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ABSTRACT

Acoustic room modeling has several applications. Recent results us-

ing large microphone arrays show good performance, and are helpful

in many applications. For example, when designing a better acous-

tic treatment for a concert hall, these large arrays can be used to

help map the acoustic environment and aid in the design. However,

in real-time applications – including de-reverberation, sound source

localization, speech enhancement and 3D audio – it is desirable to

model the room with existing small arrays and existing loudspeakers.

In this paper we propose a novel room modeling algorithm, which

uses a constrained room model and ℓ1-regularized least-squares to

achieve good estimation of room geometry. We present experimen-

tal results on both real and synthetic data.

Index Terms— Shoebox room modeling, wall discrimination,

circular microphone array, l1-constrained least squares.

1. INTRODUCTION

The problem of extracting 3D models from real world measurements

has been an active area of research for decades, particularly in the ar-

eas of machine vision, remote sensing and robotics [1]. Popular and

effective methods involve using passive or active sensors to obtain

high resolution maps from which 3D models can be extracted. Pas-

sive techniques can infer spatial information from shading, edges,

texture, or other features in one or more images. Active methods

work by illuminating a given region with structured light or laser

light. While these techniques are quite effective for extracting visual

information, they don’t offer any information regarding sound reflec-

tion characteristics. To determine reflection coefficients, one must

measure audio, and little has been published about audio 3D mod-

eling. This is understandable, since sound possesses much longer

wavelengths than light, which limits its resolution, and brings about

near field effects which degrade performance even further.

Due to the difficulties associated with sound, room acoustics

analysis and design is often made by physical measurements, fol-

lowed by material and propagation modeling [2]. Nevertheless, in-

terest in such problems has apparently increased in recent years.

[3] uses MVDR beamforming with a single ultrasound transmit-

ter/receiver pair mounted on a precision 2D positioning system to

perform ultrasound imaging in air, with which the position and out-

line of obstacles can be determined. [4] uses a 32-microphone spher-

ical array to visualize the location of sound reflections in concert

halls. [5, 6] use a single microphone and either a moving source on

a circular trajectory or multiple sources to estimate the coordinates

of reflectors.

In this paper we consider the problem of fitting a six-wall room

model to a 3D enclosure based on data recorded by an array of M
microphones, by reproducing a known signal from a source at the

center of the array. This approach is quite convenient, since it is

compact, self contained, does not have moving parts, does not re-

quire multiple sources and estimates reflection coefficients for fre-

quencies in the audible range, which allows them to be used in appli-

cations involving speech capture and enhancement. In essence, our

proposal involves estimating the impulse responses from the array

loudspeaker to each of the array’s microphones, and then extracting

the wall positions and distances from this set of impulse responses.

There are numerous applications even for such a simple room

model. It can increase robustness in MVDR arrays by improving

the desired signal manifold estimates (instead of directly estimat-

ing room transfer functions as in [7]), improve 3D sound spatializa-

tion by incorporating more accurate room models [8], help initialize

acoustic echo cancelation algorithms, assist in tracking environment

changes, and help alleviate the drawbacks of reverberation in many

algorithms. More impressively, in [9] we show that applying this

model to sound source localization can yield better results than for

state-of-the-art algorithms [10, 11] in non-reverberant rooms.

This paper is organized as follows: Section 2 gives an overview

of the problem and the main assumptions under consideration. Sec-

tion 3 presents the mathematical details and approximations behind

the room estimation method. Section 4 shows experimental results

on both real and synthetic data, and Section 5 presents some of our

conclusions and future work.

2. PROBLEM STATEMENT

We want to obtain a room model which could be used to predict

the way sound propagates inside a room. We do not need to per-

fectly predict room propagation, as long as we can help explain at

least part of the sound behavior. Indeed, real rooms are potentially

complex environments. Yet, in sampling a few conference rooms

in corporate environments, we find that almost every room has four

walls, a ceiling and a floor; the floor is leveled and the ceiling par-

allel to the floor; walls are vertical, straight, and extend from floor

to ceiling and from adjoining wall to adjoining wall. Carpet is com-

mon, and almost invariably there is a conference table in the center

of the room. Furthermore, many objects that seem visually impor-

tant are small enough that may actually be acoustically transparent

for most frequencies of interest. Based on these observations, we

adopt a simple room model: four walls and a ceiling.

Even with such a simplified room model, it would be hard to

passively estimate the components of the model based solely on un-

known signals already existing in the room. Instead, we follow the

same approach as [4, 5, 6] and actively probe the room by emit-

ting a known signal (e.g., a sweep) from a known location (e.g., a

loudspeaker co-located with the array). For the purposes of this dis-

cussion, we consider a uniform circular array with a speaker rigidly

mounted in its center. This is the geometry used by the RoundTable
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Fig. 1. Room model and RoundTable device

device depicted in Figure 1.

Note that, in contrast to previous work, we use a single sound

source, fixed, and close to the microphones. This implies that we

only sample each wall at one point: the point where the wall’s nor-

mal vector points to the array. Depending on the application, we

need to assume that the walls extend beyond the location at which

they will be detected. Figure 1 illustrates the concept when using the

proposed room model to do speech enhancement or sound source

localization. The circular device in the center of the room (i.e., the

RoundTable) will detect the reflections from the walls, indicated by

the black segments in each of the four walls. However, the locations

of interest for the walls are in fact the ones indicated by the red seg-

ments. The underlying assumption is that the walls extend linearly

and with similar acoustic characteristics.

We consider the problem of fitting a five wall model to a 3-D

enclosure based on data recorded by an array of M microphones,

by reproducing a known signal such as a sine sweep from a source

positioned at the center of the array. The room model is denoted

R = {(ai, di, θi, ϕi)}
5
i=1, where the vector (ai, di, θi, ϕi) specifies

respectively the reflection coefficient, distance, azimuth and eleva-

tion of the ith wall with relation to a known coordinate system. We

assume that the geometry of the array is fixed and known a priori.

The optimal manner in which to solve this problem would be

a completely parametric approach, where R is estimated directly.

However, there are two issues with this approach: (a) there is no

straightforward functional relationship between R and the room im-

pulse responses; (b) the estimation problem is a highly nonlinear

one which suffers from the presence of multiple local extrema. We

therefore resort to a non-parametric approach which assumes that

early segments of impulse responses can be decomposed into a sum

of isolated wall reflections.

3. ROOM MODELING

Without loss of generality, a spherical coordinate system (r, θ, ϕ) is

defined such that r is the range, θ is the azimuth, ϕ is the elevation

and (0, 0, 0) is at the phase center of the array. We assume that the

geometry of the array and loudspeaker is fixed and known a priori.

Define h
(r,θ,φ)
m (n) as the discrete time impulse response from

the loudspeaker to the mth microphone, considering that: (1) the

direct path from loudspeaker to the microphone has been removed

and (2) the array is mounted on free space, except for the presence of

a lossless, infinite wall with normal vector n = (r, θ, ϕ) and which

contains the point (r, θ, ϕ). Let r be sufficiently large so that the wall

does not intersect the array or offer significant near-field effects. We

denote h
(r,θ,φ)
m (n) a single wall impulse response (SWIR).

Our discrete time observation model is

ym (n) = hm (n) ∗ s (n) + um (n) , (1)

where n is the sample index, m is the microphone index, hm (n) is

the room’s impulse response from the array center to the mth micro-

phone, s (n) is the reproduced signal, and um (n) is measurement

noise. Given a persistently exciting signal s (n), one can estimate

the room impulse responses (RIRs) from the observations ym (n). It

is from these estimates that we infer the geometry of the room.

We assume that the early reflections from an arbitrary RIR hm (n)
may be approximately decomposed into a linear combination of the

direct path and individual reflections, such that

hm (n) ≈ h(dp)
m (n) +

R
∑

i=1

ρ(i)h(ri,θi,φi)
m (n) + vm (n) , (2)

where h
(dp)
m (n) is the direct path; R is the total number of modeled

reflections; the superscript i is the reflection index; h
(ri,θi,φi)
m (n) is

the SWIR from a perfectly reflective wall at position (ri, θi, ϕi), and

from which the direct path from the loudspeaker to the microphone

has been removed; ρ(i) is the reflection coefficient (which we assume

to be frequency invariant); vm (n) is noise and residual reflections

not accounted in the summation.

Note that we assume that ρ(i) does not depend on m, and this

claim deserves justification. While the reflection coefficient obvi-

ously depends on a wall and not on the array, it is conceivable (albeit

unlikely) that the sound impinging on a pair of microphones could

have reflected off different walls. However, for reasonably small ar-

rays the sound will take approximately the same path from the source

to each of the microphones, which implies that it should with high

probability reflect off the same walls before reaching each micro-

phone, such that the reflection coefficients will be the same for every

microphone.

Now define

xm =
[

xm (0) · · · xm (N)
]T

x =
[

xT
1 · · · xT

M

]T

xm,τ =
[

xm (τ) · · · xm (N + τ)
]T

xτ =
[

xT
1,τ · · · xT

M,τ

]T

for any signal xm (n) associated with the mth microphone.

We can then rewrite (2) in truncated vector form as

h ≈ h
(dp) (n) +

R
∑

i=1

ρ(i)h(ri,θi,φi) + v, (3)

where we have selected a vector length N that is just large enough

to contain the first order reflections, but that cuts off the higher order

reflections and the reverberation tail. Therefore, given a measured

h, our problem is to estimate ρ(i) and (ri, θi, ϕi) for the dominant

1st order reflections, which in turn should reveal the position of the

closest walls and their reflection coefficients.

Our proposed method for room modeling first consists of obtain-

ing synthetically and/or experimentally for the array of interest: (1) a

set
{

h(r0,θ,0)
}

θ∈A

of SWIRs, each measured at fixed range r = r0

over a grid A of azimuth angles, and (2) the SWIR h(r0,0,π/2) con-
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taining only the reflection from a ceiling at the same fixed range. We

define

H =
{

h
(r0,θ,0)

}

θ∈A

∪
{

h
(r0,0,π/2)

}

. (4)

In essence, H carries a time-domain description of the array man-

ifold vector for multiple directions of arrival. If we assume a far

field approximation and a sufficiently high sampling rate, given an

arbitrary h(r∗,θ∗,φ∗) with r∗ > r0 we have that

h
(r∗,θ∗,φ∗) ≈

r0
r∗

h
(r0 ,θ∗,φ∗)
τ∗ , (5)

for τ∗ = [2 (r∗ − r0) /c], where [·] denotes the nearest integer, and

c is the speed of sound. Thus, h(r0,θ∗,φ∗) generates a family of

reflections for a given direction. Since a room is essentially a lin-

ear system, if we assume that reflection coefficients are frequency-

independent and neglect the direct path from loudspeaker to micro-

phone, the 1st order reflections can always be expressed as a linear

combination of time-shifted and attenuated SWIRs. Furthermore, if

A is sufficiently fine, for a set of walls W = {(ri, θi, ϕi)}i∈[1,W ]

there are coefficients {ci}i∈[1,W ] such that given an impulse re-

sponse hroom, which had the direct path removed and was truncated

as to only contain early reflections,

hroom ≈
∑

i∈[1,W ]

cih
(r0,θi,φi). (6)

Thus, under the approximations above we can claim that the set of

all delayed SWIRs approximately generates the space of truncated

impulse responses over which we will make estimations. Define

H∗ = {hτ : h ∈ H ∧ 0 ≤ τ ≤ T}, where T is the maximum delay

we wish to model for a reflection. Our problem is then to fit elements

H∗ to the measured impulse response, adjusting for attenuation. A

sparse solution is also required, given that we are interested in only a

few major 1st order reflections, and that H∗ will contain a very large

number of candidate reflections.

Consider an enumeration of H such that H =
{

h(1), ...,h(K)
}

,

with K = |H|. We define

H =
[

h
(1)
τ=0 · · · h

(1)
τ=T · · · h

(K)
τ=0 · · · h

(K)
τ=T

]

, (7)

where each single wall impulse response appears for each integer

delay τ such that 0 ≤ τ ≤ T . We then solve the following ℓ1-

regularized least-squares problem [12]:

min
a

∥hroom −Ha∥22 + λ ∥a∥1 , (8)

where λ controls the sparsity of the desired solution. Each coeffi-

cient in the solution indicates a reflection, and we must assume each

reflection is from a different wall. Thus the need to use a sparsity-

inducing penalty as the ℓ1 norm. Without it, a typical minimum

mean square solution will provide hundreds or thousands of small-

valued reflections, instead of the few strong reflections correspond-

ing to the wall candidates.

If we consider only SWIRs with coefficients [a]i larger than a

given threshold, then we have a set of candidate walls. A post-

processing stage is necessary in order to only accept solutions which

contain walls which make 90◦ angles to each other, and reject im-

possible solutions such as more than one ceiling or multiple walls at

approximately the same direction.

A practical consideration involves the computational tractability

of solving (8). It is desirable to have spatial resolutions on the or-

der of 2 cm or better. Given the restriction of integer delays, this

translates to having a sampling rate of 16 kHz or higher. If one

wishes to identify walls located at 4 meters or less, one must plan

for a round-trip time of around 350 samples, which implies allow-

ing 0 ≤ τ ≤ 350 = T . The grid of single wall reflections should

be sufficiently fine, otherwise walls will not be detected. We have

sampled in azimuth with 4◦ resolution, resulting in 90 SWIRs. One

SWIR for the ceiling is also necessary, giving K = 90 + 1. There-

fore, H has T ·K = 31850 columns. Since impulse responses can

be long, computational requirements for operating explicitly with H

will typically be prohibitive.

In order to solve (8) following [12] one must implement the Hx

and HTy operations for arbitrary vectors x and y. Fortunately, it is

possible to exploit H’s block matrix nature in order to avoid repre-

senting H explicitly, and also to accelerate the matrix-vector product

operations. Indeed, H has a block structure such that

H =
[

H(1) H(2) · · · H(K)
]

, (9)

where

H
(i) =

[

h
(i)
τ=0 h

(i)
τ=1 · · · h

(i)
τ=T

]

. (10)

It is easy to see that for all i, H(i) is Toeplitz. Therefore, H(i)x =
h
(i)
τ=0 ∗x, which can be implemented with a fast FFT-based convolu-

tion. It is easy to show that
[

H(i)
]T

y = h
(i)
τ=0 ⋆y (where ⋆ denotes

cross-correlation), which can also be evaluated with FFTs. Using

this method, both matrix-vector products can be performed using K
fast convolutions or fast correlations.

After solving (8) and post processing to reject invalid walls, one

is left with a handful of wall coordinates and their associated coeffi-

cients [a]i = ρ(i) · r0
r(i)

. It turns out that

r(i) = r0 +mod (i− 1, T ) / (2fs) , (11)

where fs is the sampling rate. Thus we are able to estimate ρ(i).
However, one must consider that the ℓ1-regularized least-squares

procedure is designed for producing sparse solutions. As such, it

tends to underestimate coefficients, such that reflection coefficients

obtained directly from solving (8) can be too small. To get better

estimates of reflection coefficients, we gather only the h
(i)
τ=τi single

wall responses corresponding to the identified walls and fit them to

the measured impulse response using conventional least squares.

One final consideration must be made concerning how to pre-

process impulse responses before solving (8). Individual single wall

reflections tend to be very short, while the impulse response hroom

is usually long, and contains many features other than the first reflec-

tions that one would wish to identify with greater precision. These

features can be due to clutter, multiple reflections, bandpass responses

from microphones or reflections from the table over which the array

is set. In order to reduce these extraneous features, we perform soft

thresholding on SWIRs and room RIRs, according to

hthresh = sign (h) ·max (|h| − σ, 0) , (12)

where σ determines the thresholding level and should be adjusted as

a fraction of the signal’s level. With soft thresholding, the RIR gains

the appearance of a synthetic impulse response generated using the

image method. The sparsity of the thresholded RIR lends well to

the ℓ1-constrained least squares procedure, both in running time and

estimation precision.
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Ground Truth Estimates

r θ ϕ ρ r θ ϕ ρ

-1.00 0.0 90.0 0.77 1.00 0.0 90.0 0.73

2.00 0.0 90.0 0.77 2.00 0.0 90.0 0.65

4.00 0.0 0.0 0.77 4.00 0.0 0.0 0.68

1.50 90.0 0.0 0.77 1.50 92.0 0.0 0.71

3.00 180.0 0.0 0.77 3.00 -180.0 0.0 0.69

4.50 270.0 0.0 0.77 – – – –

Table 1. Estimated walls for the synthetic room

4. EXPERIMENTAL RESULTS

Using the image model, we obtained 90 SWIRs for vertical walls at

4o azimuth intervals and 1 ceiling SWIR, and zero padded them to

allow for up to T = 350 integer sample delays. We simulated an

array with dimensions matching the RoundTable array (see Figure

1), which is a 6 directional microphone, uniform circular array with

a radius of 13.5 cm with a fixed sampling rate fs = 16kHz.

A virtual room with dimensions 6×7×3 m and R60 = 250ms
was simulated using the image method [13]. RIRs from the center of

the array to all channels were extracted, and truncated to 450 sam-

ples. A ℓ1-regularized least-squares problem with λ = 10−2 was

solved to determine candidate wall locations, and a post-processing

stage was used to discard false candidates. The wall positions were

estimated within 1 cm of their true position, and when the postpro-

cessing stage was set to select the 5 dominant walls, the estimated

reflection coefficients fell within 0.12 of their true value, which was

0.77 for all walls. When it was set to select the 3 dominant walls,

the estimated reflection coefficients were exactly 0.77. The array’s

coordinates and estimation results are shown in Table 1.

Using the anechoic chamber at Microsoft Research and a real

RoundTable device, we obtained 90 SWIRs for vertical walls and

one ceiling SWIR by using a circular acrylic barrier measuring about

1 meter in diameter. Real impulse responses were collected in a

conference room in the Microsoft campus with dimensions 5.30 ×
7.01×2.77 m. The array was placed on top of a conference room ta-

ble which was about 0.8 m from the ground. Therefore, the distance

to the ground could not be estimated. A 3-second linear sine sweep

from 30 Hz to 8 kHz was played through the RoundTable’s internal

speaker, and recorded simultaneously by all 6 microphones. Impulse

responses were then estimated by frequency domain division.

After inspecting the impulse responses, it became apparent that

the RoundTable is not the ideal device to capture reflections com-

ing from side walls. Indeed, its microphone enclosures give highest

gain to signals arriving from the ceiling, and lowest gain to signals

arriving directly from the sides. Additionally, the RoundTable loud-

speaker is mounted facing upwards, such that its directivity is low

to the sides. As a matter of fact, some secondary reflections from

the ceiling and walls were being detected with better clarity than

the primary reflections off the side walls. Unfortunately, detecting

secondary reflections is less reliable, because they tend to appear to-

gether with many other reflections. Regardless, we could determine

the location of the closest walls with good accuracy, which is suffi-

cient to enhance algorithms such as SSL with an image model of the

room. Real distances and estimates are presented in Table 2.

Note that the wall at θ = 0◦ could not be estimated, while the

wall at θ = 90◦ was found at its exact distance. It turns out that the

wall at θ = 90◦ was completely covered by a whiteboard, which is

quite reflective. Since both walls are approximately at the same dis-

Ground Truth Estimates

r θ ϕ ρ r θ ϕ ρ

1.98 0.0 90.0 ? 1.98 0.0 90.0 0.70

2.52 0.0 0.0 ? – – – –

2.49 90.0 0.0 ? 2.49 88.0 0.0 0.99

4.49 180.0 0.0 ? – – – –

2.81 270.0 0.0 ? 2.78 272.0 0.0 0.72

Table 2. Estimated walls for conference room 1

tance to the RoundTable, their reflections arrived at approximately

the same time, and the impulse responses were dominated by the re-

flection from the whiteboard. Finally, the wall at θ = 180◦ could

not be detected simply because it is too far away.

5. CONCLUSION

We have presented a method capable of identifying wall distances,

positions and reflection coefficients with a small microphone array

and loudspeaker. This information has already shown useful in en-

hancing SSL [9] and 3D audio spatialization [8], and it can be ex-

pected to be useful in many acoustic signal processing applications,

including beamforming, speech enhancement, and others.

Future enhancements of the room estimation algorithm involve

better identifying higher order reflections, in order to work around

device limitations such as seen with the RoundTable. In particular,

we are currently acquiring a more complete dataset of reflection ba-

sis functions, which incorporate different elevations, in addition to

the 0◦ and 90◦ we currently use.
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