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ABSTRACT:

Airborne laser scanning (ALS) is an established tool for deriving various tree characteristics in forests. In some applications, an
accurate pointwise estimate of the tree position is required. For dense data acquired by TLS or UAV-mounted scanners, this can be
achieved by locating the stem, whose center coordinates are then used for deriving the planimetric tree position. However, in case
of standard ALS data this is often not an option due to the low probability of obtaining stem hits in operational scenarios of forest
mapping campaigns. This paper presents an alternative, indirect approach where the tree position is approximated as the center of
a quadric surface which best represents the tree crown shape. The study targets coniferous trees due to their distinct crown shape
which may be approximated by an elliptic paraboloid. It is assumed that individual tree point clusters are given and the task is to
find the tree center for each cluster. We first consider the general problem of fitting an elliptic paraboloid with a known axis and an
L1 residual norm error criterion, which is more robust to outliers compared to least-squares fitting. We formulate this problem as a
quadratically constrained quadratic program (QCQP), and show how prior knowledge on the crown shape and center position can
be incorporated. Next, a computationally simpler problem is considered where the paraboloid semiaxis lengths are constrained to
be equal, and a corresponding linear program is constructed. Experiments on ALS datasets of forest plots from Bavaria, Germany
and Oregon, USA reveal that a reduction in median tree position error of up to 20% can be attained compared to both least-squares
fitting and other baseline techniques, resulting in an absolute error of ca. 22 cm on both datasets.

1. INTRODUCTION

Airborne laser scanning (ALS) has become an increasingly
common technique for estimating parameters of both entire
stands and single trees in forested areas. In the latter case,
single-tree approaches attempt to first segment individual trees
within the point cloud and then derive parameters of interest for
each found tree (Reitberger et al., 2009). One such parameter
is the tree’s planimetric location, which can be though of as
the center position of the tree’s stem at ground level. A
common use of the extracted tree locations is associated with
evaluating the quality of a tree segmentation algorithm, where
a pointwise estimate of the detected tree position is necessary
for comparison with a reference location. Another important
application of the tree positions is for accurate co-registration of
multi-modal aerial and terrestrial LiDAR point clouds/images
of forest scenes based on pairwise distances between trees
within the scene (Polewski et al., 2019; Lee et al., 2016).
Also, from a practical perspective, precise information about
tree positions is crucial for the operation of autonomous
logging machines (Hellström, 2008), which navigate through
the forest and automatically harvest designated trees. Finally,
the emerging technology for geo-location and navigation
of autonomous vehicles in GPS-denied areas often relies
on accurate tree positions as a robust terrain feature for
orientation (Hussein et al., 2015). The matching process
between found tree positions via parameter optimization of
an appropriate transform can ensure an alignment with a
georeferenced coordinate system.
∗Corresponding author

When the point density is sufficiently high, direct approaches
to detecting stems can be applied, such as in case of TLS
data (Liang et al., 2012) or high-density ALS based on
low-altitude helicopter flights (Amiri et al., 2017). On the
other hand, while stem detection in ordinary ALS data has been
attempted (Reitberger et al., 2007), generally it is not realistic to
expect that laser reflections of stems will be available for most
trees. Therefore, heuristic or indirect methods for deriving tree
locations have to be applied. A common method of tree position
detection relies on finding tree tops using local maxima filtering
of the canopy height model (CHM). However, in some cases
such a procedure can lead to significant deviations between the
detected and true tree positions. The lack of robustness can be
attributed to the fact that this method only relies on one laser
reflection (having the highest Z coordinate), so a single outlier
can lead to failure. Another popular approach assumes that the
tree center coincides with the planimetric centroid of the 3D
point cluster which represents the entire tree (Yao et al., 2013).
However, in practice the segmented tree clusters are seldom
perfect, biasing the centroid away from the true tree position.
In general, the main drawback of such heuristic methods is that
they do not take into account the 3D shape of the segmented
trees, which has been well-studied and is amenable to modeling
with geometric surfaces. In particular, in environmental science
literature the crown surface of coniferous trees is often modeled
as a paraboloid (Husch et al., 2002).

In this paper, we make use of this intuition about the tree crown
shape, and introduce an alternative approach to tree position
calculation, based on fitting elliptic paraboloids to point
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clouds representing individual trees. Our primary contribution
is the quadratic programming formulation of fitting elliptic
paraboloids having a known axis, according to the L1-norm
of algebraic distances, with the ability to incorporate prior
information about the shape and position of the quadric surface.
The known axis assumption represents the apriori knowledge
that most tree stems are approximately parallel to the world
Z coordinate axis due to gravitropism. This assumption
yields a significant simplification of the general unconstrained
paraboloid fitting problem, although in reality the planimetric
tree top and stem ground positions may be shifted by a certain
offset due to crown asymmetry or a non-negligible deviation of
the stem from the Z axis. Although the models and algorithms
are introduced in the context of precision forestry, they are
generic and could be re-used for similar paraboloid fitting
problems, e.g. industrial inspection/modeling of manufactured
parts.

The rest of this paper is structured as follows. Section 2
deals with previous applications of paraboloids to tree crown
modeling, as well as related problems of quadric surface fitting
which inspired this work. In Section 3, the mathematical
formulation of the elliptic paraboloid fitting problem is given.
The next section describes how prior knowledge on the shape
(semiaxis length relationships) as well as position can be
incorporated into the basic problem. The experimental setup,
used evaluation metrics as well as data acquisition campaigns
are described in Section 5, followed by presentation and
discussion of results (Sec. 6). Finally, the most important
conclusions from this study are stated in Section 7.

2. RELATED WORK

The idea to apply L1 techniques to paraboloid fitting is
motivated by the work of (Zhou , Salvado, 2011), who showed
thatL1 fitting of ellipsoids provides a significant advantage over
the L2 norm for pose normalization of hippocampal shapes.
The conceptually closest approach to ours is due to Xiao et
al. (2016), which proposes to find the tree center through
fitting an ellipsoid to the upper part of the crown, according
to the modified version of the Pollock model (Pollock, 1994).
Similar to our method, a rotation angle in the XY plane is
included in the model. However, the fitting is performed in
the least-squares (L2) sense compared to the L1-norm used
in our study, and no prior knowledge is introduced into the
optimization problem. Also, the authors did not investigate the
quality of the obtained tree positions as the study was focused
on other parameters. Quadric surfaces in forestry remote
sensing have mostly been applied for deriving features relevant
to tree species classification, such as mean and Gaussian
curvature (Barilotti et al., 2009). Reitberger et al. (2008)
perform L2 paraboloid fitting to tree crown points and use
the obtained semiaxis lengths as features for distinguishing
between coniferous and deciduous species. Recently, Amiri
et al. (2018) showed that by embedding an explicit modeling
step of coniferous tree crowns with paraboloids into a graph-cut
segmentation procedure, it is possible to significantly improve
the accuracy of the segmented individual trees. The task of
fitting elliptic paraboloids has been extensively addressed in
literature as part of the broader problem of fitting quadrics.
Dai et al. (2007) present a method for recovering the elliptic
paraboloid parameters from least-squares fitting of generic
quadric surfaces. Al-Subaihi (Watson) consider the problem of
quadric fitting with respect to L1 and L∞. In general, existing
methods for L1 optimization do not allow direct incorporation

of prior knowledge on the paraboloid’s shape. Also, since the
problem is non-convex, the algorithms may converge to a local
minimum only. We propose to formulate the fitting problem
as a quadratic program, which both admits prior information
and provides a systematic approach for exploring the solution
space, often leading to global optimality. Indeed, although the
resulting quadratic program is non-convex and hence NP-hard,
in practice a provably optimal solution can usually be obtained
using branch-and-bound techniques in reasonable time.

3. FITTING ELLIPTIC PARABOLOIDS

3.1 Quadric surface parametrization

An elliptic paraboloid surface in standard position (centered at
the origin, with the Z axis as its axis) can be described by the
following equation (Dai et al., 2007):

x̂TA0x̂+ gx̂ = 0 (1)

where x̂ = [x, y, z] represents the point coordinates and g =
[0, 0,−1]. Let a, b indicate the paraboloid’s semiaxis lengths.
Then, for a ’downward’ paraboloid, A0 is a diagonal matrix
with the diagonal [−1/a2,−1/b2, 0]. We consider a paraboloid
with its center located at [x0, y0, z0], parallel to the Z axis and
rotated around Z by an angle of θ. Letting R be the standard
rotation matrix around the Z axis by θ, and setting x̄ = [x −
x0, y − y0, z − z0], A = RTA0R we can write the rotated
paraboloid as:

z = x̄TAx̄+ z0 (2)

Let S = {p1, . . . , pn}, pi = [xi, yi, zi] be a set of n measured
points representing the paraboloid surface. The above equation
could be used directly to optimize the algebraic distances
between the modeled and measured heights on S with respect
to the 6 paraboloid parameters Θ = [a, b, θ, x0, y0, z0] and a
chosen residual norm Lp, with per-point weights W :

min
Θ
||Wr||p

r = [z1 − z(x1, y1; Θ), . . . , zn − z(xn, yn; Θ)]
(3)

However, the problem is strongly non-linear in the original
paraboloid parameters Θ, and therefore it is likely that any
stationary point-finding method will terminate in a local
optimum. Moreover, since we are interested in finding the
solution for p = 1, i.e. the L1 norm, any gradient-based method
could be faced with non-differentiability problems whenever
one of the residuals ri becomes exactly 0. To alleviate such
difficulties, we may resort to an alternative parametrization Φ
where z(x, y; Φ) is a linear function of the parameters (Dai et
al., 2007; Hall et al., 1982):

z(x, y; Φ) = φ0x
2 + φ1y

2 + φ2xy + φ3x+ φ4y + φ5 (4)

Note that due to the known paraboloid axis, there are 6
parameters compared to 9 for the unconstrained quadric (see
Fig. 1). The problem minΦ ||Wr||p can now be written more
explicitly in matrix form as minΦ ||W (DΦ − z̄)||p, where
z̄ = [z1, . . . , zn] is the vector of measured heights, and the
ith row of D is defined as Di = [x2

i , y
2
i , xiyi, xi, yi, 1].Taking

the L2 norm, we obtain the familiar least-squares problem, for
which a closed-form optimal solution exists:

Φ̃L2 = (DTWD)−1DTWz̄ (5)
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Here, we are concerned with the L1 solution, motivated by
the robustness of L1 optimization methods in the presence
of outliers, and in particular the successful application to
ellipsoid fitting (Zhou , Salvado, 2011). It is well known
that L1 minimization problems can be solved using linear
programming. Our problem for p = 1 can then be formulated
as a linear program, with the introduction of auxiliary variables
Γ = [γ1, . . . , γn]:

min
Φ,Γ

n∑
i=1

Wiiγi

s.t.
DiΦ

T − zi ≤ γi
−DiΦT + zi ≤ γi

}
∀i∈1,...,n (C1)

(6)

Figure 1. Z-axis aligned elliptic paraboloid centered at
(x0, y0, z0), rotated by θ degrees around the Z axis, with

semiaxis lengths a, b.

3.2 Elliptic paraboloid constraints

While Eq. 4 may describe an elliptic paraboloid, this will
not necessarily be true for any combination of Φ coefficient
values. Indeed, other quadric surface types such as a hyperbolic
paraboloid, cylinder or plane are also representable in this
parametrization. The concrete shape type obtained from fitting
with Eq. 6 is data-dependent and cannot be pre-specified
without additional constraints. While this is less of a concern
for highly accurate point clouds obtained e.g. from close-range
scanning, in case of ALS point clouds this problem can manifest
itself. Particularly when fitting incomplete point clouds of
tree crowns, distorted by imperfect segmentation techniques,
an explicit constraint on the desired surface type (elliptic
paraboloid) is required. To derive it, we consider the two
quadric surface invariants D and ∆ (Dai et al., 2007), which
together determine the surface type. The surface is an elliptic
paraboloid iffD = 0 and ∆ < 0. Whereas the former condition
is fulfilled automatically due to the formulation of Eq. 4, the
latter one must be addressed directly. The invariant ∆ can be
expressed as a function of the surface coefficients in the form:
∆ = 1

4

(
φ2
2
4
− φ0φ1

)
. Consequently, the quadratic constraint

(C2) must be added to problem (6) to ensure that an elliptic
paraboloid is obtained:

φ2
2

4
− φ0φ1 < 0 (C2) (7)

Finally, to ensure that the paraboloid opens ’downward’ along
the Z axis, an upper bound φ0, φ1 < 0 is required. The
addition of (C2) turns the linear program into a non-convex
quadratically constrained quadratic program (QCQP), which
can be approximately solved using the standard spatial
branch-and-bound technique (Belotti et al., 2009).

3.3 Recovering shape parameters

Once the generic surface parameters Φ are obtained through
optimization, it is still necessary to recover the shape
parameters specific to elliptic paraboloids, i.e. the original
vector Θ. This can be achieved by expanding Eq. 2 and
grouping coefficients associated with appropriate products of
coordinates x, y, resulting in a formulation similar to Eq. 4.
Comparing corresponding coefficients yields the relationship
between Φ and Θ. Let A1, b1 be matrix functions of Φ such
that:

A1 =

(
φ0

φ2
2

φ2
2

φ1

)
, b1 =

(
φ3

φ4

)
(8)

Then, the center (x0, y0, z0) of the paraboloid can be found as
the solution of the following linear system:(

x0

y0

)
= (−2A1)−1b1

z0 = φ5 − (φ0x
2
0 + φ1y

2
0 + φ2x0y0)

(9)

The semiaxis lengths a, b can be obtained through
eigendecomposition of A1 (Dai et al., 2007). Let λ1, λ2

be the two eigenvalues of A1 and let ν be the eigenvector
associated with λ1, then:

a =
1√
−λ1

, b =
1√
−λ2

, θ = atan(νy, νx) (10)

Note that enforcing the constraints from Sec. 3.2 guarantees the
negativity of λ1, λ2 as well as the invertibility of A1, so that a
unique solution (x0, y0, z0) exists.

4. INTRODUCING PRIOR KNOWLEDGE

In this section, we describe how two types of prior knowledge
about the paraboloid’s shape and position can be incorporated
into the optimization problem. Also, the final formulations of
the quadratic and linear programs are presented.

4.1 Semiaxis relationships

4.1.1 Ratio of semiaxis lengths Oftentimes, there is some
prior knowledge on the desired degree of imbalance/asymmetry
of the paraboloid’s semiaxes. In particular, tree crowns tend to
be quite symmetrical. Ideally, we would like to enforce bounds
on the ratio r0 = a/(a + b). Unfortunately, the closed-form
expression for r0 in terms of the program’s variables Φ is
quite complicated and would introduce more non-convexity
into the QCQP. Instead, we target r1 = a2/(a2 + b2) and show
how this ratio can be bounded by adding a single constraint
on φ0, φ1, φ2. Consider once more Eq. 2 expanded to the
explicit form of Eq. 4. The coefficients next to x2, y2 are
respectively A11, A22, therefore it must hold that φ0 + φ1 =
A11 + A22. Examining the difference φ1 − φ0 and noting that
φ2 = A12 + A21, after expanding A = RTA0R and applying
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basic algebraic transformations we obtain:

(φ0 + φ1)2 =

(
1

a2
+

1

b2

)2

[sin2 θ + cos2 θ]2

(φ0 − φ1)2 + φ2
2 =

(
1

b2
− 1

a2

)2

[sin2 2θ + cos2 2θ]

(11)

Since the right-hand side trigonometric expressions evaluate
to one, this yields expressions for the sum and difference of
squared semiaxis lengths. These expressions can in turn be used
for computing the ratio r1:

ρ =
1/b2 − 1/a2

1/b2 + 1/a2
= 1− 2r1 (12)

Indeed, a constraint of the form ρ2 ≤ ω2 implies r1 ∈
[ 1−ω

2
; 1+ω

2
] for 0 ≤ ω ≤ 1. This constraint can be written

as ((φ0 − φ1)2 + φ2
2)/(φ0 + φ1)2 ≤ ω2, or more explicitly:

(1−ω2)φ2
0 + (1−ω2)φ2

1 + φ2
2 + (−2− 2ω2)φ0φ1 ≤ 0 (C3)

(13)
Similar to (C2), (C3) is also non-convex due to the bilinear
term φ0φ1, however this bilinear term is also shared by both
constraints, which can be exploited by the branch-and-bound
algorithm during solving.

4.1.2 Semiaxis length upper bound It would be useful
to introduce simple upper bounds on the semiaxis lengths,
reflecting knowledge about e.g. the maximum crown diameter
of certain tree species. Unfortunately, a simple expression for
a, b in terms of the program’s variables φi is not available.
However, using techniques similar to the ones described in the
previous paragraph, an upper bound constraint may be derived.
Using the building blocks from Eq. 11, we may write:(

1

a2
+

1

b2

)2

−
(

1

b2
− 1

a2

)2

=
4

a2b2
(14)

Consider the constraint 4/(a2b2) ≥ µ2, which may be
equivalently expressed as a2b2 ≤ 4/µ2, and assume without
loss of generality that b ≥ a. If constraint (C3) is fulfilled, from
Eq. 12 we have that a2 ≥ b2(1 − ω)/(1 + ω). Putting the two
inequalities together, we obtain an upper bound for b4:

b4 ≤ 4

µ2

1 + ω

1− ω (15)

The constraint 4/(a2b2) ≥ µ2 needs to be formulated in terms
of the variables φ. This can be achieved by applying the
expressions from Eqs. 11,14, leading to the final form:

φ2
2 − 4φ0φ1 ≤ −µ2 (C4) (16)

This inequality is surprisingly similar to constraint (C2), Eq. 7.
Indeed, dividing both sides by 4, the exact form of (C2)’s
left-hand side is recovered: φ2

2/4−φ0φ1 ≤ −µ2/4. Because µ2

is necessarily positive (to avoid division by zero in Eq. 15), any
parameter vector Φ which fulfills (C4) must also automatically
fulfill (C2), making the latter constraint redundant. By
enforcing (C4) with an appropriate constant µ2, an arbitrary
upper bound on the maximal semiaxis length can be obtained.
However, it should be noted that this bound is qualitatively
different from two independent constraints a ≤ A, b ≤ B for
some constants A,B, because (C4) is a bound on the product

of (squared) axis lengths. Therefore the effective upper bound
will be a function of both axis lengths. In particular, for an
imbalance factor ω 6= 0, the two lengths will not be able to
reach the bound of Eq. 15 simultaneously. The only guarantee
is that the value of 4(1 + ω)/[µ2(1− ω)] will not be exceeded.

4.2 Distance from center estimate

In some scenarios, a good heuristic estimate pc of the
paraboloid’s planimetric center is available, e.g. the point with
the highest Z coordinate within a coniferous tree’s point cloud.
A mechanism for constraining the fitted paraboloid’s center
to lie within a predefined distance from pc could therefore be
useful. Here, instead of a Euclidean distance constraint we
utilize a box variant such that the point (x0, y0) must lie within
the XY coordinate square centered on pc, with side length 2δ:(

pc,x − δ
pc,y − δ

)
≤c
(
x0

y0

)
= (−2A1)−1b1 ≤c

(
pc,x + δ
pc,y + δ

)
(17)

In the above, ≤c refers to componentwise inequality.
Unfortunately, M−1x ≤c z does not imply x ≤c Mz for
general M,x, z, therefore each dimension x, y has to be treated
separately. To proceed, we derive explicit formulas for x0, y0.
Let p±c = pc ± (δ, δ)T , then inequality 17 is equivalent to:

p−c,x(4φ0φ1 − φ2
2) ≤ φ2φ4 − 2φ3φ1 ≤ p+

c,x(4φ0φ1 − φ2
2)

p−c,y(4φ0φ1 − φ2
2) ≤ φ2φ3 − 2φ0φ4 ≤ p+

c,y(4φ0φ1 − φ2
2)

}
(C5)

4.3 Final program formulation

4.3.1 General case Here, the final quadratic program
containing the presented constraints (C1)-(C5) is directly
formulated (Eq. 18). It should be noted that due to the bilinear
terms of the form φkφl, each of the constraints (C3),(C4),(C5)
is non-convex, and hence the matrix representations Qi of
these constraints in the canonical QCQP form are not positive
semidefinite. This renders the problem NP-hard.

min
Φ,Γ

n∑
i=1

Wiiγi

s.t.
DiΦ

T − zi ≤ γi
−DiΦT + zi ≤ γi

}
∀i∈1,...,n (C1)

φ0, φ1 ≥ 0

φ2
2 − 4φ0φ1 ≤ −µ2 (C4)

(1− ω2)φ2
0 + (1− ω2)φ2

1 + φ2
2 + (−2− 2ω2)φ0φ1 ≤ 0 (C3)

p−c,x(4φ0φ1 − φ2
2)− φ2φ4 + 2φ3φ1 ≤ 0

φ2φ4 − 2φ3φ1 − p+
c,x(4φ0φ1 − φ2

2) ≤ 0

p−c,y(4φ0φ1 − φ2
2)− φ2φ3 + 2φ0φ4 ≤ 0

φ2φ3 − 2φ0φ4 − p+
c,y(4φ0φ1 − φ2

2) ≤ 0

 (C5)

(18)

4.3.2 Special case - equal axes The final 4 inequalities
in Eq. 18, associated with constraint (C5), introduce many
new nonconvex bilinear terms φkφl. This could significantly
complicate the search for the optimal solution, because the
optimization algorithm must introduce an auxiliary variable for
every such term and perform a search over its domain (Belotti
et al., 2009). Therefore, we consider a simplification of
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Problem 18 where the axes are constrained to be of equal length.
In this case, the rotation angle θ no longer makes sense, and
there is only one axis length a, resulting in 4 actual surface
parameters φ0, φ3, φ4, φ5, while φ1 = φ0 and φ2 = 0. In
this setting, constraints (C2)-(C4) become redundant, whereas
(C5) now reduces to a series of linear inequalities. Plugging
φ2 = 0 into Eq. 9, we see that x0 = −0.5φ3/φ0, and
y0 = −0.5φ4/φ0. Also, a simple expression for the axis
length a exists: φ0 = −1/a2. Therefore, an upper bound
a ≤

√
2/µ is easily representable as a bound on φ0 of the form

φ0 ≤ −µ/2. Collecting all constraints and variables, we obtain
the final linear program:

min
φ0,φ3,φ4,φ5,Γ

n∑
i=1

Wiiγi

s.t. φ0 +
µ

2
≤ 0

Di[φ0, φ0, 0, φ3, φ4, φ5]T − zi ≤ γi
−Di[φ0, φ0, 0, φ3, φ4, φ5]T + zi ≤ γi

}
∀i∈1,...,n (C1)

−2φ0p
−
c,x ≤ q3 ≤ −2φ0p

+
c,x

−2φ0p
−
c,y ≤ q4 ≤ −2φ0p

+
y,x

}
(C5)

(19)

Note that this linear program is equivalent (in terms of the fitted
shape) to the full QCQP with the imbalance coefficient ω set to
0, but significantly easier to optimise.

5. EXPERIMENTS

5.1 Material

Validation of our method was performed on two independent
datasets from (I) the Bavarian Forest National Park in Germany
(49◦3′19′′ N, 13◦12′9′′ E) and (II) the northern interior of
the Coast Range in western Oregon, USA (45◦18′5′′ N,
123◦22′51′′ W). The first study area belongs to the mountain
mixed forests zone and consists mostly of Norway spruce
(Picea abies) and European beech (Fagus sylvatica). The
ALS data were acquired using a Riegl LMS-680i scanner in
July 2012 with a nominal point density of 30 points/m2. The
pulse rate was 266 kHz. The flying altitude of 650 m resulted
in a footprint size of 32 cm. A total of 18 circular plots
of size 500 m2 each were extracted from the point clouds,
matching the forest locations which were surveyed in a field
inventory campaign. Dataset (II) is characterized by pure
silvicultural stands of Douglas-fir (Pseudotsuga menziesii) with
vine maple (Acer circinatum Pursh) present in the understory.
The acquisition took place in April 2011 with a Leica ALS60
scanner, resulting in a mean point density of ca. 10 points/m2.
Here, a single plot of dimensions 76x121 m2 was scanned. One
of the circular plots from (I) and part of the plot from (II) are
depicted in Fig. 2.

5.2 Reference data

In both datasets, tree segmentation using the method
by Reitberger et al. (2009) was performed, obtaining point
clusters representing single trees. For Dataset (I), 110 reference
tree positions were available from field inventory. For (II),
no field data for tree stem positions was available, therefore
we have to mark the crown centers as tree positions directly
within the point clouds of 169 Douglas firs obtained from
segmentation (Fig. 2(b)). Moreover, for a significant number
of the considered trees, the tree stem positions measured

in the field inventory did not exactly align with the tree’s
center in the corresponding point cloud (see Fig. 3(a)). Part
of the reason for this phenomenon can be attributed to the
accuracy of the GNSS measurements, however it is likely that
the main cause is associated with the potential discrepancy
between the tree tops and measured stem positions when
the crowns show a degree of asymmetry or the stems are
not perfectly vertical. To ensure that the reference positions
better reflect the tree top locations, we also manually created
them for Dataset I by visual interpretation in point cloud. It
should be noted that the clusters in the plot considered for
further processing could have resulted in the introduction of
a few clusters with segmentation errors, such as possessing
parts of adjacent trees (undersegmentation, see Fig. 3(b)) or
representing only a part of a tree (oversegmentation). It could
even impose further challenges for tree localization task in the
experiment. Therefore, three variations of experimental cases
were investigated here for the assessment of tree localization:
1. Dataset (I) based on tree stem positions from field data; 2.
Dataset (I) based on manually adjusted tree centers; 3. Dataset
(II) based on manually adjusted tree centers. Additionally, the
properties of the reference trees for both datasets, including
the average height, number of points per tree and radius of
the minimum circle containing the crown, are summarized in
Table 1.

Property Dataset (I) Dataset (II)

Tree species Norway spruce Douglas fir
Num. trees 110 169
Avg. height [m] 17 24
Avg. enclosing circle

radius [m] 3.10 4.56
Avg. point density of

crowns [pts/m2] 28.61 14.62

Table 1. Properties of reference trees.

5.3 Experimental setup

To fit the paraboloid to an individual tree point cluster, we
first partitioned the points into a planimetric grid of width
dgrd. Two widths were considered: 40 and 50 cm. We then
created a new point cloud with XY coordinates corresponding
to the grid center points and Z coordinates obtained from
the highest original laser point within the corresponding grid
cell. This way, the paraboloid was fitted only to the points
lying on the surface of the tree, as opposed to points lying
within the tree. Empty grid cells were given a weight Wii

(see Eq. 3) of 0, otherwise the weight was 1. We conducted
a series of experiments, varying the method’s key parameters
to investigate the quality of tree positions obtained through the
proposed paraboloid fitting procedure. In all experiments, we
used the median absolute deviation (on the respective dataset)
between the reference positions and the planimetric centers
of the fitted paraboloids in the role of the error measure.
To carry out the optimization of Problem 18, we used the
freely available solver package SCIP (Achterberg, 2009). The
linear program from Eq. 19 was solved using the software
package GLPK (gnu.org, 2013). For the two grid sizes, results
varied only by 1-2 cm, therefore only the best result for each
experiment is presented (dgrd = 50 cm for Dataset (I) with
original reference data, 40 cm otherwise). The constant µ in
(C4) was set to a value such that the maximum axis length did
not exceed 3 m.
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(a) (b)

Figure 2. (a) Point cloud of a circular plot from Dataset (I), with marked tree positions from field inventory (blue bars)
and manually refined tree top locations (red cylinders). (b) Manually derived tree positions marked within the point

cloud of Dataset (II) by red cylinders. Point colors represent single tree clusters.

(a) (b)

Figure 3. (a) Discrepancy between tree position from field
inventory (blue bar) and true tree top (red cylinder) in

Dataset (I). (b) Erroneous tree cluster from Dataset (II),
containing part of adjacent tree.

5.3.1 Comparison with baseline methods Here, we
compared the positioning errors of our method at varying axis
length imbalance coefficient ω values to errors obtained from
competing methods: (i) the centroid of the point cluster’s 2D
convex hull, (ii) the planimetric position of the highest point
within the cluster, and (iii) two least-squares fitting models
(Eq. 5) using respectively one and two free axis lengths. The
position prior was not included in this experiment (i.e. δ = inf).

5.3.2 Influence of position prior We investigated the
influence of the parameter δ quantifying the maximum
per-dimension distance to the prior position on the tree position
accuracy. The imbalance factor ω was set to 0 for this
experiment. The prior position was derived from the point
within the tree’s cluster having the highest Z coordinate. Since
ω was 0, the linear programming formulation of Eq. 19 was
applied due to faster solving times.

6. RESULTS AND DISCUSSION

6.1 Comparison with baseline methods

Figures 4(a)-(c) present the performance of the proposed
L1-norm paraboloid fitting approach as a function of the
imbalance coefficient, alongside other baseline methods. First,
a counter-intuitive result may be seen when comparing the
quality of center estimates obtained from the highest point
baseline, where the position error is 10 cm greater on Dataset (I)
despite its higher average point density of 28 pts/m2 compared
to Dataset (II)’s 14 pts/m2. We believe this may be attributed
to the different tree species compositions of these test plots,
with spruce trees possibly having a more dense structure in
the vicinity of the tree top, containing more side branches.
For Dataset (I), an advantage of the L1-norm fitting approach
over competing methods can be seen, for both the original field
inventory reference and manually marked tree positions. In
particular, in the former case an improvement of 13 cm and
17 cm is observed compared to respectively the highest point
and the centroid methods, while the gain compared to L2 fitting
is 1 cm. However, note that these raw reference positions are
subject to significant uncertainties (see Fig. 3(a)), resulting in a
relatively high median deviation of 58 cm for the best method.
On the other hand, for the manually derived reference tree
positions this error can be halved to 0.25 cm. The advantage
of L1 fitting over the highest point method still exceeds 10 cm,
and nearly reaches 30 cm compared to the convex hull centroid
method’s result of 55 cm (not shown on Fig. 4(b) to maintain
scale). Also, this time the improvement w.r.t. L2 fitting is more
clear at 4 cm. For Dataset (II), apparently the highest point
method already provided a high-quality estimate of the tree
position having a median error of 26 cm, with the second-placed
method, L1-based fitting, trailing by 13 cm. We believe this is
due to the segmentation errors as discussed in Sec. 5.2, resulting
in spurious points present within a tree’s point cluster (see
Fig. 3(b)). It seems that the L1-norm fitting algorithm was
more robust to these outliers compared to its L2 counterpart,
since the L2 result was worse by a further 13 cm, regardless of
whether the model with one or two axis lengths was used. Note
that for the raw L2 case, a total of 20 surfaces converged to
shapes different than an elliptic paraboloid, which emphasizes
the importance of using constraint (C2)/(C4). Similar to the
previous dataset, in (II) the convex hull centroid method also
proved to be the weakest, attaining a median error of 124
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Figure 4. Median of tree position deviation as a function of maximum allowed axis imbalance (a)-(c) and maximum
distance from apriori position (d)-(f). (a),(d) show result of comparison with original, unaltered measurements from field

inventory, whereas (b),(c),(e),(f) are based on manually derived tree positions.

cm, 400% worse than the best result. This suggests that the
centroid method is not a good estimate of the tree position
in the presence of outliers. Perhaps surprisingly, it turned
out that allowing a limited amount of imbalance between the
paraboloid’s semiaxis lengths was not beneficial, and the best
results for both datasets were obtained for fully symmetrical
models (ω = 0).

6.2 Influence of position prior

For both datasets, an increase in accuracy was reached
after introducing prior knowledge about the center position
(Fig. 4(d)-(f)). Dataset (I) showed gains of 2 cm and 3 cm
(w.r.t. L1 fitting without the prior) respectively for original
and manual reference data at a maximum allowed deviation
δ = 30 cm. Regarding the original reference data case, the
final best result was nearly 15 cm and 20 cm better compared to
respectively the highest point and centroid methods. For (II), a
more dramatic gain of 17 cm vs. L1 fitting without the prior was
observed, resulting in a position error of 21.4 cm for δ = 10
cm. This improves the previous lowest error (obtained from
the highest point method) by 5 cm. It is not surprising that
in case of (II) a relatively small envelope around the highest
point leads to the best result, because the highest point is
already a good estimate of the tree position. Combined with
the geometry information exploited by paraboloid fitting, the
prior information-aware method produces a result significantly
better than any of the remaining approaches on their own.
This synergy effect is particularly important for point clusters
containing outliers such as is the case in (II), where it is more
difficult to fit a single shape to all such points and the role of
an apriori position is emphasized (see Fig. 5). It is interesting
to note that although the two datasets were quite different, the
best attained accuracy was 21-22 cm for both of them.

(a) (b) (c)

Figure 5. (a) Undersegmented point cluster with two
peaks, reference position marked in red. (b) Best

paraboloid fit without position prior, center marked in
blue. (c) Best paraboloid fit with position prior, δ = 10

cm.

7. CONCLUSIONS AND OUTLOOK

We presented a new method for L1-norm fitting of
paraboloids with shape and position priors, based on quadratic
programming. It was shown that compared to least-squares
fitting, the proposed method yields a considerable accuracy
improvement of up to 13 cm in median position accuracy for
locating tree positions in 3D point clusters. Also, the method
of calculating the tree position through the centroid of the point
cloud’s convex hull was outperformed by our approach by up
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to 30 cm. It was found that the centroid is in general not a
good estimate of a coniferous tree’s center, especially in the
presence of outlier points. On the other hand, our results show
that the highest point can be a good estimate of the tree position
depending on the tree species. Moreover, we showed that by
introducing the highest point information into the paraboloid
fitting process, the robustness of the method to irrelevant points
within the point cluster can be greatly improved, reducing the
error by up to 20%. In contrast, the possibility of constraining
the imbalance of the paraboloid’s semiaxis lengths did not have
a significant impact on the surface fitting quality, perhaps due to
the inherent symmetry of the investigated tree species (Norway
spruce and Douglas fir). In the future, more tight lower bounds
could be applied to solve the quadratic problem, for example
based on semidefinite or convex quadratic relaxations. It would
be interesting to investigate the performance of the proposed
method for deciduous trees, although some difficulties could
arise due to a less regular shape of tree crowns. Also, our
generic formulation of the fitting problem could be re-used in
other applications outside of forestry, where asymmetry could
play a larger role.
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