R

s) can be easily constructed by using tensor products of 1-dimensional
framelets (see, e.g., [24, 28]).

In the discrete setting, we will use W ∈ R
m×n with m ≥ n to denote fast tensor

product framelet decomposition and use W⊤ to denote the fast reconstruction.
Then by the unitary extension principle [44], we have W⊤W = I, i.e., u = W⊤Wu

for any image u. We will further denote an L-level framelet decomposition of u as

Wu = (. . . ,Wl,ju, . . .)
⊤

for 0 ≤ l ≤ L− 1, j ∈ I,
where I denotes the index set of all framelet bands and Wl,ju ∈ R

n. Under such
notation, we have m = L × |I| × n. We will also use α ∈ R

m to denote the frame
coefficients, i.e., α = Wu, where

α = (. . . , αl,j , . . .)
⊤
, with αl,j = Wl,ju.

More details on discrete algorithms of framelet transforms can be found in [28].
Since tight wavelet frame systems are redundant systems (i.e., m > n), the

representation of u in the frame domain is not unique. Therefore, there are mainly
three formulations utilizing the sparseness of the frame coefficients, namely, analysis
based approach, synthesis based approach, and balanced approach. Detailed and
integrated descriptions of these three methods can be found in [28].

The wavelet frame based image processing started from [18, 19] for high-resolution
image reconstructions, where the proposed algorithm was later analyzed in [7].
These works led to the following balanced approach [8]

(1.2) min
α∈Rm

1

2
‖AW⊤α− f‖2D +

κ

2
‖(I −WW⊤)α‖22 +

∥

∥

∥

∥

∥

∥

∥

L−1
∑

l=0

⎛

⎝

∑

j∈I

λl,j |αl,j |p
⎞

⎠

1/p
∥

∥

∥

∥

∥

∥

∥

1

,

where p = 1 or 2, 0 ≤ κ ≤ ∞, λl,j ≥ 0 is a scalar parameter, and ‖ · ‖D denotes
the weighted ℓ2-norm with D positive definite. This formulation is referred to as
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the balanced approach because it balances the sparsity of the frame coefficient and
the smoothness of the image. The balanced approach (1.2) was applied to various
applications in [16, 21, 48, 39].

When κ = 0, only the sparsity of the frame coefficient is penalized. This is called
the synthesis based approach, as the image is synthesized by the sparsest coefficient
vector (see e.g., [26, 32, 33, 34, 35]). When κ = +∞, only the sparsity of canonical
wavelet frame coefficients, which corresponds to the smoothness of the underlying
image, is penalized. For this case, problem (1.2) can be rewritten as

(1.3) min
u∈Rn

1

2
‖Au− f‖2D +

∥

∥

∥

∥

∥

∥

∥

L−1
∑

l=0

⎛

⎝

∑

j∈I

λl,j |Wl,ju|p
⎞

⎠

1/p
∥

∥

∥

∥

∥

∥

∥

1

.

This is called the analysis based approach, as the coefficient is in range of the
analysis operator (see, for example, [11, 31, 50]).

Note that if we take p = 1 for the last term of (1.2) and (1.3), it is known as
the anisotropic ℓ1-norm of the frame coefficients, which is the case used for earlier
frame based image restoration models. The case p = 2, called isotropic ℓ1-norm
of the frame coefficients, was proposed in [9] and was shown to be superior to the
anisotropic ℓ1-norm. Therefore, we will choose p = 2 for our simulations.

1.3. Motivations and contributions. For most of the variational models and
wavelet frame based approaches, the choice of norm for the regularization term
is the ℓ1-norm. Taking wavelet frame based approaches for example, the attempt
of minimizing the ℓ1-norm of the frame coefficients is to increase their sparsity,
which is the right thing to do since piecewise smooth functions like images can be
sparsely approximated by tight wavelet frames. Although the ℓ1-norm of a vector
does not directly correspond to its cardinality in contrast to the ℓ0 “norm”, it can be
regarded as a convex approximation to the ℓ0 “norm”. Such approximation is also
an excellent approximation for many cases. It was shown by [12], which generalizes
the exciting results of compressed sensing [13, 15, 14, 30], that for a given wavelet
frame, if the operator A satisfies certain conditions, and if the unknown true image
can be sparsely approximated by the given wavelet frame, one can robustly recover
the unknown image by penalizing the ℓ1-norm of the frame coefficients.

For image restoration, however, the conditions on A as required by [12] are
not generally satisfied, which means penalizing the ℓ0 “norm” and the ℓ1-norm
may produce different solutions. Although both the balanced approach (1.2) and
analysis based approach (1.3) can generate restored images with very high quality,
one natural question is whether using the ℓ0 “norm” instead of the ℓ1-norm can
further improve the results.

On the other hand, it was observed, e.g., in [28] (also see Figure 3 and Figure
4), that the balanced approach (1.2) generally generates images with sharper fea-
tures like edges than the analysis based approach (1.3), because balanced approach
emphasizes more on the sparsity of the frame coefficients. However, the recovered
images from a balanced approach usually contain more artifacts (e.g., oscillations)
than an analysis based approach, because the regularization term of the analysis
based approach has a direct link to the regularity of u (as proven by [9]) when
compared to a balanced approach. Although such a trade-off can be controlled by
the parameter κ in the balanced approach (1.2), it is not very easy to do in practice.
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Furthermore, when a large κ is chosen, some of the numerical algorithms solving
(1.2) will converge slower than when choosing a smaller κ (see e.g., [48, 28]).

Since penalizing ℓ1-norm of Wu ensures smoothness while not as much sparsity
as the balanced approach, we propose to penalize the ℓ0 “norm” of Wu instead.
Intuitively, this should provide us a balance between sharpness of the features and
smoothness for the recovered images. The difficulty here is that ℓ0 minimization
problems are generally hard to solve. Recently, penalty decomposition (PD) meth-
ods were proposed by [40] for a general ℓ0 minimization problem that can be used
to solve our proposed model due to its generality. Computational results of [40]
demonstrated that their methods generally outperform the existing methods for
compressed sensing problems, sparse logistic regression and sparse inverse covari-
ance selection problems in terms of quality of solutions and/or computational effi-
ciency. This motivates us to adapt one of their PD methods to solve our proposed
ℓ0 minimization problem. As proposed in [40], the same block coordinate descent
(BCD) method is used to solve each penalty subproblem of the PD method. How-
ever, the convergence analysis of the BCD method was missing from [40] when the
ℓ0 “norm” appears in the objective function. Indeed, the convergence of the BCD
method generally requires the continuity of the objective function as discussed in
[52]. In addition, the BCD method for the optimization problem with the noncon-
vex objective function has only been proved to converge to a stationary point which
is not a local minimizer in general (see [52] for details).

Contributions. The main contributions of this paper are summarized as follows.

1) We propose a new wavelet frame based model for image restoration prob-
lems that penalizes the ℓ0 “norm” of the wavelet frame coefficients. Nu-
merical simulations show that the PD method that solves the proposed
model generates recovered images with better quality than those obtained
by either balanced approach and analysis based approach.

2) Given the discontinuity and nonconvexity of the ℓ0 “norm” term in the
objective function, we have proved some convergence results for the BCD
method which is missing from the literature.

We now leave the details of the model and algorithm to Section 2 and details of
simulations to Section 3.

2. Model and Algorithm

We start by introducing some simple notation. The space of symmetric n × n

matrices will be denoted by Sn. If X ∈ Sn is positive definite, we write X ≻ 0. We
denote by I the identity matrix, whose dimension should be clear from the context.
Given an index set J ⊆ {1, . . . , n}, xJ denotes the subvector formed by the entries
of x indexed by J . For any real vector, ‖ · ‖0 and ‖ · ‖2, denote the cardinality (i.e.,
the number of nonzero entries) and the Euclidean norm of the vector, respectively.

In addition, ‖x‖D denotes the weighted ℓ2-norm defined by ‖x‖D =
√
x⊤Dx with

D ≻ 0.

2.1. Model. We now propose the following optimization model for image restora-
tion problems,

(2.1) min
u∈Y

1

2
‖Au− f‖2D +

∑

i

λi‖(Wu)i‖0,
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where Y is some convex subset of Rn. Here we are using the multi-index i and
denote (Wu)i (similarly for λi) the value of Wu at a given pixel location within a
certain level and band of wavelet frame transform. Comparing to the analysis based
model, we are now penalizing the number of nonzero elements ofWu. As mentioned
earlier that if we emphasize too much on the sparsity of the frame coefficients as
in the balanced approach or synthesis based approach, the recovered image will
contain artifacts, although features like edges will be sharp; if we emphasize too
much on the regularity of u like in the analysis based approach, features in the
recovered images will be slightly blurred, although artifacts and noise will be nicely
suppressed. Therefore, by penalizing the ℓ0 “norm” of Wu as in (2.1), we can
indeed achieve a better balance between sharpness of features and smoothness of
the recovered images.

Given that the ℓ0 “norm” is an integer-valued, discontinuous and nonconvex
function, problem (2.3) is generally hard to solve. Some algorithms proposed in the
literature, e.g., iterative hard thresholding algorithms [5, 6, 38], cannot be directly
applied to the proposed model (2.1) unless W = I. Recently, Lu and Zhang [40]
proposed a penalty decomposition (PD) method to solve the following general ℓ0
minimization problem,

(2.2) min
x∈X

f(x) + ν‖xJ‖0

for some ν > 0 controlling the sparsity of the solution, where X is a closed convex
set in R

n, f : Rn → R is a continuously differentiable function, and ‖xJ‖0 denotes
the cardinality of the subvector formed by the entries of x indexed by J . In view
of [40], we reformulate (2.1) as

(2.3) min
u∈Y,α=Wu

1

2
‖Au− f‖2D +

∑

i

λi‖αi‖0

and then we can adapt the PD method of [40] to tackle problem (2.1) directly. As
proposed in [40], the same BCD method is used to solve each penalty subproblem
of the PD method. In addition, we apply the nonmonotone gradient projection
method proposed in [4] to solve one of the subproblems in the BCD method.

2.2. Algorithm for problem (2.3). In this section, we discuss how the PDmethod
proposed in [40] solving (2.2) can be adapted to solve problem (2.3). Letting
x = (u1, . . . , un, α1, . . . , αm), J = {n + 1, . . . , n + m}, J̄ = {1, . . . , n}, f(x) =
1
2‖AxJ̄ − f‖2D and X = {x ∈ R

n+m : xJ = WxJ̄ and xJ̄ ∈ Y}, we can clearly
see that the problem (2.3) takes the same form as (2.2). In addition, there obvi-
ously exists a feasible point (ufeas, αfeas) for problem (2.3) when Y �= ∅, i.e., there
exist (ufeas, αfeas) such that Wufeas = αfeas and ufeas ∈ Y . In particular, we can
choose (ufeas, αfeas) = (0, 0), which is the choice we make for our numerical studies.
We now discuss the implementation details of the PD method when solving the
proposed wavelet frame based model (2.3).

Given a penalty parameter ̺ > 0, the associated quadratic penalty function for
(2.3) is defined as

(2.4) p̺(u, α) :=
1

2
‖Au− f‖2D +

∑

i

λi‖αi‖0 +
̺

2
‖Wu− α‖22.

Then we have the following PD method for problem (2.3) where each penalty sub-
problem is approximately solved by a BCD method (see [40] for details).
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Penalty Decomposition (PD) Method for (2.3):
Let ̺0 > 0, δ > 1 be given. Choose an arbitrary α0,0 ∈ R

m and a constant
Υ such that Υ ≥ max{ 1

2‖Aufeas − f‖2D +
∑

i
λi‖αfeas

i
‖0,minu∈Y p̺0

(u, α0,0)}. Set
k = 0.

1) Set q = 0 and apply the BCD method to find an approximate solution
(uk, αk) ∈ Y × R

m for the penalty subproblem

(2.5) min{p̺k
(u, α) : u ∈ Y , α ∈ R

m}
by performing steps 1a)–1d):
1a) Solve uk,q+1 ∈ Argmin

u∈Y
p̺k

(u, αk,q).

1b) Solve αk,q+1 ∈ Arg min
α∈Rn

p̺k
(uk,q+1, α).

1c) If (uk,q+1, αk,q+1) satisfies the stopping criteria of the BCD method,
set (uk, αk) := (uk,q+1, αk,q+1) and go to step 2).

1d) Otherwise, set q ← q + 1 and go to step 1a).
2) If (uk, αk) satisfies the stopping criteria of the PD method, stop and output

uk. Otherwise, set̺k+1 := δ̺k.
3) If min

u∈Y
p̺k+1

(u, αk) > Υ, set αk+1,0 := αfeas. Otherwise, set αk+1,0 := αk.

4) Set k ← k + 1 and go to step 1).

end

Remark 2.1. In the practical implementation, we terminate the inner iterations
of the BCD method based on the relative progress of p̺k

(uk,q, αk,q) which can be
described as follows:

(2.6)
|p̺k

(uk,q, αk,q)− p̺k
(uk,q+1, αk,q+1)|

max(|p̺k
(uk,q+1, αk,q+1)|, 1) ≤ ǫI .

Moreover, we terminate the outer iterations of the PD method once

(2.7)
‖Wuk − αk‖2

max(|p̺k
(uk, αk)|, 1) ≤ ǫO.

Next we discuss how to solve two subproblems arising in step 1a) and 1b) of the
PD method.

2.2.1. The BCD subproblem in step 1a). The BCD subproblem in step 1a) is in the
form of

(2.8) min
u∈Y

1

2
〈u,Qu〉 − 〈c, u〉

for some Q ≻ 0 and c ∈ R
n. Obviously, when Y = R

n, problem (2.8) is an
unconstrained quadratic programming problem that can be solved by the conjugate
gradient method. Nevertheless, the pixel values of an image are usually bounded.
For example, the pixel values of a CT image should be always greater than or equal
to zero and the pixel values of a grayscale image is between [0, 255]. Then the
corresponding Y of these two examples are Y = {x ∈ R

n : xi ≥ lb ∀i = 1, . . . , n}
with lb = 0 and Y = {x ∈ R

n : lb ≤ xi ≤ ub ∀i = 1, . . . , n} with lb = 0 and
ub = 255. To solve these types of the constrained quadratic programming problems,
we apply the nonmonotone projected gradient method proposed in [4] and terminate
it using the duality gap and dual feasibility conditions (if necessary).
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For Y = {x ∈ R
n : xi ≥ lb ∀i = 1, . . . , n}, given a Lagrangian multiplier β ∈ R

n,
the associated Lagrangian dual function of (2.8) can be written as:

L(u, β) = w(u) + β⊤(lb− u),

where w(u) = 1
2 〈u,Qu〉 − 〈c, u〉. Based on the Karush-Kuhn-Tucker (KKT) condi-

tions, for an optimal solution u∗ of (2.8), there exists a Lagrangian multiplier β∗

such that
Qu∗ − c− β∗ = 0,
β∗
i ≥ 0 ∀i = 1, . . . , n,

(lb− u∗
i )β

∗
i = 0 ∀i = 1, . . . , n.

Then at the sth iteration of the projected gradient method, we let βs = Qus−c. As
{us} approaches the solution u∗ of (2.8), {βs} approaches the Lagrangian multiplier
β∗ and the corresponding duality gap at each iteration is given by

∑n
i=1 β

s
i (lb−us

i ).
Therefore, we terminate the projected gradient method when

|∑n
i=1 β

s
i (lb− us

i )|
max(|w(us)|, 1) ≤ ǫD and

−min(βs, 0)

max(‖βs‖2, 1)
≤ ǫF

for some tolerances ǫD, ǫF > 0.
For Y = {x ∈ R

n : lb ≤ xi ≤ ub ∀i = 1, . . . , n}, given Lagrangian multipliers
β, γ ∈ R

n, the associated Lagrangian function of (2.8) can be written as:

L(u, β, γ) = w(u) + β⊤(lb− u) + γ⊤(u− ub),

where w(u) is defined as above. Based on the KKT conditions, for an optimal
solution u∗ of (2.8), there exist Lagrangian multipliers β∗ and γ∗ such that

Qu∗ − c− β∗ + γ∗ = 0,
β∗
i ≥ 0 ∀i = 1, . . . , n,

γ∗
i ≥ 0 ∀i = 1, . . . , n,

(lb− u∗
i )β

∗
i = 0 ∀i = 1, . . . , n,

(u∗
i − ub)γ∗

i = 0 ∀i = 1, . . . , n.

Then at the sth iteration of the projected gradient method, we let βs = max(Qus−
c, 0) and γs = −min(Qus− c, 0). As {us} approaches the solution u∗ of (2.8), {βs}
and {γs} approach Lagrangian multipliers β∗ and γ∗. In addition, the correspond-
ing duality gap at each iteration is given by

∑n
i=1(β

s
i (lb−us

i )+γs
i (u

s
i −ub)) and the

duality feasibility is automatically satisfied. Therefore, we terminate the projected
gradient method when

|∑n
i=1(β

s
i (lb− us

i ) + γs
i (u

s
i − ub))|

max(|w(us)|, 1) ≤ ǫD

for some tolerance ǫD > 0.

2.2.2. The BCD subproblem in step 1b). For λi ≥ 0, ̺ > 0 and c ∈ R
m, the BCD

subproblem in step 1b) is in the form of

min
α∈Rm

∑

i

λi‖αi‖0 +
̺

2

∑

i

(αi − ci)
2.

By [40, Proposition 2.2] (see also [1, 5] for example), the solutions of the above
subproblem form the following set:

(2.9) α∗ ∈ Hλ̃ (c) with λ̃i :=

√

2λi

̺
for all i,
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where Hγ(·) denotes a componentwise hard thresholding operator with threshold
γ:

(2.10) [Hγ(x)]i =

⎧

⎨

⎩

0 if |xi| < γi,

{0, xi} if |xi| = γi,

xi if |xi| > γi.

Note that Hγ is defined as a set-valued mapping [43, Chapter 5] which is differ-
ent (only when |xi| = γi) from the conventional definition of hard thresholding
operator.

2.3. Convergence of the BCD method. In this subsection, we establish some
convergence results regarding the inner iterations, i.e., step 1), of the PD method.
In particular, we will show that the fixed point of the BCD method is a local
minimizer of (2.5). Moreover, under certain conditions, we prove that the sequence
{(uk,q, αk,q)} generated by the BCD method converges and the limit is a local
minimizer of (2.5).

For convenience of presentation, we omit the index k from (2.5) and consider the
BCD method for solving the following problem:

(2.11) min{p̺(u, α) : u ∈ Y , α ∈ R
m}.

Without loss of generality, we assume that D = I. We now relabel and simplify
the BCD method described in steps 1a)–1c) in the PD method as follows:

(2.12)

{

uq+1 = argminu∈Y
1
2‖Au− f‖22 + ̺

2‖Wu− αq‖22,
αq+1 ∈ Argminα

∑

i
λi‖αi‖0 + ̺

2‖α−Wuq+1‖22.

We first show that the fixed point of the above BCD method is a local minimizer
of (2.5).

Theorem 2.2. Given a fixed point of the BCD method (2.12), denoted as (u∗, α∗),
then (u∗, α∗) is a local minimizer of p̺(u, α).

Proof. We first note that the first subproblem of (2.12) gives us

(2.13) 〈A⊤(Au∗ − f) + ̺W⊤(Wu∗ − α∗), v − u∗〉 ≥ 0 for all v ∈ Y .

By applying (2.9), the second subproblem of (2.12) leads to:

(2.14) α∗ ∈ Hλ̃ (Wu∗) .

Define index sets

Γ0 := {i : α∗
i
= 0} and Γ1 := {i : α∗

i
�= 0}.

It then follows from (2.14) and (2.10) that

(2.15)

{

|(Wu∗)i| ≤ λ̃i for i ∈ Γ0,

(Wu∗)i = α∗
i

for i ∈ Γ1,

where (Wu∗)i denotes ith entry of Wu∗.
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Consider a small deformation vector (∂h, ∂g) such that u∗ + ∂h ∈ Y . Using
(2.13), we have

p̺(u
∗ + ∂h, α

∗ + ∂g) =
1

2
‖Au

∗ + A∂h− f‖22 +
∑

i

λi‖(α
∗ + ∂g)i‖0

+
̺

2
‖α∗ + ∂g −W (u∗ + ∂h)‖22

=
1

2
‖Au

∗ − f‖22 + 〈A∂h,Au
∗ − f〉+

1

2
‖A∂h‖22 +

∑

i

λi‖(α
∗ + ∂g)i‖0

+
̺

2
‖α∗ −Wu

∗‖22 + ̺〈α∗ −Wu
∗
, ∂g −W∂h〉+

̺

2
‖∂g −W∂h‖22

=
1

2
‖Au

∗ − f‖22 +
∑

i

λi‖(α
∗ + ∂g)i‖0 +

̺

2
‖α∗ −Wu

∗‖22 +
1

2
‖A∂h‖22

+ 〈∂h,A⊤(Au
∗ − f) + ̺W

⊤(Wu
∗ − α

∗)〉+ ̺〈∂g, α∗ −Wu
∗〉+

̺

2
‖∂g −W∂h‖22

≥
1

2
‖Au

∗ − f‖22 +
∑

i

λi‖(α
∗ + ∂g)i‖0 +

̺

2
‖α∗ −Wu

∗‖22

+ 〈∂h,A⊤(Au
∗ − f) + ̺W

⊤(Wu
∗ − α

∗)〉+ ̺〈∂g, α∗ −Wu
∗〉

(By (2.13)) ≥
1

2
‖Au

∗ − f‖22 +
∑

i

λi‖(α
∗ + ∂g)i‖0 +

̺

2
‖α∗ −Wu

∗‖22 + ̺〈∂g, α∗ −Wu
∗〉

=
1

2
‖Au

∗ − f‖22 +
̺

2
‖α∗ −Wu

∗‖22 +
∑

i

(

λi‖α
∗
i + ∂g

i
‖0 + ̺∂g

i
(α∗

i − (Wu
∗)i)

)

.

Splitting the summation in the last equation with respect to index sets Γ0 and Γ1

and using (2.15), we have

p̺(u
∗ + ∂h, α∗ + ∂g) ≥ 1

2
‖Au∗ − f‖22 +

̺

2
‖α∗ −Wu∗‖22

+
∑

i∈Γ0

(

λi‖∂gi‖0 − ̺∂gi(Wu∗)i

)

+
∑

i∈Γ1

λi‖α∗
i
+ ∂gi‖0.

Notice that when |∂g
i
| is small enough, we then have

‖α∗
i
+ ∂g

i
‖0 = ‖α∗

i
‖0 for i ∈ Γ1.

Therefore, we have

p̺(u
∗ + ∂h, α∗ + ∂g) ≥ 1

2
‖Au∗ − f‖22 +

̺

2
‖α∗ −Wu∗‖22

+
∑

i∈Γ0

(

λi‖∂gi‖0 − ̺∂gi(Wu∗)i

)

+
∑

i∈Γ1

λi‖α∗
i
‖0

= p̺(u
∗, α∗) +

∑

i∈Γ0

(

λi‖∂gi‖0 − ̺∂g
i
(Wu∗)i

)

.

We now show that, for i ∈ Γ0 and ‖∂g‖ small enough,

(2.16) λi‖∂gi‖0 − ̺∂g
i
(Wu∗)i ≥ 0.

For the indices i such that λi = 0, first inequality of (2.15) implies that (Wu∗)i = 0
and hence (2.16) holds. Therefore, we only need to consider indices i ∈ Γ0 such that
λi �= 0. Then obviously as long as |∂g

i
| ≤ λi

̺|(Wu∗)i|
, (2.16) holds. We now conclude

that there exists ε > 0 such that for all (∂h, ∂g) satisfying max(‖∂h‖∞, ‖∂g‖∞) < ε,
we have p̺(u

∗ + ∂h, α∗ + ∂g) ≥ p̺(u
∗, α∗). �
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We next show that under some suitable assumptions, the sequence {(uq, αq)}
generated by (2.12) converges to a fixed point of the BCD method.

Theorem 2.3. Assume that Y = R
n and A⊤A ≻ 0. Let {(uq, αq)} be the sequence

generated by the BCD method described in (2.12). Then, the sequence {(uq, αq)} is
bounded. Furthermore, any cluster point of the sequence {(uq, αq)} is a fixed point
of (2.12).

Proof. In view of Y = R
n and the optimality condition of the first subproblem of

(2.12), one can see that

(2.17) uq+1 = (A⊤A+ ̺I)−1A⊤f + ̺(A⊤A+ ̺I)−1W⊤αq.

Let x := (A⊤A+̺I)−1A⊤f , P := ̺(A⊤A+̺I)−1, equation (2.17) can be rewritten
as

(2.18) uq+1 = x+ PW⊤αq.

Moreover, by the assumption A⊤A ≻ 0, we have 0 ≺ P ≺ I.
Using (2.18) and (2.10), we observe from the second subproblem of (2.12) that

(2.19) αq+1 ∈ Hλ̃(Wuq+1) = Hλ̃

(

Wx+WPW⊤αq
)

.

Let Q := I −WPW⊤, then (2.19) can be rewritten as

(2.20) αq+1 ∈ Hλ̃ (α
q +Wx−Qαq) .

In addition, from W⊤W = I we can easily show that 0 ≺ Q � I.
Let F (α, β) := 1

2 〈α,Qα〉−〈Wx,α〉+∑

i
λ̄i‖αi‖0− 1

2 〈α−β,Q(α−β)〉+ 1
2‖α−β‖22

where λ̄ = λ
ρ . Then we have

(2.21) ArgminαF (α, αq) = Argminα
1

2
‖α− (αq +Wx−Qαq)‖22 +

∑

i

λ̄i‖αi‖0.

In view of equation (2.20) and (2.21) and the definition of the hard thresholding
operator, we can easily observe that αq+1 ∈ ArgminαF (α, αq). By following similar
arguments as in [5, Lemma 1, Lemma D.1], we have

F (αq+1, αq+1) ≤ F (αq+1, αq+1) +
1

2
‖αq+1 − αq‖22 −

1

2
〈αq+1 − αq, Q(αq+1 − αq)〉

= F (αq+1, αq)

≤ F (αq, αq),

which leads to

‖αq+1 − αq‖22 − 〈αq+1 − αq, Q(αq+1 − αq)〉 ≤ 2F (αq, αq)− 2F (αq+1, αq+1).

Since P ≻ 0, we have

‖W⊤(αq+1 − αq)‖22 ≤ 1

C1
〈W⊤(αq+1 − αq), PW⊤(αq+1 − αq)〉

=
1

C1
〈αq+1 − αq, (I −Q)(αq+1 − αq)〉

=
1

C1

(

‖αq+1 − αq‖22 − 〈αq+1 − αq, Q(αq+1 − αq)〉
)

≤ 2

C1
F (αq, αq)− 2

C1
F (αq+1, αq+1)
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for some C1 > 0. Telescoping on the above inequality and using the fact that
∑

i
λi‖αi‖0 ≥ 0, we have

N
∑

q=0

‖W⊤(αq+1 − αq)‖22 ≤ 2

C1
F (α0, α0)− 2

C1
F (αN+1, αN+1)

≤ 2

C1

(

F (α0, α0)− (
1

2
〈αN+1, QαN+1〉 − 〈Wx,αN+1〉)

)

≤ 2

C1

(

F (α0, α0)−K
)

,

where K is the optimal value of miny{ 1
2 〈y,Qy〉 − 〈Wx, y〉}. Since Q ≻ 0, we have

K > −∞. Then the last inequality implies that limq→∞ ‖W⊤(αq+1 − αq)‖2 → 0.
By using (2.18) and P ≺ I, we see that

‖uq+1 −W⊤αq+1‖2 = ‖x+ PW⊤αq −W⊤αq+1 +W⊤αq −W⊤αq‖2
= ‖x+ (P − I)W⊤αq −W⊤(αq+1 − αq)‖2
≥ ‖x+ (P − I)W⊤αq‖2 − ‖W⊤(αq+1 − αq)‖2
= ‖(I − P )W⊤αq − x‖2 − ‖W⊤(αq+1 − αq)‖2
≥ ‖(I − P )W⊤αq‖2 − ‖x‖2 − ‖W⊤(αq+1 − αq)‖2
≥ C2‖W⊤αq‖2 − ‖x‖2 − ‖W⊤(αq+1 − αq)‖2

for some C2 > 0. Then by rearranging the above inequality and using the fact
W⊤W = I, we have

‖W⊤αq‖2 ≤ 1

C2
(‖uq+1 −W⊤αq+1‖2 + ‖x‖2 + ‖W⊤(αq+1 − αq)‖2)

=
1

C2
(‖W⊤(Wuq+1 − αq+1)‖2 + ‖x‖2 + ‖W⊤(αq+1 − αq)‖2)

≤ 1

C2
(‖Wuq+1 − αq+1‖2 + ‖x‖2 + ‖W⊤(αq+1 − αq)‖2).

By the definition of the hard thresholding operator and (2.19), we can easily see
that ‖Wuq+1 −αq+1‖2 is bounded. In addition, notice that ‖x‖2 is a constant and
limq→∞ ‖W⊤(αq+1 − αq)‖2 → 0. Thus ‖W⊤αq‖2 is also bounded. By using (2.18)
and the definition of the hard thresholding operator again, we can immediately see
that both {uq+1} and {αq+1} are bounded as well.

Suppose that (u∗, α∗) is a cluster point of the sequence {(uq, αq)}. Therefore,
there exists a subsequence {(uql , αql)}l converging to (u∗, α∗). Using (2.19) and the
definition of the hard thresholding operator, we can observe that

α∗ = lim
l→∞

αql+1 ∈ Hλ̃( liml→∞
Wuql+1) = Hλ̃(Wu∗).

In addition, it follows from (2.17) that

u∗ = (A⊤A+ ̺I)−1A⊤f + ̺(A⊤A+ ̺I)−1W⊤α∗.

In view of the above two relations, one can immediately conclude that {(u∗, α∗)}
is a fixed point of (2.12). �

In the view of Theorems 2.2, 2.3 and under some suitable assumptions, we can
easily observe the following convergence of the BCD method.
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Theorem 2.4. Assume that Y = R
n and A⊤A ≻ 0. Then, the sequence {(uq, αq)}

generated by the BCD method has at least one cluster point. Furthermore, any
cluster point of the sequence {(uq, αq)} is a local minimizer of (2.11).

For the PD method itself, similar arguments as in the proof of [40, Theorem 3.2]
will lead to that every accumulation point of the sequence {(uk, αk)} is a feasible
point of (2.3). Although it is not clear whether the accumulation point is a local
minimizer of (2.3), our numerical results show that the solutions obtained by the PD
method are superior to those obtained by the balanced approach and the analysis
based approach.

3. Numerical results

In this section, we conduct numerical experiments to test the performance of
the PD method for problem (2.3) presented in Section 2 and compare the results
with the balanced approach (1.2) and the analysis based approach (1.3). We use
the accelerated proximal gradient (APG) algorithm [48] (see also [3]) to solve the
balanced approach; and we use the split Bregman algorithm [37, 11] to solve the
analysis based approach.

For the APG algorithm that solves balanced approach (1.2), we shall adopt the
following stopping criteria:

min

{ ‖αk − αk−1‖2
max{1, ‖αk‖2}

,
‖AW⊤αk − f‖D

‖f‖2

}

≤ ǫP .

For the split Bregman algorithm that solves the analysis based approach (1.3), we
shall use the following stopping criteria:

‖Wuk+1 − αk+1‖2
‖f‖2

≤ ǫS .

Throughout this section, the codes of all the algorithms are written in MAT-
LAB and all computations below are performed on a workstation with Intel Xeon
E5410 CPU (2.33GHz) and 8GB RAM running Red Hat Enterprise Linux (kernel
2.6.18). If not specified, the piecewise linear B-spline framelets constructed by [44]
are used in all the numerical experiments. We also take D = I for all three meth-
ods for simplicity. For the PD method, we choose ǫI = 10−4 and ǫO = 10−3 and
set α0,0, αfeas and ufeas to be zero vectors. In addition, we choose [4, Algorithm
2.2] and set M = 20, ǫD = 5 × 10−5 and ǫF = 10−4 (if necessary) for the pro-
jected gradient method applied to one of subproblems arising in the BCD method
(i.e., step 1a) in the PD method).

3.1. Experiments on CT image reconstruction. In this subsection, we apply
the PD method stated in Section 2 to solve problem (2.3) on CT images and com-
pare the results with the balanced approach (1.2) and the analysis based approach
(1.3). The matrix A in (1.1) is taken to be a projection matrix based on fan-beam
scanning geometry using Siddon’s algorithm [49], and η is generated from a zero
mean Gaussian distribution with variance σ = 0.01‖f‖∞. In addition, we pick the
level of framelet decomposition to be 4 for the best quality of the reconstructed
images. For the balanced approach, we set κ = 2 and take ǫP = 1.5 × 10−2 for
the stopping criteria of the APG algorithm. We set ǫS = 10−5 for the stopping
criteria of the split Bregman algorithm when solving the analysis based approach.
Moreover, we take Y = {x ∈ R

n : xi ≥ 0 ∀i = 1, . . . , n} for model (2.3), and take
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Table 1. Comparisons: CT image reconstruction

Balanced approach Analysis based approach PD method
Time 56.0 204.8 147.6
PSNR 56.06 59.90 60.22

δ = 10 and ̺0 = 10 for the PD method. To measure quality of the restored image,
we use the PSNR value defined by

PSNR := −20 log10
‖u− ũ‖2

n
,

where u and ũ are the original and restored images, respectively, and n is the total
number of pixels in u.

Table 1 summarizes the results of all three models when applying to the CT
image restoration problem and the corresponding images and their zoom-in views
are shown in Figure 1 and Figure 2. In Table 1, the CPU time (in seconds) and
PSNR values of all three methods are given in the first and second row, respectively.
In order to fairly compare the results, we have tuned the parameter λ to achieve the
best quality of the restoration images for each individual method. We observe that
based on the PSNR values listed in Table 1 the analysis based approach and the
PD method obviously achieve better restoration results than the balanced approach.
Nevertheless, the APG algorithm for the balanced approach is the fastest algorithm
in this experiment. In addition, the PD method is faster and achieves larger PSNR
than the split Bergman algorithm for the analysis based approach. Moreover, we
can observe from Figure 2 that the edges are recovered better by the PD method
and the balanced approach.

Figure 1. CT image reconstruction. Images from left to right
are: original CT image, reconstructed image by the balanced ap-
proach, reconstructed image by the analysis based approach and
reconstructed image by the PD method.

3.2. Experiments on image deconvolution. In this subsection, we apply the
PD method stated in Section 2 to solve problem (2.3) on image deblurring prob-
lems and compare the results with the balanced approach (1.2) and the analysis
based approach (1.3). The matrix A in (2.3) is taken to be a convolution matrix
with corresponding kernel a Gaussian function (generated in MATLAB by “fspe-
cial(‘Gaussian’, 9, 1.5);”) and η is generated from a zero mean Gaussian distribution
with variance σ. If not specified, we choose σ = 3 in our experiments. In addition,
we pick the level of framelet decomposition to be 4 for the best quality of the re-
constructed images. We set κ = 1 for the balanced approach and choose both ǫP
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Figure 2. Zoom-in views of the CT image reconstruction. Images
from left to right are: original CT image, reconstructed image by
the balanced approach, reconstructed image by the analysis based
approach and reconstructed image by the PD method.

and ǫS to be 10−4 for the stopping criteria of both APG algorithm and the split
Bregman algorithm. Moreover, we set Y = {x ∈ R

n : 0 ≤ xi ≤ 255 ∀i = 1, . . . , n}
for model (2.3), and take δ = 10 and ̺0 = 10−3 for the PD method. To measure
quality of the restored image, we use the PSNR value defined by

PSNR := −20 log10
‖u− ũ‖2
255n

.

We first test all three methods on twelve different images by using piecewise linear
wavelet and summarize the results in Table 2. The names and sizes of images are
listed in the first two columns. The CPU time (in seconds) and PSNR values of
all three methods are given in the last six columns. In addition, the zoom-in views
of original images, observed images and recovered images are shown in Figures 3
and 4. In order to fairly compare the results, we have tuned the parameter λ to
achieve the best quality of the restoration images for each individual method and
each given image.

We first observe that in Table 2, the PSNR values obtained by the PD method
are generally better than those obtained by the other two approaches. Although
for some of the images (i.e., “Downhill”, “Bridge”, “Duck” and “Barbara”), the
PSNR values obtained by the PD methods are comparable to those of balanced
and analysis based approaches, the quality of the restored images cannot only be
judged by their PSNR values. Indeed, the zoom-in views of the recovered images
in Figure 3 and Figure 4 show that for all tested images, the PD method produces
visually superior results than the other two approaches in terms of both sharpness
of edges and smoothness of regions away from edges. Takeing the image “Barbara”
as an example, the PSNR value of the PD method is only slightly greater than that
obtained by the other two approaches. However, the zoom-in views of “Barbara”
in Figure 4 show that the face of Barbara and the textures on her scarf are better
recovered by the PD method than the other two approaches. This confirms the
observation that the penalizing ℓ0 “norm” of Wu should provide good balance
between sharpness of features and smoothness of the reconstructed images. We
finally note that the PD method is slower than other two approaches in these
experiments but the processing time of the PD method is still acceptable.

We next compare all three methods on the “Portrait I” image by using three
different tight wavelet frame systems, i.e., Haar framelets, piecewise linear framelets
and piecewise cubic framelets constructed by [44]. We summarize the results in
Table 3. The names of three wavelets are listed in the first column. The CPU time
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Table 2. Comparisons: image deconvolution

Balanced approach Analysis based approach PD method
Name Size Time PSNR Time PSNR Time PSNR
Downhill 256 12.5 27.24 6.1 27.36 29.5 27.35
Cameraman 256 18.2 26.65 7.0 26.73 31.1 27.21
Bridge 256 14.5 25.40 5.1 25.46 33.0 25.44
Pepper 256 21.6 26.82 7.5 26.63 32.1 27.29
Clock 256 17.3 29.42 19.9 29.48 22.3 29.86
Portrait I 256 32.7 33.93 19.3 33.98 27.1 35.44
Duck 464 30.6 31.00 16.1 31.11 72.5 31.09
Barbara 512 38.8 24.62 12.3 24.62 77.4 24.69
Aircraft 512 55.9 30.75 35.1 30.81 67.5 31.29
Couple 512 91.4 28.40 41.5 28.14 139.1 29.32
Portrait II 512 45.2 30.23 22.1 30.20 48.9 30.90
Lena 516 89.3 12.91 31.0 12.51 67.0 13.45

Table 3. Comparisons among different wavelet representations

Balanced approach Analysis based approach PD method
Wavelets Time PSNR Time PSNR Time PSNR
Haar 17.9 33.63 20.2 33.80 24.3 34.68
Piecewise linear 32.7 33.93 22.3 33.98 27.1 35.44
Piecewise cubic 61.0 33.95 37.3 34.00 37.8 35.20

Table 4. Comparisons among different noise levels for the image
“Portrait I”

Balanced approach Analysis based approach PD method
Variances of noises Time PSNR Time PSNR Time PSNR

σ = 3 32.7 33.93 22.3 33.98 27.1 35.44
σ = 5 23.7 32.84 19.4 32.89 27.2 34.48
σ = 7 19.6 32.11 25.0 32.14 29.7 33.69

(in seconds) and PSNR values of all three methods are given in the last six columns.
In Table 3, we can see that the quality of the restored images by using the piecewise
linear framelets and the piecewise cubic framelets is better than that by using the
Haar framelets. In addition, all three methods are generally faster when using
Haar framelets and slower when using piecewise cubic framelets. Overall, all three
approaches when using the piecewise linear method have balanced performance in
terms of time and quality (i.e., the PSNR value). Finally, we observe that the PD
method consistently achieves the best quality of restored images among all of the
approaches for all three different tight wavelet frame systems.

Finally, we test how different noise levels affect the restored images obtained
from all the three methods. We choose three different noise levels (i.e., σ = 3, 5, 7)
for the image “Portrait I”, and test all the three methods by using piecewise linear
framelets. We summarize the results in Table 4. The variances of noises are listed in
the first column. The CPU time (in seconds) and PSNR values of all three methods
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are given in the last six columns. We observe that the qualities of the restored
images by all three methods degrade when the noise level increases. Nevertheless,
the PD method still outperforms the other two methods.

Figure 3. Zoom-in to the texture part of “Downhill”, “Camera-
man”, “Bridge”, “Pepper”, “Clock”, and “Portrait I”. Images from
left to right are: original image, observed image, results of the bal-
anced approach, results of the analysis based approach and results
of the PD method.
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Figure 4. Zoom-in to the texture part of “Duck”, “Barbara”,
“Aircraft”, “Couple”, “Portrait II” and “Lena”. Images from left
to right are: original image, observed image, results of the balanced
approach, results of the analysis based approach and results of the
PD method.
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4. Conclusion

In this paper, we proposed a wavelet frame based ℓ0 minimization model, which
is motivated by the analysis based approach and balanced approach. The penalty
decomposition (PD) method of [40] was used to solve the proposed optimization
problem. Numerical results showed that the proposed model solved by the PD
method can generate images with better quality than those obtained by either
analysis based approach or balanced approach in terms of restoring sharp features
like edges as well as maintaining smoothness of the recovered images. Convergence
analysis of the subiterations in the PD method was also provided.
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