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Summary. We introduce a path following algorithm for L1-regularized generalized linear mod-
els. The L1-regularization procedure is useful especially because it, in effect, selects variables
according to the amount of penalization on the L1-norm of the coefficients, in a manner that
is less greedy than forward selection–backward deletion. The generalized linear model path
algorithm efficiently computes solutions along the entire regularization path by using the pre-
dictor–corrector method of convex optimization. Selecting the step length of the regularization
parameter is critical in controlling the overall accuracy of the paths; we suggest intuitive and
flexible strategies for choosing appropriate values. We demonstrate the implementation with
several simulated and real data sets.

Keywords: Generalized linear model; Lasso; Path algorithm; Predictor–corrector method;
Regularization; Variable selection

1. Introduction

In this paper we propose a path following algorithm for L1-regularized generalized linear models

(GLMs). GLMs model a random variable Y that follows a distribution in the exponential fam-

ily by using a linear combination of the predictors x′β, where x and β denote vectors of the

predictors and the coefficients respectively. The random and the systematic components may be

linked through a non-linear function; therefore, we estimate the coefficient β by solving a set of

non-linear equations that satisfy the maximum likelihood criterion

β̂ =arg max
β

{L.y;β/}, .1/

where L denotes the likelihood function with respect to the given data {.xi, yi/ : i=1, . . . , n}:

When the number of predictors p exceeds the number of observations n, or when insignificant

predictors are present, we can impose a penalization on the L1-norm of the coefficients for

an automatic variable selection effect. Analogously to the lasso (Tibshirani, 1996) that added

a penalty term to the squared error loss criterion, we modify criterion (1) with a regulariza-

tion:

β̂.λ/=arg min
β

[−log{L.y;β/}+λ‖β‖1], .2/

where λ> 0 is the regularization parameter. Logistic regression with L1-penalization has been

Address for correspondence: Mee Young Park, Google Inc., 1600 Amphitheatre Parkway, Mountain View,
CA 94043, USA.
E-mail: meeyoung@google.com



660 M.Y. Park and T. Hastie

introduced in Lokhorst (1999) and explored by several researchers, e.g. in Shevade and Keerthi

(2003) and Genkin et al. (2004).

We introduce an algorithm that implements the predictor–corrector method to determine the

entire path of the coefficient estimates as λ varies, i.e. to find {β̂.λ/ : 0 <λ<∞}: Starting from

λ=λmax, where λmax is the largest λ that makes β̂.λ/ non-zero, our algorithm computes a series

of solution sets, each time estimating the coefficients with a smaller λ based on the previous

estimate. Each round of optimization consists of three steps: determining the step size in λ,

predicting the corresponding change in the coefficients and correcting the error in the previous

prediction.

A traditional approach to variable selection is the forward selection–backward deletion

method that adds or deletes variables in a greedy manner. L1-regularization as in criterion (2)

can be viewed as a smoother and ‘more democratic’ version of forward stepwise selection. By

generating the regularization path rather than computing solutions at several fixed values of λ,

we identify the order in which the variables enter or leave the model. Thus, we can find a regu-

larized fit with any given number of parameters, as with the series of models from the forward

stepwise procedure.

Efron et al. (2004) suggested an efficient algorithm to determine the exact piecewise linear

coefficient paths for the lasso; see Osborne et al. (2000) for a closely related approach. The algo-

rithm called LARS is also used for forward stagewise and least angle regression paths with slight

modifications. Another example of a path following procedure is the support vector machine

path; see Hastie et al. (2004). They presented a method of drawing the entire regularization path

for the support vector machine simultaneously.

Unlike LARS or support vector machine paths, the GLM paths are not piecewise linear. We

must select particular values of λ at which the coefficients are computed exactly; the granularity

controls the overall accuracy of the paths. When the coefficients are computed on a fine grid

of values for λ, the non-linearity of the paths is more visible. We propose a way to compute

the exact coefficients at the values of λ at which the set of non-zero coefficients changes. This

strategy yields a more accurate path in an efficient way than alternative methods and provides

the exact order of the active set changes, which is important information in many applications,

such as gene selection.

Rosset (2004) suggested a general path following algorithm that can be applied to any loss and

penalty function with reasonable bounds on the domains and the derivatives. This algorithm

computes the coefficient paths in two steps: changing λ and updating the coefficient estimates

through a Newton iteration. Zhao and Yu (2004) proposed the boosted lasso that approximates

the L1-regularization path with respect to any convex loss function by allowing backward steps

to forward stagewise fitting; whenever a step in forward stagewise fitting deviated from that of

the lasso, the boosted lasso would correct the step with a backward move. When this strategy is

used with the negative log-likelihood (of a distribution in the exponential family) loss function,

it will approximate the L1-regularized GLM path. As discussed by Zhao and Yu (2004), the step

sizes along the path are distributed such that their method finds the exact solutions at uniformly

spaced values of ‖β‖1, whereas Rosset’s method computes solutions at uniformly spaced λ.

Our method is more flexible and efficient than these two approaches; we estimate the largest λ

that will change the current active set of variables and solve for the new set of solutions at the

estimated λ. Hence, the step lengths are not uniform for any single parameter but depend on the

data; at the same time, we ensure that the solutions are exact at the locations where the active

set changes. We demonstrate the accuracy and the efficiency of our strategy in Section 3.2.

In the following sections, we describe and support our approach in more detail with examples

and justifications. We present the details of the GLM path algorithm in Section 2. In Section 3,
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our methods are illustrated with simulated and real data sets, including a microarray data set

consisting of over 7000 genes. We illustrate an extension of our path following method to the

Cox proportional hazards model in Section 4. We conclude with a summary and other possible

extensions of our research in Section 5. Proofs for all the lemmas and theorems are provided in

Appendix A.

2. Generalized linear model path algorithm

In this section, we describe the details of the GLM path algorithm. We compute the exact solu-

tion coefficients at particular values λ and connect the coefficients in a piecewise linear manner

for solutions corresponding to other values of λ.

2.1. Problem set-up

Let {.xi, yi/ : xi ∈Rp, yi ∈R, i=1, . . . , n} be n pairs of p predictors and a response. Y follows a

distribution in the exponential family with mean µ=E.Y/ and variance V =var.Y/: Depending

on its distribution, the domain of yi could be a subset of R: GLMs model the random component

Y by equating its mean µ with the systematic component η through a link function g:

η =g.µ/=β0 +x′β: .3/

The density function of Y is expressed as (McCullagh and Nelder, 1989)

L.y; θ, φ/= exp

{

yθ −b.θ/

a.φ/
+ c.y, φ/

}

: .4/

a.·/, b.·/ and c.·/ are functions that vary according to the distributions. Assuming that the dis-

persion parameter φ is known, we are interested in finding the maximum likelihood solution for

the natural parameter θ, and thus .β0, β′/′, with a penalization on the size of the L1-norm of

the coefficients .‖β‖1/. Therefore, our criterion with a fixed λ is reduced to finding β= .β0, β′/′,

which minimizes

l.β, λ/=−
n
∑

i=1

[yi θ.β/i −b{θ.β/i}]+λ‖β‖1: .5/

Assuming that none of the components of β is 0 and differentiating l.β, λ/ with respect to β,

we define a function H :

H.β, λ/=
@l

@β
=−X′W.y −µ/

@η

@µ
+λ sgn

(

0

β

)

, .6/

where X is an n× .p+1/ matrix including a column of 1s, W is a diagonal matrix with n diagonal

elements V −1
i .@µ=@η/2

i and .y−µ/@η=@µ is a vector with n elements .yi −µi/.@η=@µ/i. Although

we have assumed that none of the elements of β is 0, the set of non-zero components of β changes

with λ, and H.β, λ/ must be redefined accordingly.

Our goal is to compute the entire solution path for the coefficients β, with λ varying from λmax

to 0. We achieve this by drawing the curve H.β, λ/=0 in .p+2/-dimensional space (β∈Rp+1 and

λ∈R+). Rosset et al. (2004) provided sufficient conditions for the existence of a unique solution

β.λ/ that minimizes the convex function l.β, λ/ for each λ∈R+. We first restrict our attention

to the cases where the conditions are satisfied and present the algorithm; we suggest a strategy to

extend the algorithm to the cases where the conditions do not hold in Section 2.4. In the former

situation, a unique continuous and differentiable function β.λ/, such that H{β.λ/, λ}=0 exists
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within each open range of λ that yields a certain active set of variables; the existence of such

mappings .λ→β.λ// can be shown by using the implicit function theorem (Munkres, 1991).

We find the mapping β.λ/ sequentially with decreasing λ.

2.2. Predictor–corrector algorithm

The predictor–corrector algorithm is one of the fundamental strategies for implementing numer-

ical continuation (which has been introduced and applied in, for example, Allgower and Georg

(1990) and Garcia and Zangwill (1981)). Numerical continuation has long been used in math-

ematics to identify the set of solutions to non-linear equations that are traced through a one-

dimensional parameter. Among many approaches, the predictor–corrector method explicitly

finds a series of solutions by using the initial conditions (solutions at one extreme value of the

parameter) and continuing to find the adjacent solutions on the basis of the current solutions.

We elaborate on how the predictor–corrector method is used to trace the curve H.β, λ/ = 0

through λ in our problem setting.

The following lemma provides the initialization of the coefficient paths.

Lemma 1. When λ exceeds a certain threshold, the intercept is the only non-zero coefficient:

β̂0 =g.ȳ/ and

H{.β̂0, 0, . . . , 0/′, λ}=0 for λ> max
j∈{1,:::,p}

|x′
jŴ.y − ȳ1/ g′.ȳ/|: .7/

We denote this threshold of λ as λmax: As λ is decreased further, other variables join the active

set, beginning with the variable j0 = arg maxj|x
′
j.y − ȳ1/|. Reducing λ, we alternate between a

predictor and a corrector step; the steps of the kth iteration are as follows.

Step 1: step length—determine the decrement in λ. Given λk, we approximate the next largest

λ, at which the active set changes, namely λk+1.

Step 2: predictor step—linearly approximate the corresponding change in β with the decrease

in λ; call it β̂k+.

Step 3: corrector step—find the exact solution of β that pairs with λk+1 (i.e. β.λk+1/), using

β̂k+ as the starting value; call it β̂k+1.

Step 4: active set—test to see whether the current active set must be modified; if so, repeat the

corrector step with the updated active set.

2.2.1. Predictor step

In the kth predictor step, β.λk+1/ is approximated by

β̂k+ = β̂k + .λk+1 −λk/
@β

@λ
.8/

= β̂k − .λk+1 −λk/.X′
AWkXA/−1sgn

(

0

β̂k

)

: .9/

Wk and XA denote the current weight matrix and the columns of X for the factors in the cur-

rent active set respectively. β in the above equations are composed only of current non-zero

coefficients. This linearization is equivalent to making a quadratic approximation of the log-

likelihood and extending the current solution β̂k by taking a weighted lasso step (as in the LARS

algorithm).

Define f.λ/=H{β.λ/, λ}; in the domain that yields the current active set, f.λ/ is 0 for all λ.

By differentiating f with respect to λ, we obtain
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f ′.λ/=
@H

@λ
+

@H

@β

@β

@λ
=0, .10/

from which we compute @β=@λ.

The following theorem shows that the predictor step approximation can be arbitrarily close

to the real solution by making λk −λk+1 small.

Theorem 1. Denote hk = λk − λk+1, and assume that hk is sufficiently small that the active

sets at λ=λk and λ=λk+1 are the same. Then the approximated solution β̂k+ differs from

the real solution β̂k+1 by O.h2
k/.

2.2.2. Corrector step

In the following corrector step, we use β̂
k+

as the initial value to find the β that minimizes

l.β, λk+1/, as defined in equation (5) (i.e. that solves H.β, λk+1/=0 for β). Any (convex) opti-

mization method that applies to the minimization of a differentiable objective function with

linear constraints may be implemented. The previous predictor step has provided a starting-

point for the optimization, because β̂k+ is usually close to the exact solution β̂k+1, the cost of

solving for the exact solution is low. The corrector steps not only find the exact solutions at a

given λ but also yield the directions of β for the subsequent predictor steps.

We connect β̂k+1 with β̂k, forming the kth linear segment of the path. We justify this approach

by showing that, if λk −λk+1 is small, then any point along the linear segment is close to the

true path in some sense.

Theorem 2. If the solutions at λk and λk+1 =λk − hk, namely β̂k and β̂k+1, are connected

such that our estimate at λ=λk −αhk for some α∈ [0, 1] is

β̂.λ−αhk/= β̂k +α.β̂k+1 − β̂k
/, .11/

then β̂.λ−αhk/ differs from the real solution β.λ−αhk/ by O.h2
k/.

2.2.3. Active set

The active set A begins from the intercept as in lemma 1; after each corrector step, we check to

see whether A should have been augmented. The following procedure for checking was justified

and used by Rosset and Zhu (2003) and Rosset (2004):
∣

∣

∣
x′

jW.y −µ/
@η

@µ

∣

∣

∣
>λ for any j ∈Ac ⇒A←A∪{j}: .12/

We repeat the corrector step with the modified active set until the active set is not augmented

further. We then remove the variables with zero coefficients from the active set, i.e.

|β̂j|=0 for any j ∈A⇒A←A\{j}: .13/

2.2.4. Step length

Two natural choices for the step length ∆k =λk −λk+1 are

(a) ∆k =∆, fixed for every k, or

(b) a fixed change L in L1 arc length, achieved by setting ∆k =L=‖@β=@λ‖1.

As we decrease the step size, the exact solutions are computed on a finer grid of λ-values, and

the coefficient path becomes more accurate.

We propose a more efficient and useful strategy:

(c) select the smallest ∆k that will change the active set of variables.
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We give an intuitive explanation of how we achieve this, by drawing on analogies with the

LARS algorithm (Efron et al., 2004). At the end of the kth iteration, the corrector step can be

characterized as finding a weighted lasso solution that satisfies

−X′
AWk.y −µ/

@η

@µ
+λk sgn

(

0

β

)

=0:

This weighted lasso also produces the direction for the next predictor step. If the weights Wk

were fixed, the weighted LARS algorithm would be able to compute the exact step length to the

next active set changepoint. We use this step length, even though in practice the weights change

as the path progresses.

Lemma 2. Let µ̂ be the estimates of y from a corrector step, and denote the corresponding

weighted correlations as

ĉ =X′Ŵ.y − µ̂/
@η

@µ
: .14/

The absolute correlations of the factors in A (except for the intercept) are λ, whereas the values

are smaller than λ for the factors in Ac.

The next predictor step extends β̂ as in equation (9), and, thus, the current correlations

change. Denoting the vector of changes in correlation for a unit decrease in λ as a,

c.h/= ĉ −ha .15/

= ĉ −hX′ŴXA.X′
AŴXA/−1 sgn

(

0

β̂

)

, .16/

where h > 0 is a given decrease in λ. For the factors in A, the values of a are those of sgn.
0
β̂

/.

To find the h with which any factor in Ac yields the same absolute correlation as those in A, we

solve the equations

|cj.h/|= |ĉj −haj|=λ−h for any j ∈Ac: .17/

The equations suggest an estimate of the step length in λ as

h=min+

j∈Ac

(

λ− ĉj

1−aj

,
λ+ ĉj

1+aj

)

: .18/

In addition, to check whether any variable in the active set reaches 0 before λ decreases by h,

we solve the equations

βj.h̃/= β̂j + h̃.X′
AŴXA/−1sgn

(

0

β̂

)

=0 for any j ∈A: .19/

If 0 <h̃<h for any j ∈A, we expect that the corresponding variable will be eliminated from the

active set before any other variable joins it; therefore, h̃ rather than h is used as the next step

length.
As a by-product of this step length approximation strategy, @β=@λ in equation (8) is com-

puted. When fitting with high dimensional data, the active set changes with a small decrease

in λ, and thus the role of predictor step as in equations (8)–(9) is not critical. However, we

would still include predictor steps for the unusual cases of a large decrement in λ and, with the

predictor step direction automatically computed, the remaining computations are trivial.

Letting the coefficient paths be piecewise linear with the knots placed where the active set

changes is a reasonable simplification of the truth based on our experience (using both simulated

and real data sets). If the smallest step length that modifies the active set were to be larger than
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the value that we have estimated, the active set remains the same, even after the corrector step. If

the true step length were smaller than expected and, thus, we missed the entering point of a new

active variable by far, we would repeat a corrector step with an increased λ. (We estimate the

increase in a manner that is analogous to expression (19).) Therefore, our path algorithm almost

precisely detects the values of λ at which the active set changes, in the sense that we compute

the exact coefficients at least once before their absolute values grow larger than δ (which is a

small fixed quantity).

We can easily show that, in the case of Gaussian distribution with the identity link, the piece-

wise linear paths are exact. Because µ̂=Xβ̂, and Vi =var.yi/ is constant for i=1, . . . , n, H.β, λ/

simplifies to

−X′.y −µ/+λ sgn

(

0

β

)

:

The step lengths are computed with no error; in addition, since the predictor steps yield the exact

coefficient values, corrector steps are not necessary. In fact, the paths are identical to those of

the lasso.

2.3. Degrees of freedom

We use the size of the active set as a measure of the degrees of freedom, which changes, not

necessarily monotonically, along the solution paths, i.e.

df.λ/=|A.λ/|, .20/

where |A.λ/| denotes the size of the active set corresponding to λ. This is based on df.λ/ =

E|A.λ/|, which holds in the case of the lasso. This remarkable formula was discovered by Efron

et al. (2004) and improved by Zou and Hastie (2004); the effect of shrinking cancels the price

that is paid in the variance for the aggressive searching for the best variable to include in the

model. Here we present a heuristic justification for using equation (20) for GLMs in general,

based on the results that were developed in Zou and Hastie (2004).

One can show that the estimates of β at the end of a corrector step solve a weighted lasso

problem,

min
β

{.z −Xβ/TW.z −Xβ/}+λ‖β‖1, .21/

where the working response vector is defined as

z =η+ .y −µ/
@η

@µ
: .22/

The solution to problem (21) would be an appropriate fit for a linear model

z =Xβ+ε .23/

where ε∼ .0, W−1/. This covariance is correct at the true values of η and µ, and can be defended

asymptotically if appropriate assumptions are made. In fact, when λ = 0, model (23) leads

directly to the standard asymptotic formulae and Gaussianity for the maximum likelihood

estimates in the exponential family.

Under these heuristics, we apply Stein’s lemma (Stein, 1981) to the transformed response

(W1=2z) so that its errors are homoscedastic. We refer readers to Zou and Hastie (2004) for the

details of the application of the lemma. Simulations show that equation (20) approximates the

degrees of freedom reasonably closely, although we omit the details here.
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2.4. Adding a quadratic penalty

When some columns of X are strongly correlated, the coefficient estimates are highly unstable;

the solutions might not be unique if some columns are linearly dependent or redundant in the

sense that they do not satisfy the conditions for theorem 5 of Rosset et al. (2004). To overcome

these situations, we propose to add a quadratic penalty term to the criterion, following the

elastic net proposal of Zou and Hastie (2005), i.e. we compute the solution paths that satisfy

β̂.λ1/=arg min
β

[− log{L.y;β/}+λ1‖β‖1 +
λ2

2
‖β‖2

2], .24/

where λ1 ∈ .0, ∞/ and λ2 is a fixed, small, positive constant. As a result, strong correlations

between the features do not affect the stability of the fit. When the correlations are not strong,

the effect of the quadratic penalty with a small λ2 is negligible.

Assuming that all the elements of β are non-zero, if X does not have a full column rank,

@H.β, λ/=@β=X′WX is singular, where H is defined as in equation (6). By adding a quadratic

penalty term, as in equation (24), we redefine H :

H̃.β, λ1, λ2/=−X′W.y −µ/
@η

@µ
+λ1 sgn

(

0

β

)

+λ2

(

0

β

)

: .25/

Accordingly, the following @H̃=@β is non-singular, in general, with any λ2 > 0:

@H̃

@β
=X′WX +λ2

(

0 0′

0 I

)

: .26/

Therefore, when λ2 is fixed at a constant, and λ1 varies in an open set, such that the current

active set remains the same, a unique, continuous and differentiable function β.λ1/ satis-

fies H̃{β.λ1/, λ1, λ2}= 0. This connection between the non-singularity and existence of a uni-

que, continuous and differentiable coefficient path is based on the implicit function theorem

(Munkres, 1991).

Zou and Hastie (2005) proposed elastic net regression, which added an L2-norm penalty

term to the criterion for the lasso. Zou and Hastie adjusted the values of both λ1 and λ2 so

that variable selection and grouping effects were achieved simultaneously. For our purpose of

handling inputs with strong correlations, we fixed λ2 at a very small number, while changing

the value of λ1 for different amounts of regularization.

In the case of logistic regression, adding an L2-penalty term is also helpful as it elegantly

handles the separable data. Without the L2-penalization, and if the data are separable by the

predictors, ‖β̂‖1 grows to ∞ as λ1 approaches 0. Rosset et al. (2004) showed that the nor-

malized coefficients β̂=‖β̂‖1 converge to the L1-margin maximizing separating hyperplane as

λ1 decreases to 0. In such cases, the fitted probabilities approach 0 or 1, and thus the maxi-

mum likelihood solutions are undefined. However, by restricting ‖β‖2 with any small amount

of quadratic penalization, we let the coefficients converge to the L2-penalized logistic regres-

sion solutions instead of ∞ as λ1 approaches 0. As an alternative solution to the separation in

logistic regression, one can apply the Jeffreys prior to the likelihood function as suggested in

Firth (1993) and further demonstrated in Heinze and Schemper (2002).

3. Data analysis

In this section, we demonstrate our algorithm through a simulation and two real data sets: the

South African heart disease data and leukaemia cancer gene expression data. Our examples focus

on binary data: hence the logistic regression GLM.
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3.1. Simulated data example

We simulated a data set of 100 observations with five variables and a binary response. Fig. 1

shows three sets of coefficient paths with respect to λ, with various selections of step sizes. In

Fig. 1(a) the exact solutions were computed at the values of λ where the active set changed,

and the solutions were connected in a piecewise linear manner. Fig. 1(b) shows the paths with

exact solutions on a much finer grid of λ-values; we controlled the arc length to be less than 0.1

between any two adjacent values of λ. We observe the true curvature of the paths. Fig. 1(a) is a

reasonable approximation of Fig. 1(b), especially because the active set is correctly specified at

any value of λ. Fig. 1(c) shows the solution paths that we generated by using the boosted lasso

algorithm by Zhao and Yu (2004). We used the negative (binomial) log-likelihood loss and the

step size constant "=0:1, the maximum arc length of the previous GLM path; 60 and 58 steps

were taken by the GLM path algorithm (Fig. 1(b)) and the boosted lasso algorithm (Fig. 1(c))

respectively. The boosted lasso solution paths are less smooth as the solutions oscillate around

the real path as λ decreases.

3.2. South African heart disease data

The South African heart disease data set consists of nine different features of 462 samples as

well as the responses indicating the presence of heart disease. The data set has also been used

in Hastie et al. (2001) with a detailed description of the data. Using the disease–non-disease

response variable, we can fit a logistic regression path.

Fig. 2(a) shows the exact set of paths; the coefficients were precisely computed at 300 different

values of λ ranging from 81.9 to 0, with the constraint that every arc length be less than 0.01.

The L1-norm of the coefficients forms the x-axis, and the vertical breaks indicate where the

active set is modified. Comparing this plot with Fig. 2(b), which we achieved in 13 steps rather

than 300, we find that the two are almost identical. Our strategy to find the λ-values at which the

active set changes resulted in an estimate of the values with reasonable accuracy. In addition,

the exact paths are curvy but are almost indistinguishable from the piecewise linear version,

justifying our simplification scheme. For both plots, the rightmost solutions corresponding to

λ=0 are the maximum likelihood estimates.

Fig. 2(c) illustrates the paths with respect to the steps. Two extra steps were needed between

the knots at which the sixth and the seventh variable joined the active set. However, the step

lengths in λ are tiny in this region; since the first approximation of λ that would change the

active set was larger than the true value by only a small amount, λ decreased again by extremely

small amounts. For most other steps, the subsequent λs that would modify the active set were

accurately estimated on their first attempts.

We have proposed three different strategies for selecting the step sizes in λ in Section 2.2.4:

(a) fixing the step size ∆, ∆k =∆;

(b) fixing the arc length L, ∆k =L=‖@β=@λ‖1;

(c) estimating where the active set changes.

To verify that method (c) yields more accurate paths with a smaller number of steps, we present

the following comparison. For the three methods, we counted the number of steps taken and

computed the corresponding sum of squared errors in β, Σ
200
m=1‖β̂.m/ −β.m/‖

2. β̂.m/ and β.m/

denote the coefficient estimates at the mth (out of 200 evenly spaced grid values in ‖β‖1) grid

along the path, from the path generated by using a certain step length computation method and

the exact path respectively.

As shown in the first row of Table 1, the first two strategies of selecting the step lengths, with

a comparable number of steps, achieved much lower accuracy than the third. Furthermore, the
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(a) (b)

(c)

Fig. 1. Simulated data from Section 3.1: (a) exact solutions were computed at the values of λ where the
active set changed, and the solutions were connected in a piecewise linear manner (GLM path); (b) GLM
paths with exact solutions at much finer grids of λ (we controlled the arc length to be less than 0.1 between
any two adjacent values of λ); (c) solution paths generated by using the boosted lasso algorithm, with the
step size constant " D0:1
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(a)

(b)

(c)

Fig. 2. Heart disease data from Section 3.2: (a) exact set of paths (the coefficients were precisely computed
at 300 different grids of λ ranging from 81.9 to 0 with the constraint that every arc length be less than 0.01;
the vertical breaks indicate where the active set is modified; the L1-norm of the coefficients forms the x -axis);
(b) exact set of paths achieved in 13 steps rather than 300 (comparing this with (a), we find that the two are
almost identical); (c) paths as a function of step number, to illustrate how minor the corrections are
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Table 1. Results from the South African heart disease data†

Results from method (a) Results from method (b) Results from method (c)

∆ Number of Error L Number of Error Number of Error
steps steps steps

8 12 2.56×10−1 0.23 11 1.01×10−1 13 7.11×10−4

1 83 2.04×10−1 0.1 26 7.78×10−2

0.3 274 6.75×10−3 0.02 142 2.28×10−2

0.15 547 7.16×10−5 0.01 300 4.25×10−5

†As shown in the first row, the first two strategies of selecting the step lengths, with a comparable
number of steps, achieved much lower accuracy than the third. The first two methods needed a few
hundred steps to yield the same accuracy as the third method achieved in only 13 steps.

first two methods needed a few hundred steps to yield the same accuracy that the third method

achieved in only 13 steps. Thus, method (c) provides accuracy and efficiency in addition to the

information about where the junction points are located.

3.3. Leukaemia cancer gene expression data

The GLM path algorithm is suitable for data consisting of far more variables than the samples

(so-called p≫n scenarios) because it successfully selects up to n variables along the regulariza-

tion path regardless of the number of input variables. We demonstrate this use of our algorithm

through a logistic regression applied to the leukaemia cancer gene expression data set by Golub

et al. (1999). The data set contains the training and the test samples of sizes 38 and 34 respec-

tively. For each sample, 7129 gene expression measurements and a label indicating the type of

cancer (acute myeloid leukaemia or acute lymphoblastic leukaemia) are available.

Fig. 3(a) shows the coefficient paths that we achieved using the training data; the size of

the active set cannot exceed the sample size at any segment of the paths (this fact is proved

in Rosset et al. (2004)). The vertical line marks the chosen level of regularization (based on

cross-validation), where 23 variables had non-zero coefficients. Fig. 3(b) illustrates the patterns

of tenfold cross-validation and test errors. As indicated by the vertical line, we selected λ where

the cross-validation error achieved the minimum.

Table 2 shows the errors and the number of variables that were used in the prediction. We

also compared the performance with that of other methods that used the same data set in their

literature. With a cross-validation error of 1/38 and a test error of 2/34, L1 penalized logistic

regression is comparable with or more accurate than other competing methods for analysis of

this microarray data set.

Although we did not perform any preprocessing to filter from the original 7129 genes, auto-

matic gene selection reduced the number of effective genes to 23. This set of genes included

seven, 14, eight, 15 and five of the genes selected through L2 penalized logistic regression (uni-

variate ranking), L2 penalized logistic regression (recursive feature elimination), the support

vector machine (univariate ranking), the support vector machine recursive feature elimination

and nearest shrunken centroid classification respectively. Each of these methods selected only

a small proportion of the available genes, which were highly correlated within subgroups. As a

result, the gene groups from different methods did not entirely overlap, but some of the genes

were commonly significant across different models.



L1-regularization Path Algorithm 671

Fig. 3. Leukaemia data from Section 3.3: (a) coefficient paths achieved by using the training data (the
size of the active set cannot exceed the sample size at any segment of the paths; j, chosen level of regu-
larization (based on cross-validation), where 23 variables had non-zero coefficients); (b) patterns of tenfold
cross-validation (. . . . . . .) and test errors ( ) (as indicated by the vertical line, we selected λ where the
cross-validation error achieved the minimum

4. L1-regularized Cox proportional hazards models

The path following method that we applied to the L1-regularized GLM may also be used to

generate other non-linear regularization paths. We illustrate an analogous implementation of

the predictor–corrector method for drawing the L1-regularization path for the Cox proportional

hazards model (Cox, 1972). Tibshirani (1997) proposed fitting the Cox model with a penalty

on the size of the L1-norm of the coefficients. This shrinkage method computes the coefficients

with a criterion similar to expression (2):

β̂.λ/=arg min
β

[− log{L.y;β/}+λ‖β‖1], .27/

where L denotes the partial likelihood. We formulate the entire coefficient paths {β̂.λ/ : 0 <λ<

λmax}, where λmax is the largest λ that makes β̂.λ/ non-zero, through the predictor–corrector

scheme. As a result of L1-penalization, the solutions are sparse; thus, the active set changes

along with λ.
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Table 2. Results from the leukaemia data†

Method Cross-validation Test Number of
error error genes used

L1 penalized logistic regression 1/38 2/34 23
L2 penalized logistic regression (univariate 2/38 3/34 16

ranking) (Zhu and Hastie, 2004)
L2 penalized logistic regression (recursive 2/38 1/34 26

feature elimination) (Zhu and Hastie, 2004)
Support vector machine (univariate ranking) 2/38 3/34 22

(Zhu and Hastie, 2004)
Support vector machine (recursive feature 2/38 1/34 31

elimination) (Zhu and Hastie, 2004)
Nearest shrunken centroid classification 1/38 2/34 21

(Tibshirani et al., 2002)

†With a cross-validation error of 1/38 and a test error of 2/34, L1 penalized logistic regres-
sion is comparable with or more accurate than other competing methods for analysis of
this microarray data set. Although we did not perform any preprocessing to filter from the
original 7129 genes, automatic gene selection reduced the number of effective genes to 23.

4.1. Method

Let {.xi, yi, δi/ :xi ∈Rp, yi ∈R+, δi ∈{0, 1}, i=1, . . . , n} be n triples of p factors, a response indi-

cating the survival time and a binary variable δi =1 for complete (died) observations and δi =0

for right-censored patients. On the basis of criterion (27), we find the coefficients that minimize

the following objective function for each λ:

l.β, λ/=−
n
∑

i=1

δiβ
′xi +

n
∑

i=1

δi log
{

∑

j∈Ri

exp.β′xj/
}

+λ‖β‖1, .28/

where Ri is the risk set at time yi. To compute the coefficients, we solve H.β, λ/=0 for β, where

H is defined as follows using only the current non-zero components of β:

H.β, λ/=
@l

@β
=−

n
∑

i=1

δixi +
n
∑

i=1

δi

∑

j∈Ri

wijxj +λ sgn.β/, .29/

where wij = exp.β′xj/=Σm∈Ri exp.β′xm/.

We refer the readers to Appendix B for further details of the procedure.

4.2. Real data example

We demonstrate the L1-regularization path algorithm for the Cox model by using the heart

transplant survival data that were introduced in Crowley and Hu (1977). The data set con-

sists of 172 samples with their survival time and censoring information, as well as these four

features:

(a) age (age – 48 years),

(b) year (year of acceptance, in years after November 1st, 1967),

(c) surgery (prior bypass surgery; 1, if yes) and

(d) transplant (received transplant; 1, if yes).

In Fig. 4(a), the coefficients were computed at fine grids of λ, whereas, in Fig. 4(b), the solu-

tions were computed only when the active set was expected to change. Similarly to the GLM
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Fig. 4. Survival data from Section 4.2: (a) coefficient paths computed at fine grids of λ (similar to the GLM
path examples, the exact coefficient paths are almost piecewise linear); (b) solutions computed only when
the active set was expected to change (it is difficult to distinguish the two versions generated by different step
sizes of λ)

path examples, the exact coefficient paths that are shown in Fig. 4(a) are almost piecewise linear;

it is difficult to distinguish the two versions that were generated by different step sizes in λ.

5. Discussion

In this paper, we have introduced a path following algorithm to fit GLMs with L1-regulariza-

tion. As applied to regression (Tibshirani, 1996, 1997) and classification methods (Genkin et al.,

2004; Shevade and Keerthi, 2003; Zhu et al., 2003), penalizing the size of the L1-norm of the

coefficients is useful because it accompanies variable selection. This strategy has provided us

with a much smoother feature selection mechanism than the forward stepwise process.

Although the regularization parameter (λ in our case) influences the prediction performance

in the aforementioned models considerably, determining the parameter can be troublesome

or can demand heavy computation. The GLM path algorithm facilitates model selection by

implementing the predictor–corrector method and finding the entire regularization path. Even

with large intervals in λ, the predictor steps provide the subsequent corrector steps with rea-

sonable estimates (starting values); therefore, the intervals can be wide without increasing the

computations by a large number, as long as the paths can be assumed to be approximately linear

within the intervals. Having generated the path, we estimate the globally optimal shrinkage level

by cross-validating on the ratio λ=λmax or log.λ/= log.λmax/. We compute the cross-validated
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loss at fixed values of the ratio rather than the values of λ because λmax varies for every fold

and, thus, a certain value of λ may correspond to different magnitude of shrinkage within each

fold.

In Section 3.2, we proposed three different methods to determine the step lengths in λ and

emphasized the efficiency and accuracy of the strategy of finding the transition points. One may

suggest a more naïve approach of preselecting certain values of λ and generating the coefficient

paths by connecting the solutions to those grids. However, computing the exact solutions at

the values of λ where the active set changes ensures that we correctly specify the order in which

variables are selected.

We can extend the use of the predictor–corrector scheme by generalizing the loss plus penalty

function to any convex and almost differentiable functions. For example, we can find the entire

regularization path for the Cox proportional hazards model with L1-penalization, as described

in Section 4. Rosset and Zhu (2003) illustrated sufficient conditions for the regularized solution

paths to be piecewise linear. Just as the solution paths for Gaussian distributions were computed

with no error through the predictor–corrector method, so any other piecewise linear solution

paths can be computed exactly by applying the same strategy.

The path following algorithms for GLMs and Cox proportional hazards models have

been implemented in the contributed R package glmpath which is available from the

Comprehensive R Archive Network at http://cran.r-projet.org/src/contrib/

Descriptions/glmpath.html.
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Appendix A: Proofs

A.1. Proof of lemma 1
Minimizing expression (5) is equivalent to minimizing

−
n

∑

i=1

[yi θ.β/i −b{θ.β/i}]+
p

∑

j=1

{λ.β+
j +β−

j /−λ+
j β+

j −λ−
j β−

j }, .30/

where β =β+ +β−, β+
j β−

j =0, β+
j , β−

j �0 and λ+
j , λ−

j �0, ∀j =1, . . . , p.
The Karush–Kuhn–Tucker (KKT) optimality conditions for this equivalent criterion are

−x′
jŴ.y − µ̂/

@η

@µ
+λ−λ+

j =0, .31/

−x′
jŴ.y − µ̂/

@η

@µ
+λ−λ−

j =0, .32/

λ+
j β̂

+

j =0, .33/

λ−
j β̂

−

j =0, ∀j =1, . . . , p: .34/

The KKT conditions imply that
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∣

∣

∣

∣

x′
jŴ.y − µ̂/

@η

@µ

∣

∣

∣

∣

<λ⇒ β̂j =0 for j =1, . . . , p: .35/

When β̂j =0 for all j =1, . . . , p, the KKT conditions again imply

1′Ŵ.y − µ̂/
@η

@µ
=0, .36/

which, in turn, yields µ̂= ȳ1=g−1.β̂0/1.

A.2. Proof of theorem 1
Since

@β

@λ
=−.X′

AWkXA/−1 sgn

(

0

β̂
k

)

is continuously differentiable with respect to λ∈ .λk+1, λk],

β̂
k+1

= β̂
k
−hk

@β

@λ

∣

∣

∣

∣

λk

+O.h2
k/ .37/

= β̂
k+

+O.h2
k/, .38/

from which the conclusion follows.

A.3. Proof of theorem 2
Since @β=@λ is continuously differentiable with respect to λ∈ .λk+1, λk], the following equations hold:

β̂.λ−αhk/= β̂
k
−αhk

β̂
k+1

− β̂
k

−hk

.39/

= β̂
k
−αhk

@β

@λ

∣

∣

∣

∣

λk

+O.h2
k/, .40/

and similarly the true solution at λ=λk −αhk is

β.λ−αhk/= β̂
k
−αhk

@β

@λ

∣

∣

∣

∣

λk

+O.h2
k/: .41/

The conclusion follows directly from the above equations.

A.4. Proof of lemma 2
The KKT optimality conditions (31)–(34) imply that

β̂j 
=0⇒

∣

∣

∣

∣

x′
jŴ.y − µ̂/

@η

@µ

∣

∣

∣

∣

=λ: .42/

This condition, combined with conditions (7) and (35), proves the argument.

Appendix B: L1-regularization path algorithm for the Cox model

Here we describe details of the L1-regularization path algorithm for the Cox model, which was briefly
introduced in Section 4. We use the same notation as presented in Section 4.

The Cox model with L1-penalization finds the coefficients that minimize the objective function:
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l.β, λ/=−
n

∑

i=1

δiβ
′xi +

n
∑

i=1

δi log
{

∑

j∈Ri

exp.β′xj/
}

+λ‖β‖1: .43/

The first and the second derivatives of l with respect to β are

@l

@β
=H.β, λ/=−

n
∑

i=1

δixi +
n

∑

i=1

δi

∑

j∈Ri

wijxj +λ sgn.β/, .44/

@2l

@β @β′
=

@H

@β
=

n
∑

i=1

@i

{

∑

j∈Ri

xjx
′
jwij −

(

∑

j∈Ri

xjwij

)(

∑

j∈Ri

x′
jwij

)}

.45/

=X′AX, .46/

where wij = exp.β′xj/=Σm∈Ri
exp.β′xm/, and A = @l2=@η @η′ with η =Xβ.

If βj =0 for j =1, . . . , p, then wij =1=|Ri| for i=1, . . . , n and j =1, . . . , p, and

@l

@β
=−

n
∑

i=1

δi

(

xi −
1

|Ri|

∑

j∈Ri

xj

)

: .47/

β̂j =0 for all j if λ>maxj∈{1,:::,p}|@l=@βj|: As λ is decreased further, an iterative procedure begins; variables
enter the active set, beginning with j0 =arg maxj|@l=@βj|. The four steps of an iteration are as follows.

(a) Predictor step: in the kth predictor step, β.λk+1/ is approximated as in equation (8), with

@β

@λ
=−

(

@H

@β

)−1
@H

@λ
=−.X′

AAXA/−1 sgn.β/: .48/

XA contains the columns of X for the current active variables.
(b) Corrector step: in the kth corrector step, we compute the exact solution β.λk+1/ by using the approx-

imation from the previous predictor step as the initial value.
(c) Active set: denoting the correlation between the factors and the current residual as ĉ,

ĉ =
n

∑

i=1

δixi −
n

∑

i=1

δi

∑

j∈Ri

wijxj: .49/

After each corrector step, if |ĉl|>λ for any l∈Ac, we augment the active set by adding xl. Corrector
steps are repeated until the active set is not augmented further. If β̂l =0 for any l∈A, we eliminate
xl from the active set.

(d) Step length: if λ=0, the algorithm stops. If λ> 0, we approximate the smallest decrement in λ with
which the active set will be modified. As λ is decreased by h, the approximated change in the current
correlation (49) is

c.h/= ĉ −hX′AXA.XAAXA/−1 sgn.β̂/: .50/

On the basis of equation (50), we approximate the next largest λ at which the active set will be
augmented or reduced.
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