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Abstract This paper addresses the problem of reconstructing partially observed stochastic
processes. The L1 convergence of the filtering and smoothing densities in state space models
is studied, when the transition and emission densities are estimated using non parametric
kernel estimates. An application to real data is proposed, in which a wave time series is
forecasted given a wind time series.
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1 Introduction

A state-space model is basically a Markov process with two components. One of them,
the state process, is assumed to be hidden and its evolution is characterized by its initial
distribution and its transition kernel. The other one, the observed process, is assumed to be
observable and is related to the state process by the emission probabilities.

These models were first introduced in the 60s in the fields of control and speech reco-
gnition (Baum and Petrie 1966; Kalman 1960). They appear in the statistical literature only
in the seventies (Akaike 1974; Harrison and Stevens 1976). Finally, during the last decade
they became a focus of interest due to their wide range of applications. Recently, particular
attention has been given to the properties of filtering (Douc and Matias 2001; Le Gland and
Mevel 2000) and smoothing (Godsill et al. 2004) recursions, which permit to forecast the
hidden state given the observed process, and in particular to the stability of the Markovian
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operator used in the filtering recursions. These results have been used, for example, to study
the convergence properties of particle filters and of maximum likelihood estimates.

In the present paper, we assume that both components of the Markov process are si-
multaneously observed on a period of time and this learning sequence is used to estimate
the transition kernel of the state process and the emission probabilities. The originality of
this work is to use non parametric estimates for these conditional densities. Then, we con-
sider another period of time in which only the observation is available. The correspon-
ding state sequence is forecasted by computing filtering and smoothing recursions with the
“true” transition kernel and emission probabilities replaced by their non-parametric estima-
tes.

Such a situation can occur, for example, in meteorology. For instance, let us assume that
wind and wave follow a state-space model, with the wave corresponding to the state process
and the wind to the observed process. Generally, wind and wave time series are available
only on short periods of time, but this can be sufficient to learn the state space model.
For these meteorological time series, it is well-known that it is hard to find appropriate
parametric models for the multivariate joint distributions (strong non-linearities, positive and
asymmetric marginal distributions, etc. . .), and, as a consequence, for the transition kernel
of the state process and the emission probabilities. In this context, it is natural to use non
parametric estimates in order to have enough flexibility to restore the complexity of the
phenomena.

In this paper, we study the asymptotic convergence of the proposed estimates. For that
purpose, we combine convergence results for non parametric kernel density estimates for
stochastic processes (Bosq 1996; Liebscher 1999, 2001) with the contractivity properties of
the filtering and smoothing recursions. We show that the convergence rates of the filtering
and smoothing densities essentially depend on the convergence rates of the non parametric
estimates and on the contractivity properties of the filtering and smoothing operators.

In Sect. 2, we introduce the methodology and the notations. Then, the asymptotic properties
of the filtering and smoothing densities are studied, respectively, in Sects. 3 and 4. In Sect. 5,
the results are illustrated through simulations. Finally, in Sect. 6, the method is applied to
meteorological data.

2 Problem statement

2.1 State space model

We consider the following model, with {St } being the state process and {Yt } being the observed
process:
(M1) {St } is a homogeneous Markov chain on S ⊂ R

d , with d ≥ 1, equipped with the
Borel σ -field B(S). For s ∈ S and B ∈ B(S), we denote by A(s, B) the transition kernel
of this Markov chain. Furthermore, we assume that for all s ∈ S the measure A(s, .) has a
probability density function (pdf) a(.|s) with respect to a common finite dominating measure
µ on (S, B(S)) and that the initial distribution of the Markov chain, which is the distribution
of S0, is absolutely continuous with respect to µ. ξ0 denotes the corresponding pdf.
(M2) {Yt } takes its values in Y ⊂ R

d ′
with d ′ ≥ 1, equipped with the Borel σ -field B(Y).

For each r ≥ 1, Yr is conditionally independent of {Yt }t=1,...,r−1 given Sr . We also assume
that for each s ∈ S, the conditional distribution P(Yr ∈ B|Sr = s) has a density b(.|s) with
respect to a common finite dominating measure ν on (Y, B(Y)).
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This model is a special case of a graphical model on an acyclic directed graph.

State process . . . → St−1 → St → St+1 → . . .

↓ ↓ ↓
Observed process Yt−1 Yt Yt+1

One usually refers to this model as Hidden Markov Model (HMM) when the hidden state
space S is finite and as State Space Model when it is infinite.

Throughout this paper, we make the following assumptions:

[A]
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. There exist κ−
a and κ+

a such that for all s, s′ ∈ S, 0 < κ−
a ≤ a(s|s′) ≤ κ+

a < +∞
2. There exist κ−

b and κ+
b such that for all y ∈ Y, 0 < κ−

b ≤ ∫

b(y|s)µ(ds)

≤ κ+
b < +∞

Hypothesis [A]1 is fundamental here. It implies that the state space of the Markov chain
{St } is 1-small (see Meyn and Tweedie 1993). Thus, the chain is uniformly ergodic and
has a unique invariant distribution. Since the transition kernel A admits a density, it is easy
to check, thanks to Radon-Nicodym’s theorem, that the invariant distribution also admits a
density which is denoted by f . Condition κ+

a < +∞ is reasonable for many applications,
but condition κ−

a > 0 may be restrictive. It is an usual assumption to get the contractivity of
the forward operator (see Atar and Zeitouni 1997; Del Moral and Guionnet 2001), but several
authors have recently proposed to refine it (see Chigansky and Liptser 2004 and references
therein). In this paper, we keep this assumption because it is also convenient to establish both
the convergence of the non parametric estimates (see Sects. 3.2 and 4.1) and the contractivity
of forward and backward operators (see Sects. 3.3 and 4.2).

2.2 Filtering and smoothing recursions

For any sequence {x1, . . . , xt }, we denote for t ′ ≤ t , xt
t ′ = {xt ′ , . . . , xt }. Assumptions (M1),

(M2) and [A] imply that the conditional probability P(St ∈ B|Y r
1 = yr

1) admits a density
ft |r (.) with respect to µ. We distinguish between prediction (r < t), filtering (r = t)
and smoothing (r > t). It is well known that the filtering and smoothing densities verify,
respectively, the recursions (1) and (3) below. More precisely, let f0|0 = ξ0 denotes the
density of the initial distribution on S (the choice of this distribution is discussed later on).
For t ≥ 1, we have

ft |t = �
(t)
F ft−1|t−1 (1)

where �
(t)
F denotes the forward operator at time t . This operator acts on the probability

density functions on S. If ξ denotes an arbitrary pdf on S, �
(t)
F ξ is the pdf given by

�
(t)
F ξ(st ) = b(yt |st )

∫

a(st |st−1)ξ(st−1)µ(dst−1)
∫∫

a(s|st−1)b(yt |s)ξ(st−1)µ(dst−1)µ(ds)
(2)

We can check that, under hypothesis [A],
∫∫

a(s|st−1)b(yt |s)ξ(st−1)µ(ds)µ(dst−1) ≥ κ−
a κ−

b

so that �
(t)
F is well defined. The proof of relation (2) is straightforward using the conditional

independence properties which characterize the state space model together with the law of
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total probability and Bayes’ theorem. The smoothing recursion is written in the same way
starting with fT |T . For t < T

ft |T = �
(t)
B ft+1|T

where �
(t)
B denotes the backward operator at time t . For any pdf ξ on S, �

(t)
B ξ is the pdf

given by

�
(t)
B ξ(st ) = ft |t (st )

∫
a(st+1|st )

ft+1|t (st+1)
ξ(st+1)µ(dst+1) (3)

with one step ahead forecast density

ft+1|t (st+1) =
∫

ft |t (s)a(st+1|s)µ(ds)

The operator �
(t)
B is well defined under assumption [A] since it implies that ft+1|t (s) ≥ κ−

a
for any s ∈ S.

One of the most common problems in state space models consists in forecasting the
hidden sequence sT

1 corresponding to an observed time series yT
1 and several algorithms can

be found in the literature to compute the smoothing densities ft |T . When the state space S is
finite, all the integrals in filtering and smoothing recursions (2) and (3) are simply sums and
the calculation is straightforward. The algorithm is then referred to as a forward–backward
algorithm. Another case where the general recursions simplify considerably is the linear state
space model with Gaussian innovations. In this case the algorithm is the well-known Kalman
filter. Monte Carlo methods such as particular filtering can be used to approximate general
state space models in other cases (see for example Godsill et al. 2004).

2.3 Non parametric estimates for the state space model

Let us now describe the method that is used to estimate conditional pdf a and b as well as
the filtering and smoothing densities.

Assume that {St , Yt } is a state space process satisfying (M1)−(M2). This process is a first
order Markov chain. We denote Qµ0 the law of {St , Yt } when the initial distribution of the
Markov chain is µ0. Suppose also that we have:

• a realization ŝn
1 , ŷn

1 of {St , Yt }. At this stage, the state process {St } is not hidden. In the
sequel (ŝn

1 , ŷn
1 ) is referred to as the learning sequence and it will be used to estimate the

pdf a of the transition kernel and b of the emission probabilities.
• a realization yT

1 of {Yt } while {St } is hidden. yT
1 is referred to as the observed sequence.

Our goal consists in forecasting {St } given yT
1 .

When the smoothing density ft |T is known, the state st can be forecasted using s∗
t =

E(St |Y T
1 = yT

1 ) = ∫

s ft |T (s)µ(ds) for each time t ∈ {1, . . . , T }. Since, it is considered
that {St } and {Yt } are observed simultaneously during a learning period, a and b can be
estimated using kernel density estimates â and b̂. Estimates �̂

(t)
F and �̂

(t)
B of �

(t)
F and �

(t)
B

can be deduced for all t and hence the estimates f̂t |t and f̂t |T of the filtering and smoothing
densities ft |t and ft |T too.

More precisely, let us denote f the stationary pdf of the Markov chain {St }, q1 the stationary
joint pdf of (St−1, St ) and q2 the joint stationary pdf of (Yt , St ). We define the estimates of
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f , q1 and q2 by

f̂ (s) = n−1h1(n)−d
n

∑

k=1

K1((s − ŝk)h1(n)−1)

q̂1(s
′, s) = n−1h2(n)−2d

n
∑

k=2

K2((s
′ − ŝk−1, s − ŝk)h2(n)−1)

q̂2(y, s) = n−1h3(n)−(d+d ′)
n

∑

k=1

K3((y − ŷk, s − ŝk)h3(n)−1)

where K1, K2 and K3 are kernel functions with some properties specified later on
(see hypothesis [K(ζ )]) and where h1(n), h2(n) and h3(n) are bandwidth parameters.

We deduce estimates of transition and emission pdf as follows:

â(s|s′) =
⎧

⎨

⎩

q̂1(s′,s)
f̂ (s)

if f̂ (s) > γ n−1

0 otherwise
(4)

b̂(y|s) =
⎧

⎨

⎩

q̂2(y,s)
f̂ (s)

if f̂ (s) > γ n−1

0 otherwise
(5)

with γ > 0.
Now, given â and b̂, one can deduce a non parametric estimate �̂

(t)
F of the forward operator

�
(t)
F , for all observed time series yt

1, by substituting â and b̂ to a and b in Eq. 2,

�̂
(t)
F ξ(st ) =

∫

â(st |st−1)b̂(yt |st )ξ(st−1)µ(dst−1)
∫ ∫

â(s|st−1)b̂(yt |s)ξ(st−1)µ(dst−1)µ(ds)
(6)

and then define the following recursive estimate of the filtering density, for t ≥ 1

f̂t |t = �̂
(t)
F f̂t−1|t−1

For t = 0, f̂0|0 is chosen arbitrarily (cf Sect. 3.4).
In the same way, a non parametric estimate of the backward operator can be defined by

�̂
(t)
B ξ(st ) = f̂t |t (st )

∫
â(st+1|st )

f̂t+1|t (st+1)
ξ(st+1)µ(dst+1) (7)

with

f̂t+1|t (st+1) =
∫

â(st+1|st ) f̂t |t (st )µ(dst )

And f̂t |T is defined recursively, starting with f̂T |T , by

f̂t |T = �̂
(t)
B f̂t+1|T

The convergence results, demonstrated later on, induce that â and b̂ inherit properties [A]
for n large enough. Hence, there exists an integer n0 such that operators �̂

(t)
F and �̂

(t)
B are

well-defined for n > n0, Qµ0 almost surely. We suppose in the sequel that this last condition
is verified.
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3 L1 convergence of filtering densities

In this section, the L1 convergence of the non parametric estimates of the filtering densities
is studied when length n of the learning sequence tends to infinity.

The L1 convergence of f̂t |t to ft |t is obtained by using two main arguments, i.e. the

convergence of �̂
(t)
F to �

(t)
F (Proposition 1) and the exponential forgetting of the initial

distribution for the forward operator �F (Proposition 2) which enable us to control the
growth of the error || f̂t |t − ft |t ||1 when t increases.

3.1 Hypothesis

Let us now list the assumptions which are made throughout the paper to get the uniform
convergence of the kernel estimates.

We make the following assumptions on the regularity of the pdf and on the mixing pro-
perties of the Markov chain:

[B]
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. The stationary pdf f, the two-dimensional stationary pdf q1 and the joint density

q2 admits bounded derivatives (or partial derivatives) of order ζ ≥ 2.

2. infs∈S f (s) ≥ κ−
f > 0

3. The Markov Chain {St } is geometrically ergodic.

Hypothesis [A] and [B] are partly redundant. However, they are presented in this form for
the sake of simplicity. Assumption [B]1 controls the regularity of the pdf f , q1 and q2 and
it is required in order to get the uniform convergence of the non parametric estimates â
and b̂. [B]1 and [B]2 imply that a and b are bounded. We can also remark that, as f (s) =
∫

a(s|s′) f (s′)µ(ds′), [A]1 implies [B]2 with κ−
f ≥ κ−

a . And assumption [A]1 implies the
uniform ergodicity of {St } and thus [B]3.

Concerning the kernel functions, we assume that for some ζ ≥ 2

[K(ζ )]
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1. K1, K2, K3 are Lipschitz-continuous functions

2. Ki (t) = 0 for t /∈ [−1, 1]di and
∫

[−1,1]di Ki (t)dt = 1, for i = 1, 2, 3.

3.
∫

[−1,1]di

∏l
j=1 zi j Ki (z1, . . . , zdi )dz1 . . . dzdi = 0 for every choice

i1, . . . , il ∈ {1, . . . , di }, l = 1, . . . , ζ − 1, for i = 1, 2, 3 with d1 = d, d2 = 2d

and d3 = d + d ′.

Assumptions [K(ζ )]1 and [K(ζ )]2 are common in kernel estimation (see Liebscher 2001)
and [K(ζ )]3 allows us to obtain appropriate convergence rate for the bias and to improve
slightly former results, such as those reported in Bosq (1996).

Finally, the bandwidth parameters h1(n), h2(n) and h3(n) are supposed to satisfy

[H]
∣
∣
∣
∣
∣

hi (n) = const.

(
log(n)

n

) 1
2ζ+di

for i = 1, 2, 3.
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3.2 Convergence of the forward operator

In order to demonstrate Proposition 1, we need to establish the uniform convergence of â
and b̂ to the conditional pdf a and b.

Lemma 1 Under assumption [B] and if hypothesis [H] and [K(ζ )] are verified with ζ ≥ 2
then,

r f (n) = sup
s∈S

| f̂ (s) − f (s)| = O

((
log(n)

n

)ζ/(2ζ+d)
)

Qµ0 − a.s. (8)

ra(n) = sup
s,s′∈S

|â(s′|s) − a(s′|s)| = O

((
log(n)

n

)ζ/(2ζ+2d)
)

Qµ0 − a.s. (9)

rb(n) = sup
s∈S,y∈Y

|b̂(y|s) − b(y|s)| = O

((
log(n)

n

)ζ/(2ζ+d+d ′))

Qµ0 − a.s. (10)

Proof of Lemma 1 The proof of Lemma 1 follows the same scheme as the one described
in Liebscher (1999, 2001), therefore it is not developed in details here. One can notice that
assumptions [B] induce the condition I given in Liebscher (2001). Convergence of f̂ is
proved in Liebscher (2001) and convergence of â to a is a direct application of Theorem 3.2
of Liebscher (1999). The convergence of b̂ can be demonstrated in the same way.

Firstly, we remark that for any α, α̂ ∈ R and β, β̂ ∈ R
∗,

∣
∣
∣
∣

α

β
− α̂

β̂

∣
∣
∣
∣
≤ 1

|ββ̂| (|α̂||β̂ − β| + |β̂||α̂ − α|) (11)

Then, we easily deduce that

|b̂(y|s) − b(y|s)|

≤ 1

f (s)

(

q̂2(y, s)| f̂ (s) − f (s)|
f̂ (s)

+ |q̂2(y, s) − q2(y, s)|
)

≤ 1

κ−
f

(

q̂2(y, s)| f̂ (s) − f (s)|
f̂ (s)

+ |q̂2(y, s) − q2(y, s)|
)

(12)

Secondly, assumptions [B] imply that {S, Y } is a β-mixing process and thus the convergence
properties of non parametric estimates of densities given in Liebscher (2001) apply here.
Hence, we obtain the uniform almost sure convergence of q̂2 to q2. These results also permit
to bound q̂2(y, s) f̂ (s)−1 and the conclusion follows from (12). 
�

Proposition 1 Under assumptions [A], [B], [H] and [K(ζ )], there is a constant κF such that
for all t ∈ {1, . . . , T }, yt

1 ∈ Y t and all pdf ξ on S we have

||(�̂(t)
F − �

(t)
F )ξ ||1 ≤ κF (ra(n) + rb(n)) Qµ0 − a.s.
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Proof of Proposition 1 Let ξ be a pdf on S and t ∈ {1, . . . , T }. By definition, we have

||(�(t)
F − �̂

(t)
F )ξ ||1 =

∫ ∣
∣
∣
∣

∫

b(yt |st )a(st |s)ξ(s)µ(ds)
∫ ∫

b(yt |s′)a(s′|s)ξ(s)µ(ds)µ(ds′)

−
∫

b̂(yt |st )â(st |s)ξ(s)µ(ds)
∫ ∫

b̂(yt |s′)â(s′|s)ξ(s)µ(ds)µ(ds′)

∣
∣
∣
∣
µ(dst ) (13)

Then, using inequality (11) and the relation between the numerators and the denominators
in (13), we get

||(�(t)
F − �̂

(t)
F )ξ ||1 ≤ |β̂ − β|

|β| + 1

|β|
∫ ∫ ∣

∣
∣b(yt |s′)a(s′|s) − b̂(yt |s′)â(s′|s)

∣
∣
∣

ξ(s)µ(ds)µ(ds′)

withβ = ∫ ∫

b(yt |s′)a(s′|s)ξ(s)µ(ds)µ(ds′) and β̂ = ∫ ∫

b̂(yt |s′)â(s′|s)ξ(s)µ(ds)µ(ds′).
Then

∫ ∫ ∣
∣
∣b(yt |s′)a(s′|s) − b̂(yt |s′)â(s′|s)

∣
∣
∣ ξ(s)µ(ds)µ(ds′)

≤
∫ ∫

â(s′|s)
∣
∣
∣b(yt |s′) − b̂(yt |s′)

∣
∣
∣ ξ(s)µ(ds)µ(ds′) +

∫ ∫

b(yt |s′)
∣
∣a(s′|s)

− â(s′|s)∣∣ ξ(s)µ(ds)µ(ds′)

≤ rb(n)

∫ ∫

â(s′|s)ξ(s)µ(ds)µ(ds′) + ra(n)

∫ ∫

b(yt |s′)ξ(s)µ(ds)µ(ds′)

≤ rb(n) + κ+
b ra(n)

And, as a consequence,

|β̂ − β| ≤
∫ ∫ ∣

∣
∣b(yt |s′)a(s′|s) − b̂(yt |s′)â(s′|s)

∣
∣
∣ ξ(s)µ(ds)µ(ds′)

≤ rb(n) + κ+
b ra(n)

Then, using assumptions [A]1 and [A]2, we can show that

β > κ−
a κ−

b

and finally, we get

||(�(t)
F − �̂

(t)
F )ξ ||1 ≤ 2

rb(n) + κ+
b ra(n)

κ−
a κ−

b


�
3.3 Exponential forgetting of initial conditions

The forward operator �
(t)
F is a composition of a contractant Markov operator and a Bayes

operator, which is not necessarily contractant, and as a consequence �
(t)
F is not contractant in

general. But, in order to get ft |t from fr |r for t > r , it is equivalent to apply �
(t)
F . . . �

(r+1)
F

or to apply the Bayes operator once followed by t − r Markov operators. The contractivity
of the Markov operator can then beat the expansion of the Bayes operator. Such an idea was
first proposed in Araposthatis and Marcus (1990) and was then extended in Douc and Matias
(2001), Künsch (2001) and Le Gland and Mevel (2000).
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Proposition 2 Under assumptions [A], for all r ≤ t , for any pdf ξ and ξ ′ on S

||�t
F�t−1

F · · · �r
F (ξ − ξ ′)||1 ≤ Ca

(

1 − 1

C2
a

)t−r+1

||ξ − ξ ′||1

with Ca = κ+
a

κ−
a

.

The proof of Proposition 2 can be found in Künsch (2001) (see Lemma 8 and Theorem 1).

3.4 Convergence of the filtering densities

The main result concerning the convergence of the filtering densities is given in the theorem
below.

Theorem 1 Under hypothesis [A], [B], [H] and [K(ζ )] with ζ ≥ 2 there exists a constant
K F , such that for all T ∈ N ∗, t ∈ {1, . . . , T } and yT

1 ∈ YT , we have

|| f̂t |t − ft |t ||1 ≤ K F (ra(n) + rb(n)) + Ca

(

1 − 1

C2
a

)t

|| f0|0 − f̂0|0||1 Qµ0 − a.s.

This theorem states that the rate of convergence of the filtering densities is the same as the
slowest convergence rate obtained in Lemma 1 for the non parametric estimates, with a
constant K F which does not depend on T .

In practice, f0|0 and f̂0|0 can be chosen arbitrarily. For instance, we can choose the sta-
tionary distributions, i.e. f0|0 = f , and its kernel density estimate f̂0|0 = f̂ . In this case,
|| f0|0 − f̂0|0||1 is controlled by r f (n). Another natural choice is f̂0|0 = f0|0 with f0|0 some
arbitrary pdf on S. In this case, the term || f0|0 − f̂0|0||1 vanishes. In all cases, the error made
on the initial condition is forgotten at an exponential rate when t tends to infinity. In Sect. 4,
we will assume, for the sake of simplicity, that f̂0|0 = f0|0.

Proof of Theorem 1 The L1 norm of error on the filtering density is given by

|| ft |t − f̂t |t ||1 = ||�(t)
F ft−1|t−1 − �̂

(t)
F f̂t−1|t−1||1

It can be bounded as follows:

|| ft |t − f̂t |t ||1 ≤ ||(�(t)
F − �̂

(t)
F ) f̂t−1|t−1||1 + ||�(t)

F ( ft−1|t−1 − f̂t−1|t−1)||1
By iterating, we obtain

|| ft |t − f̂t |t ||1
≤ ||(�(t)

F − �̂
(t)
F ) f̂t−1|t−1||1 + ||�(t)

F (�
(t−1)
F − �̂

(t−1)
F ) f̂t−2|t−2||1

+ · · · + ||�(t)
F · · · �(2)

F (�
(1)
F − �̂

(1)
F ) f̂0|0||1 + ||�(t)

F · · · �(1)
F ( f0|0 − f̂0|0)||1

Then, using Propositions 1 and 2, we get

|| ft |t − f̂t |t ||1 ≤ κF (ra(n) + rb(n))

(

1 + Ca

t−1
∑

r=1

(

1 − 1

C2
a

)r
)

+Ca

(

1 − 1

C2
a

)t

|| f0|0 − f̂0|0||1

≤ K F (ra(n) + rb(n)) + Ca

(

1 − 1

C2
a

)t

|| f0|0 − f̂0|0||1
with
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K F = κF
(

1 + Ca
(

1 − C2
a

))


�

4 Convergence of the smoothing densities

The L1-convergence of the smoothing densities f̂t |T to ft |T is obtained using similar
arguments as those used to get the convergence of the filtering densities. More precisely,
we combine the facts that �̂

(t)
B tends to �

(t)
B when n tends to infinity (Proposition 3) and

that during the backward task of smoothing, the “future” is forgotten at an exponential rate
(Proposition 4).

4.1 Convergence of the backward operator

Let us first consider the convergence of the backward operator.

Proposition 3 Under assumptions [A], [B], [H] and [K(ζ )] with ζ > 2, there is a constant
κB such that for all t ∈ {1, . . . , T }, yt

1 ∈ Y t and pdf ξ on S, we have

||(�̂(t)
B − �

(t)
B )ξ ||1 ≤ κB(ra(n) + rb(n))

Proof of Proposition 3 Let ξ be a pdf on S and t ∈ {1, . . . , T }. By definition, we have

||(�̂(t)
B − �

(t)
B )ξ ||1

=
∫

∣
∣
∣
∣
∣

∫
(

ft |t (st )a(st+1|st )

ft+1|t (st+1)
− f̂t |t (st )â(st+1|st )

f̂t+1|t (st+1)

)

ξ(st+1)µ(dst+1)

∣
∣
∣
∣
∣
µ(dst )

Then, using inequality (11), we get

||(�̂(t)
B − �

(t)
B )ξ ||1

≤
∫ ∫ ft |t (st )a(st+1|st )

∣
∣
∣ ft+1|t (st+1) − f̂t+1|t (st+1)

∣
∣
∣

ft+1|t (st+1) f̂t+1|t (st+1)
ξ(st+1)µ(dst )µ(dst+1)

+
∫ ∫

∣
∣
∣ ft |t (st )a(st+1|st ) − f̂t |t (st )â(st+1|st )

∣
∣
∣

f̂t+1|t (st+1)
ξ(st+1)µ(dst )µ(dst+1) (14)

Using Theorem 1, with f0|0 = f̂0|0, and Lemma 1 we can show that for all st+1 ∈ S,
∫ ∣

∣
∣
∣
a(st+1|st ) ft |t (st )µ(dst ) −

∫

â(st+1|st ) f̂t |t (st )

∣
∣
∣
∣
µ(dst )

≤
∫

a(st+1|st )

∣
∣
∣ ft |t (st ) − f̂t |t (st )

∣
∣
∣ µ(dst ) +

∫

f̂t |t (st )
∣
∣a(st+1|st ) − â(st+1|st )

∣
∣ µ(dst )

≤ κ+
a K F (ra(n) + rb(n)) + ra(n)

As a consequence of the previous inequality,
∣
∣
∣ ft+1|t (st+1) − f̂t+1|t (st+1)

∣
∣
∣ =

∣
∣
∣
∣

∫

a(st+1|st ) ft |t (st )µ(dst ) −
∫

â(st+1|st ) f̂t |t (st )µ(dst )

∣
∣
∣
∣

≤ κ+
a K F (ra(n) + rb(n)) + ra(n) (15)
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We have ft+1|t (st+1) = ∫

ft |t (st )a(st |st+1)µ(dst ) > κ−
a for all st+1. Then Eq. 15 implies

that we can find n0 such that for n ≥ n0, f̂t+1|t (st+1) > κ−
a /2.

Finally, we have, for n ≥ n0,

||(�̂(t)
B − �

(t)
B )ξ ||1

≤ κ+
a

κ−
a κ−

a /2

∫ ∫

ft |t (st )

∣
∣
∣ ft+1|t (st+1) − f̂t+1|t (st+1)

∣
∣
∣ ξ(st+1)µ(dst )µ(dst+1)

+ 1

κ−
a /2

∫ ∫ ∣
∣
∣ ft |t (st )a(st+1|st ) − f̂t |t (st )â(st+1|st )

∣
∣
∣ ξ(st+1)µ(dst )µ(dst+1)

≤ κ+
a

(

κ+
a K F (ra(n) + rb(n)) + ra(n)

)

κ−
a κ−

a /2

∫ ∫

ft |t (st )ξ(st+1)µ(dst )µ(dst+1)

+
(

κ+
a K F (ra(n) + rb(n)) + ra(n)

)

κ−
a /2

∫

ξ(st+1)µ(dst+1)

≤ κ+
a K F (ra(n) + rb(n)) + ra(n)

κ−
a /2

(
κ+

a

κ−
a

+ 1

)


�
4.2 Exponential forgetting for the backward operator

Proposition 4 states that the backward operator �
(t)
B is contractant. As far as we know, there

is no former result on this in the literature.

Proposition 4 Under hypothesis [A], for any pdf ξ and ξ ′ on S,

||�(t)
B (ξ − ξ ′)|| ≤ ρB ||ξ − ξ ′||1

with ρB = 1 −
(

κ−
a

κ+
a

)2
.

Proof of Proposition 4 Let us first remark that for any pdf ξ on S, we have

�
(t)
B ξ(st ) =

∫

S
q(t)

B (st |st+1)ξ(st+1)µ(dst+1) (16)

with

q(t)
B (s|s′) = ft |t (s)

ft+1|t (s′)
a(s′|s)

Then for all s, s′, s′′ ∈ S

q(t)
B (s|s′)

q(t)
B (s|s′′)

= a(s′|s) ft+1|t (s′′)
a(s′′|s) ft+1|t (s′)

≤
(

κ+
a

κ−
a

)2

The proof of the proposition follows using Lemma 2 below. 
�

Lemma 2 If there exists Cb > 0 such that for all s, s′, s′′ ∈ S
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q(t)
B (s|s′)

q(t)
B (s|s′′)

≤ Cb

then for all pdf ξ and ξ ′ on S we have

||�(t)
B ξ − �

(t)
B ξ ′||1 ≤

(

1 − 1

Cb

)

||ξ − ξ ′||1

A similar lemma is demonstrated in Douc and Matias (2001) and Künsch (2001) .

4.3 Convergence of the smoothing densities

We can now state the theorem on the convergence of the smoothing densities.

Theorem 2 Under hypothesis [A], [B], [H] and [K(ζ )], for ζ ≥ 2, there exists a constant
K B such that for all T ∈ N

∗, t ∈ {1, . . . , T } and yT
1 ∈ YT

|| ft |T − f̂t |T ||1 ≤ K B(rn(a) + rn(b)) Qµ0 − a.s. (17)

Let us give some direct consequences of this theorem. We abusively denote, for k ≥ 1,
Ê[(St )

k |Y T
1 = yT

1 ] the conditional moments of order k corresponding to f̂t |T . Under
assumptions of Theorem 2, we have for all T ∈ N

∗, t ∈ {1, . . . , T } and yT
1

|E[(St )
k |Y T

1 = yT
1 ] − Ê[(St )

k |Y T
1 = yT

1 ]| ≤ K B sup
s∈S

(|s|k)(ra(n) + rb(n)) Qµ0 − a.s.

It is also easy to check that for all α ∈] 0, 1 [ , F̂−1
t |T (α) → F−1

t |T (α) Qµ0 −a.s. when n → ∞.

Here Ft |T and F̂t |T denote the cumulative distribution functions associated with ft |T and f̂t |T
respectively. It justifies the use of F̂−1

t |T to compute prediction intervals.

Proof of Theorem 2 Using Propositions 3 and 4, we can show that

|| ft |T − f̂t |T ||1 = ||�(t)
B ft+1|T − �̂

(t)
B f̂t+1|T ||1

≤ ||(�(t)
B − �̂

(t)
B ) f̂t+1|T ||1 + ||�(t)

B ( ft+1|T − f̂t+1|T )||1
≤ κB(ra(n) + rb(n)) + ρB || ft+1|T − f̂t+1|T ||1

By iteration, we deduce that

|| ft |T − f̂t |T ||1 ≤ κB(ra(n) + rb(n))�T −t+1
k=0 ρk

B + ρT −t
B || fT |T − f̂T |T ||1

Finally, applying Theorem 1 with f0|0 = f̂0|0, we get

|| ft |T − f̂t |T ||1 ≤ κB

1 − ρB
(ra(n) + rb(n)) + ρT −t

B K F (ra(n) + rb(n))


�
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5 Simulation results

In this section, we illustrate the results demonstrated in the previous sections with simulations.
Let us first define the state space model that has been used in this section. The hidden

state space is chosen as the unit circle S = R/2πZ, and we assume that {St } is a von Mises
process with transition kernel

a(st |st−1) = 1

I (ρ)
eρ cos(st −st−1)

with ρ > 0 and I the modified Bessel function of order 0.
We also assume that the observed process {Yt } takes its values in Y = R/2πZ and that

the emission probabilities are parameterized using the von Mises distribution

b(yt |st ) = 1

I (ρ′)
eρ′ cos(yt −st )

with ρ′ > 0.
It is easy to check that conditions [A] and [B] are verified by this state space model.
Then, we have carried out the following numerical experiment:

• We have simulated a learning sequence ŝn
1 , ŷn

1 from the state space model, with ρ = ρ′ =
1 and n increasing from 500 to 20,000 with a step equal to 500.

• We have computed the corresponding non-parametric estimates â and b̂ of a and b.
We have used Epanechnikov kernels (see Bosq 1996) for K1,K2 and K3, and these
kernels satisfy [K(ζ )] with ζ = 2. The bandwidth parameters h1(n), h2(n) and h3(n)

have been chosen according to [H]. Then, we have computed the quantities ra(n) =
sups,s′∈S |â(s′|s) − a(s′|s)| and rb(n) = sups∈S,y∈Y |b̂(y|s) − b(y|s)|. The results

are shown in Fig. 1. According to Lemma 1, we have ra(n) = O

((
log(n)

n

)1/3
)

and

rb(n) = O

((
log(n)

n

)1/3
)

. The function
(

log(n)
n

)1/3
is also plotted in Fig. 1 for compa-

rison purpose, and the agreement with ra(n) and rb(n) is good.
• We have simulated an observed sequence yT

1 with the “true” state space model and
T = 1000. Then, we have computed the corresponding “true” and “estimated” filtering
and smoothing probabilities. In practice, we have used the forward–backward algorithm to
compute these probabilities, after having discretized the hidden state space S. According
to Theorems 1 and 2, the speed of convergence of these estimates should be close to
that of the non parametric estimates and Fig. 1 illustrates that the L1 norms of the errors
|| f̂t |t − ft |t ||1 and || f̂t |T − ft |T ||1 are of the same order than ra(n) and rb(n).

6 Application to meteorological data

The significant wave height is an important parameter for coastal and offshore engineering
(reliability, fatigue, . . .). When direct measurements of this parameter are not available for
some specific location, a wind-wave model is generally used. Most of the time, numerical
models based on physical considerations are used (see Liu et al. 2002), but it is well-known
that they are often inaccurate in coastal areas, because of the lack of complete physical process
modeling. The computational cost of these methods is also very high. An alternative consists
in using stochastic models as explained below.
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0 5000 10000 15000 20000

Fig. 1 Comparison of the convergence rate for the non parametric estimates (ra(n) (***) and rb(n) (. . .))
and the filtering (ooo) and smoothing (+++) densities. The different curves have been scaled to help the visual

comparison. The solid line is proportional to (log(n)/n)
1
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Fig. 2 Wind intensity (top) and significant wave height (bottom). Solid line: observed time series, dotted line:
forecasted time series

We will denote St ≥ 0 the significant wave height at time t at some specific location and
{Yt } = {ut , vt } where ut and vt denote, respectively, the zonal and meridional component
of the wind at time t at the same location. We will assume that {St , Yt } follows a state
space model. In practice, we have considered data from the buoy 42039 (Pensacola, Gulf of
Mexico), with geographical coordinates (28.80 N, 86.06 W). These data are available through
the NOAA ftp server (ftp://polar.wwb.noaa.gov/). The data set is split in two parts: the first
one (3 years) is used as a learning sequence and the second one (4 months) is used for
validation. The state sequence is forecasted by the conditional expectation of St given the
observed sequence yt

1.
Figure 2 illustrates how the forecasted time series matches the observed one. The agree-

ment is generally good and the forecasted time series restores the most important features
for the applications (peak occurrences, peak amplitude, calm weather durations, . . .).

These results have been compared with those obtained with linear regression models and
neural networks, and we have obtained better results with the non parametric methodology
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proposed in this paper. The results obtained with these different models will be discussed in
a forthcoming paper.
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