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Preface 

The theory of analytic function of several complex variables, as presented for example 

in the Cartan seminars [7], consists in a reduction to the theory of analytic functions of 

one complex variable. First one only studies functions in polycylinders (products of open 

sets in the different coordinate planes). The extension of the results to more general do- 

mains is then achieved by embedding them as submanifolds of polycylinders in spaces 

of high dimension. The success of this procedure depends of course on the invariance of 

(1) Th i s  i nves t iga t ion  was  s u p p o r t e d  by  t he  Office of  N a v a l  R e s e a r c h  u n d e r  c o n t r a c t  No. 225(11) 

a t  S t an fo rd  U n i v e r s i t y .  
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the notion of analytic function under analytic mappings, so similar techniques do not seem 

applicable to many  overdetermined systems of differential equations other than the 

Cauchy-Riemann equations for analytic function of several complex variables. I t  is there- 

fore of interest to give a different t reatment  of these equations which is more suitable 

for extension to general overdetermined systems. 

Such a technique was suggested by Garabedian and Spencer [11]. The execution of 

their ideas caused considerable difficulties, however, and it was not until 1958 that  Morrey 

[22] found a general method for proving the L ~ estimates required in this approach. His 

method was extended and simplified by Kohn [14] and Ash [2]. In  [15] Kohn has also 

announced some results on boundary regularity which are required in this context and 

were still missing in Morrey's fundamental  work. The proofs of these results have recently 

appeared in [15 a] and have later on been simplified by Kohn and Nirenberg jointly, 

and also by  Morrey. 

The aim of this paper is to simplify and develop this work. The most important  sim- 

plification is that  we bypass the difficult questions of boundary regularity discussed by  

Kohn [15] and use instead only fairly elementary results on "identi ty of weak and strong 

extensions of differential operators". These can be proved with the methods of Friedrichs 

[10] and are essentially well known before in a different context (see Lax-Phillips [16]). 

Further, we characterize the open sets for which estimates of the Morrey-Kohn type 

are valid. This leads to new proofs of results obtained by  Andreotti and Grauert [1] with 

sheaf theoretic methods; our results are essentially the restriction of theirs to the sheaf 

of germs of analytic functions. To prove global existence theorems and approximation 

theorems of the Runge type, we introduce L 2 estimates which involve densities depending 

on a parameter.  This technique has its origin in the Carleman method for proving unique- 

ness theorems for solutions of a partial differential equation, which we have combined 

with the ideas of Morrey and Kohn. Par t  of our results have been obtained with similar me- 

thods by Andreotti and Vesentini in a manuscript to appear in Publ. Inst.  Hautes  Etudes. 

The plan of the paper is as follows. In  Chapter I we present the facts from functional 

analysis and the theory of first order differential operators which we need. Chapter I I  

is devoted to the study of function theory in pseudo-convex domains in C n. The basic a 

priori estimates are then easy to prove, and they lead to very precise existence and approxi- 

mation theorems for the ~ operator in such domains. The results obtained can be used 

to construct analytic functions satisfying growth conditions, which does not seem as easy 

to do with the classical methods. (See however Ehrenpreis [9] and Malgrange [19].) We 

give a few applications here. For further applications of results of this type we refer to the 

papers just quoted. 
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In  Chapter I I I  we consider function theory in open subsets of a complex manifold. 

We then aim at  maximum generality rather than precision in the results as in Chapter I I .  

The estimates discussed are of the same types as in Chapter I I ,  but  in Chapter I I I  we 

determine almost completely when they are valid. As we have already mentioned, this 

leads to results of Andreotti and Grauert [1], due in par t  to Ehrenpreis [8]. In  a final 

section we also show that  the L 2 methods developed here give in a very simple way results 

on the boundary behavior of the Bergman kernel function extending those given by Berg- 

man [3] for domains of holomorphy in C 2. 

Apart  from the results involving precise bounds, this paper does not give any  new 

existence theorems for functions of several comples variables. However, we believe that  

it is justified by  the methods of proof. 

I. Functional  analysis and first order differential operators 

1.1. Basic facts from functional analysis 

In  this section we shall collect some classical facts on operators in Hilbert space in 

a form which is suitable for the following applications. 

Let  H 1 and H e be two Hilbert spaces and let 

T: HI-~ H 2 

be a linear, closed, densely defined operator. Then T*:H2-->H 1 has the same properties, 

and T**= T.  (See e.g. Nagy [23], p. 29.) By definition of the adjoint operator, the ortho- 

gonal complement of the range Rr  of T is the null space NT, of T*, which implies tha t  the 

orthogonal complement of NT. is the closure [RT] of R~. When R T is closed we therefore 

have a good description of R T in terms of NT,. 

THEOREM 1.1.1. The/oUowing conditions on T are equivalent: 

(a) R T i8 closed. 

(b) There is a constant C such that 

II/11 < CIITlll,, 
(c) Rr, is closed. 

(d) There is a constant C such that 

/ E Dr  N [RT* ]. 

IIglI~<~CIIT*gH1, gEDT,  N [RT]. 

The best constants in (1.1.1) and in (1.1.2) are the same. 

(1.1.1) 

(1.1.2) 
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Proo/. Assume that  (a) holds. Since the orthogonal complement of [RT,] is equal to 

Nr, the restriction of T to DT N [Rr, ] is a closed, one to one, linear mapping onto the 

closed subspace Rr of H 2. Hence the inverse is continuous by the closed graph theorem, 

which proves (b). Conversely, (b) obviously implies (a). In view of the symmetry between 

T and T*, it is now clear that  (c) and (d) are also equivalent, and it suffices to prove that  

(b) implies (d). From (b) we obtain 

I(g, Tl):l  = I(T*g,l) l l  < IIT*gllIII/II,<ClIT*glIdlT/II:; gEDr,,/eDrN [Rr.]. 

Hence I(g,h): I < CII T*glI:llhll:, gEDr*, hERr, which implies (d). 

In the usual applications of Theorem 1.1.1 to existence theorems for differential 

operators T, the range RT is expected to have at most finite codimension, and this makes 

(1.1.2) much easier to study than (1.1.1). In the applications to overdetermined systems 

of differential operators, on the other hand, one can only hope that  Rr shall consist of all 

elements in H~ satisfying certain compatibility conditions given by the vanishing of 

some differential operators--and perhaps a finite number of additional linear equations. 

To put  this in an abstract form we assume given another Hilbert space H a and a closed 

densely defined linear operator S:H~--+H 3 such that  

ST =0. (1.1.3) 

Then the range of T is of course included in the null space of S. 

THEOREM 1.1.2. A necessary and su//icient condition/or R T and Rs both to be closed 

is that 

I]g]i~<~c2(iIT*gii~+liSglI~); geDr, NDs, g•  NNs=Ns~[RT]. (1.1.4) 

Proo/. First note that  H2=[RT]|174 (1.1.5) 

In fact, (1.1.3) implies that  RT and Rs, are orthogonal, and the intersection of the ortho- 

gonal complements of these spaces is N. Now S vanishes on [RT], and T* vanishes on [Rs, ] 

since T'S* =0. By (1.1.2) RT is closed if and only if the inequality (1.1.4) is valid when 

gEDT, N [RT]. Similarly, by (1.1.1) with T replaced by S, Rs is closed if and only if the 

inequality (1.1.4) is valid when gEDsN [Rs, ]. Since every g occurring in (1.1.4) can be 

split into two such orthogonal components, the theorem follows. 

Note that  the dimension of N is equal to the codimension of [RT] in Ns so that  in 

the applications there is hope that  N shall be finite dimensional. I t  is the fact that  (1.1.4) 
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is expected to hold essentially for all g such that  the right-hand side is defined which 

makes it easier to study than (1.1.1) or (1.1.2). Sufficient conditions for (1.1.4) can be ob- 

tained by compactness arguments: 

THEOREM 1.1.3. Assume that ]rom every sequence gkeDT. N D s with Ilgkll2 bounded 

and T*gk--~ 0 in H1, Sgk---> 0 in Ha, one can select a strongly convergent subsequence. Then 

(1.1.4) holds and N is finite dimensional. 

Proo/. :By hypothesis the unit sphere in N is compact, so N has to be finite dimen- 

sional. Now if (1.1.4) were not valid, we could choose a sequence g k •  such that [Igki]2 = 1 

and T*gk--> 0 in H1, Sgk---~ 0 in H a. Let g be a strong limit of the sequence gk, which exists 

by hypothesis. Then Iigi]2=l and g is orthogonal to N although T*g=Sg=O, so that  

g EN. This contradiction proves (1.1.4). 

In the applications we shall also encounter modified forms of (1.1.4): 

THEOREM 1.1.4. Let A be a closed, densely defined, linear operator in H2, and let F 

be a closed subspace o/ H 2 which contains R T. Assume that 

]IA/]] 2 ~ ]I T*/II~ + ]IS/Iil; lEnT* N n s  N F, (1.1.6) 

which in particular shall mean that / E Dr,  N Ds N F implies / E DA. Then we have RA, N Ns N F 

RT; i/ g = A'h ,  h E DA,, and g E Ns  N F, we can find u E D T so that Yu  = g and ]I u I[1 --< ]I h II 2. 

_Furthermore, i / v E R T ,  , we can choose/ED A N DT, sO that T* /=v  and []A/]]2 ~< IIvl]l. 

Proo/. With g and h as in the theorem we have to find u E H  1 so that  ]lull 1 ~< IIhll2 and 

Tu =g, tha t  is, 

(u, T' l )1= (g, l)2, / E Dr,. 

By the Hahn-Banach theorem this is equivalent to proving the inequality 

I(g, /)21 < Ilhll21lT*/ll,, /EDr*. (1.1.7) 

First note that  i f / l l V s N  F, we have T*/=O because R T C N s N  F. Since gEzVsN F, it is 

therefore enough to prove (1.1.7) when l E N s  N F and /EDT,.  :But then we obtain from 

(1.1.6) t h a t  I]A/I[2 ~< II T*/ll,, which gives 

I(g,/)21 = I (A'h, l) l = I(h, AI)21 < Ilhll,llAlll2 Ilhll,ll T' I l l  i- 

This proves (1.1.7) and the first part  of the theorem. To prove the second part we note 

that  the range of T* is equal to the range of its restriction to the orthogonal complement 
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of NT,, that  is [RT] , which is contained in -N s N F. Hence one can find ] E N s  N F fi DT, 

so that  T*/=v .  But then it follows from (1.1.6) that ]eDA and that  ][A/H2~< Ilvlll. The 

proof is complete. 

1.2. Identity of  weak and strong extensions of first order differential operators 

In  our applications of the results proved in section 1.1, the operators T and S will 

he first order systems of differential operators. The a priori estimates discussed in section 

1.1 will first be obtained only for smooth elements in DT, N Ds, and to prove them in 

general it will be necessary to show that  such elements are dense in DT. fl Ds for the graph 

norm. This follows essentially from known results (Friedrichs [10], Lax-Phillips [16]) 

but we shall sum up what is required here. 

Let # be a positive measure with compact support in R s and #(1)= 1. Define ju~ by 

u(x)d/~(x) = fu(~x)d/~(x) 

when u is continuous and has compact support. Then we have /~(1)=1, so if v E L  2 it 

follows that 

II  *vll ,.,< Ilvll , .  

Since/~ ~ v-->v uniformly if v is a continuous function with compact support and since 

such functions are dense in L 2, it follows t ha t /~  ~ v-->v in L 2 when e--> 0 for every v E L 2. 

A much more subtle fact concerning the regularization by convolutions is given by 

Friedrichs' lemma (Friedrichs [10]; see also HSrmander [13]). 

L ] ~ M A  1.2.1. Let/~ be a positive measure with compact support in R N such that/~(1) = 1 

and D t #  = ~#/~x~ is a measure /or  a certain i (1 <. i <~ N).  I / v E  L2(R N) has compact support 

and a is a Lipschitz continuous ]unction in a neighborhood o / the  support o / v ,  i t /ol lows that 

a( D tv -)e tz~) - (aD ~ v) ~e p~--> 0 in L 2 when ~ --> O. 

Note that the product of a Lipschitz continuous function and a first order derivative 

of an L 2 function is well defined in the sense of distribution theory. 

Proo]. If  M is a Lipschitz constant for a and if m, is the total variation of [Yl D~#, 

the arguments of Friedrichs [10] give (see [13], p. 393) 

II a(D~ v ~e /~) - (aD, v)~e tz, II, < M(1 + m,) II v II,. (1.2.1) 
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Since the left-hand side of (1.2.1) tends to 0 when e--> 0 if vEC~, which is a dense set in 

L 8, the assertion follows. 

L E M ~ A  1.2.2. Let u 1 .... , uj be L 2/unctions with compact support in an open set U c  R N, 

let aij (i = 1, ..., N; j = 1 ..... J) be 5ipschitz continuous in U and assume that/or each i and j 

either a~j is a constant or Ddt is a measure. Then 

,~l j~=la,jD, (uj~ ~ )  - (~=~ j~la,jD, uj) ~ la~ L -+ O, e--> O, (1.2.2) 

and D~(uj~clX~ ) EL 2/or all i such that D~# is a measure. 

Prom/. Since multiplication by  alj and convolution with #~ commute  if a~j is a constant ,  

the lemma is an immediate  consequence of Lemma 1.2.1. 

We shall now consider a system of differential equations 

N Y J 

~ a~ n~ uj + Z b~uj= /k, k=  l . . . . .  K, 
t~1 J = l  i=1  

which we write in the form Au  + B u  =[. (1.2.3) 

As norm on u we take ]] u IlL, = ( ~  ]] uj H2,) �89 and similarly f o r / .  

PROPOSlTIOZr 1.2.3. Let U be an open set in R N, let 99 E Cl ( U ) be real valued, and assume 

>-0 that g r a d e r # 0  when ~0=0. Set U+-={x; xEU,  q~(x)~ }. Suppose we have a solution o/ 

(1.2.3) in the interior o/ U-, such that the components o/ u and o/ / are in L2(U -) and vanish 

outside a compact subset o/ U-. The coe//icients o/ A are assumed to be Lipschitz continuous 

and those o/ B bounded measurable in U. Then there is a sequence u~EC~176 vanishing 

outside a/ ixed compact subset o/ U-, such that 

when 

I / t h e  Cauchy data o/ u on the sur/ace q~ = 0  with respect to the system (1.2.3) vanish in the 

sense that Au  + B u = /  in U i/ u and / are defined as 0 in U N ~U-, one can choose u ~ with 

support in the interior o/ U-. 

Prom/. First  assume tha t  there is an open convex set 1 ~ with 0 E F such tha t  

~0(x)=0, xEsuppu~x++yfiU+-, yEF.  (1.2.4) 

Ex tend  u and / to  be 0 in U outside U-.  Then 

Au + Bu =/+g,  (1.2.3)' 
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where the support of 9 lies in {x; xEsupp u, 9(x)=0}; the hypothesis in the latter par t  

of the theorem is that  g = 0. Now choose/~ E Cff(F), which implies that  #, E C~(F), 0 < e < 1. 

Then uj~elz, EC~(U ) and by  Lemma 1.2.2 

A(u~elz~)+B(u~ela~)-/~tz~-g~e/z~-->O in L~(U) when e-->0. 

But  g ~ / ~ = 0  in U-  in view of (1.2.4), and []]~I~--]IIL,--> 0 when e--> 0 so u'=u~+l~l/, 

has the required properties. To prove the last s tatement  we choose e between - 1  and 0. 

Then the support of u~/z~ lies in the interior of U-  if e is small enough, again by  0.2.4), 

and since g =0  by  hypothesis now, we have IIA(u~e~)+ B(u~elz~ ) - /H L'(U) ---> O. 

In  general there is no convex set F with the required properties, but  for every point 

x E supp u one can choose a set F which can be used in a neighborhood of x. By  using a 

parti t ion of unity we can therefore decompose u into a sum of a finite number  of terms 

such that  the hypotheses in the first par t  of the proof are fulfilled for each term. This 

completes the proof. 

In  the next  proposition we shall consider solutions of a system of differential equations 

(1.2.3) satisfying Cauchy boundary conditions only with respect to some of the equations. 

Thus let K~ (the number  of equations in (1.2.3)), set /~ . . . .  , /K') and write the 

first K ~ equations (1.2.3) in the form 

AOu + BOu =/o. (1.2.5) 

I f  9 E C 1 we set A(gradg)  = a~ Ox t~=x ..... ~: 

and define the matrix A ~ similarly with K replaced by K ~ 

PROPOSITIO~ 1.2.4. Let U be an open set in R N, let 9EC~+I(U) be real valued, r>~ 1, 

and assume that grad 9=~0 when 9=0 .  Set U - = { x ;  x E U, 9(x) ~0} .  Suppose we have a 

solution o/ (1.2.3) in the interior Uo o/ U-,  such that the components o/ u and o / / a r e  in 

L~( Uo ) and vanish outside a compact subset o/ U-.  We assume that the coe//icients o / A  are 

in C~(U), that those o / B  are bounded measurable in U, and that the matrices A(grad 9) and 

A~ rad 9) have constant rank in a neighborhood o/ {x; xE U, 9(x)=0}.  In  addition assume 

that the Cauchy data o / u  with respect to the operator A ~ on the sur/ace 9 = 0  vanish in the 

sense that (1.2.5) is valid in U i / u  and/o are de/ined as 0 outside Uo. Then there is a sequence 

u ~ with components in C~(U-),  vanishing outside a ]ixed compact subset o/ U-,  such that 

Hu'-ullL,(V~)-->O, HAu~+Bu'--/[[L,(V~)-->O, V--->oo, 

and the Cauchy data o/ u" with respect to the operator A ~ vanish, that is, A~ 

when 9 = O. 
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Proof. First assume that  ~(x) =xN and that  the coefficients a~t in A(grad ~0) all vanish 

except when ] = k = l  ..... r0, the rank of A~ ~0), and when J + l - ? ' = K + I - k = l  ..... 

r-ro, where r is the rank of the whole matrix A(grad ~0); these coefficients are assumed 

to be equal to 1. Define u and / as 0 in U outside U~; the equations (1.2.5) are then ful- 

filled in the whole of U. Now choose/~ as a measure with support in the plane xN = 0 with 

a C ~ density. Since D~/~ is then a measure for every i 4/Y, the hypotheses of Lemma 1.2.2 

are fulfilled. Hence the components of u~=u~el~ ~ and all their derivatives with respect 

to other variables than x~ are in L ~ and we have 

Au~+Bu~-[--->O in L2(U4) when e-->0; A~176176 in L2(U) when e-->0. 

(1.2.6) 

This proves that u ~ has Cauchy data 0 with respect to the equations (1.2.5). Also note 

that  (1.2.6) proves that  au~/~xNE L2(U) if j<_r 0 and that  ~u~/Oz"vEL~(Uo) if ]>J+ro- r .  

These are the only xN derivatives occurring in the operator A. 

Now choose positive measures #+ and # -  with supports in the half spaces {x; x N > 0} 

and {x; xN<0) respectively, with total mass 1 and density in C~ ~ We set with 0 > 0  

u~ = U~ ~ l~,  i=1 . . . . .  Ko; u~~ = u~ ~e l~ ,  i = K o + l ,  ..., K. 

Then u~OE C~ ~ (U) for small e and 0, and the support is contained in the interior of U-  

when j~<K o. When 0-->0 we have Diu~-->D~u~ in L2(U) if i < N  or ff i = N  and j~<r o. 

In  addition, D~u~-->DNu~ in L~(Uo) if ]>J+ro- r .  If  we define u ~ as u ~ with first e and 

then (~ chosen sufficiently small, we can therefore achieve that  

1 
II u I I . (u - ,  + II + B u ' -  111.,   < -. 

This completes the proof in the special case. 

In  general it suffices to prove that  every point in U where ~0 = 0 has a neighborhood 

where a suitable change of dependent and independent variables leads to the situation 

just considered. Indeed, when we have proved that, a partition of unity can be used to 

split u into a finite sum consisting of one term with support in the interior of U-, to which 

we can apply Proposition 1.2.3, and otherwise only terms which can be approximated 

in view of the first part of the proof. 

Thus take a point x0E U with ~0(x0)=0. By the implicit function theorem there is a 

G +~ change of variables in a neighborhood of x 0 such that ~0(x) is one of the new coordi- 

nates. This substitution preserves the regularity properties of the coefficients required 

in the theorem and also keeps the class of C ~ functions invariant. We may therefore without 

any restriction assume that ~0(x) =xN. By hypothesis, the matrix 

7- -652922 .  Acta mathematica. 113. I m p r i m d  le 11 mar s  1965. 
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a k ~ k = l  . . . . .  Ko 
~jjj=x ..... 

has constant  r ank  equal to r o in a neighborhood of x o. We ma y  assume tha t  the mat r ix  

with ?', k = 1 . . . . .  r o is non-s ingular  a t  x o a nd  therefore in a neighborhood of x o. I n  this 

neighborhood we can then  in t roduce 

3 

u'~ = ~ a~j  uj ,  k = l  . . . . .  ro; u'k = uk, ro < k <~ g ,  
t f f i l  

as new dependent  variables. Since the coefficients of this t ransformat ion  and  its inverse 

are in C r, the regular i ty  hypotheses in  the theorem will be fulfilled by  the new system. 

The equat ions (1.2.3) now assume the form 

N 3 Y 
t k  �9 ' k  �9 ~ a t j  D, u j +  ~ b  t u t = / ~ ,  k = l  . . . .  , K, 

1 1 1 

with Cauchy bounda ry  condit ions for the first K 0 equations;  we have aN~ =(~jk for k = 1 ..... 

t k  r0; ? '=1 . . . . .  J ,  and  a ~ = 0 ,  ?'>ro, k < K  o since the r ank  of the mat r ix  aNj, k = l  . . . . .  K0, 

?' = 1 . . . . .  J ,  is r o everywhere. By  subt rac t ing  l inear combinat ions  of the first r o equat ions  

from the others we may  a t t a in  tha t  aN~ = 0 when ?' ~ r o for every k > r o. 

The first K o equat ions have now obta ined  the desired form. Fur ther ,  the m a t r i x  

rk  a~,j with ?' > r  o and  k > K 0 mus t  now have cons tant  r ank  equal to r - r  o. In t roduc ing  suit- 

able l inear combinat ions  of u~.+l . . . . .  u j  as new dependent  variables in the same way as 

above and  forming l inear combinat ions  of the equat ions with k > K 0, we obviously ob ta in  

a system of differential equat ions  of the special form considered in the beginning of the 

proof. The l inear change of dependent  variables as well as its inverse has C r coefficients. 

This completes the proof. 

II. Funct ion theory in pseudo-convex domains  in C n 

2.1. N o t a t i o n s  a n d  e s t i m a t e s  

We shall denote the real coordinates in  C n by  x j, 1 ~< ?' ~< 2n,  and  the complex coordinates 

by  z j = x 2 s _ l + i x 2 j  , ?'=1 . . . . .  n. A differential form / is said to be of type  (p, q) if it  can be 

wr i t ten  in the form 

/ = ~ '  /i. J dz* A d~ ~ , 
111=p. IJl=q 

where I = (i 1 . . . . .  ip) and  J = (?'1 . . . . .  ?'q) are multi-indices,  t ha t  is, sequences of indices be- 

tween 1 and  n. The no ta t ion  ~ '  means  tha t  the summat ion  only  extends over s tr ict ly 

increasing multi-indices,  and  we have wr i t ten  
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dz ~ A d5 J = dz~ A ...  A dz~ A d~r A ...  A d2r 

The coefficients/LJ may  be distributions in an open set, and are supposed to be defined 

for arbi trary I and J so tha t  they are antisymmetric both in the indices of I and in those 

of J .  We set ~/~k=(a/~x~,_l+i~/~x2~:)/2 and 

~I=Z',., ~' d~k A d J  A d~ "~. 

The form ~ / i s  then of type ( p , q +  1) and 

(2.1.1) 

~ a / = 0 .  (2.1.2) 

I f  :~ is a space of distributions we denote by  :~cp. q) the space of forms of type (p, q) 

with coefficients belonging to :~. In  particular we shall use this notation with ~ = CZ(~), 

where ~ is an open set in C n, or with :~ = Ck(~), the space of restrictions to ~ of functions 

which E C ~ in the whole space. We shall also use the space ~k(~) consisting of elements in 

Ck(~) vanishing outside a large sphere. If  q is a measurable function in ~ ,  locally bounded 

from above, we denote by  L2(~, T) the space of functions in ~ which are square integrable 

with respect to the density e-~; the norm in L~v ' q)(~, ~) is defined by  

II / = fl/(z) pe-~dV, / e L~p. q)(~,  q~), (2.1.3) 

where d V  is the Lebesgue measure and 

I r = = Z' I (2.1.4) 

Finally, we write L2(~, loc) for the space of functions which are square integrable on all 

compact subsets of ~ .  

I t  is clear tha t  i~p,q)(~, ~)) is a Hilbert space. I f  p and q are fixed with q > 0  we de- 

note by T the maximal (weak) differential operator from i~p,q_l)(~ , ~))into L~p.q)(~-~, Of) 

defined by  ~; thus a form uE L~v ' q-1)(~, ~) is in D T if and only if ~u, defined in the sense 

of distribution theory, belongs to L~p. q)(~, ~). I t  is clear that  T is closed and densely 

defined if ? is continuous. Similarly,  ~ defines a closed and densely defined operator S 

from L(~. q)(~, q0) to L~p. q+l)(~, ~0). By (2.1.2) we have 

S T  =0,  (2.1.5) 

which makes the results of section 1.1 applicable provided that  we can prove the required 

estimates. To do so, we first need the following 
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PROPOSITIO~ 2.1.1. C~p.a)(~)NDT, is dense in DT, NDs in the graph norm 

/--->(l[/l[~+ ]lT*}r Hs/[12) �89 i / the  boundary ~ o / ~  is o/ class C" and ~EUI(~).  Further 

0~,:q-x)(~) is dense in D r in the graph norm IIT/I[~)L 

Proo/. First note tha t  if zE0~~ a n d / E D s ,  then z /EDs and 

IIS(xl) -xSlll, < o sup I grad z l IIIII,. 

A similar result holds for T. From the fact tha t  

I (zt, Tu)~ - (t, T(,~u)),l <CsuPlgradxl IIllMlull~, u e Dr ,  

w e  also conclude that  if ] E Dr,  then Z/E Dr, and 

I I T * ( z l ) - x T * I I I ,  -<<c suPlgradzl Illll,, leDr,. 

Now let zEC~~ ") satisfy the condition Z(0 )=I  and set g~(z)=z(ez). I f  /EDT, N Ds it 

follows that  g ~] E Dr, N Ds and that  Z ~]-->/, S(Z~]) -->S], T*(Z~/) --> T*/in the appropriate L ~ 

spaces when e--> 0. To prove the theorem we therefore only have to approximate elements 

] in DT, N Ds which vanish outside a large sphere. I f  we note that  T* is a differential 

operator with constant coefficients in the first order terms and continuous coefficients 

otherwise and that  elements in Dr ,  satisfy the Cauchy boundary conditions in the weak 

sense, the result then follows from Proposition 1.2.4. That  the hypotheses of Proposition 

1.2.4 are fulfilled is obvious in view of the unitary invariance of the 0-operator. The last 

s tatement  follows in the same way from Proposition 1.2.3. 

In  what follows we assume throughout that  the boundary ~ of ~ is in C 2, and we 

denote by ~ a real valued function in C2(~), which vanishes on ~ ,  is negative in ~ and 

satisfies the condition [grad~] = 1 on 0~. These conditions imply tha t  gradQ is the exterior 

unit normal on 0~, so Green's formula may  be written in the following form when v, w E 0x(~). 

Oxj Oxj] J on Oxj 

where d8 is the Euclidean surface element on 0~. Writing 

Ow Ocp ~ O(w e -~) ~,=~-w~=e 

t" Ov ~ ( F ee v+e-~as. we obtain 1 - - ~ e -  dV= - v~jwe-~dV + m 
Jn O~j ./n ./on O~s 

(2.1.6) 

(2.1.7) 
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For later reference we note that  when ~ ~ C ~ we have the commutation relations 

w= w e', 

which imply the identities 

f [ e%_,a v JR O~k O~j 

JR Ozj 05~ R Ozs 

f  eUw 
- -  , - - v - - e -  dS; v, wG01(~). 
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(2.1.8) 

In fact, (2.1.8)' is an immediate consequence of (2.1.7) and (2.1.8) if wE~2(~) and follows 

when w E ~1(~) since C~(~) is a dense subset. 

We shall now describe explicitly the space ~p. Q)(~)N Dr.  occurring in Proposition 

2.1.1. To do so, we form 

(~u,/)~ = j~ (~u, /)~-~dV, 

1 where / E ~(1, q) (~) and u E ~(p, q-i) (~)" We shall move the differentiations from u t o / .  

Writing u = ~ '  ul, ~ dz ~ A d~K, where I I I = P and [ K I = q - 1, we have 

~ u =  ( -  1)P ~i .  K ~jaUL ~/o~jdz~ A d2j A d5 K, 

which gives in view of (2.1.7) 

s 0uL K 
( ~ u , / ) = ( - 1 ) P |  ~ '  ~ [z jKe-*dV 

J ~ I , K  j ~ " 

(__ 1)P_If Z, ZUI. K(~jII.,Ke_,dV_t_ ( 1)1~ fO ~, O~ = - ULK ~ ] l .  j X - -  e-~dS. 
R L K  i ~ I , K  1 OZi 

Since 01~. q-l) is dense in DT for the graph norm by Proposition 2.1.1, we conclude that  

an element /G ~p. q)(~) belongs to Dr .  if and only if 

0Q 
~=x/z.jK~z~ = 0  on 0~) for all I and K, (2.1.9) 

t 

and then we have T*[ = ( - 1) v-1 ~ '  ~ Oj/~,jr:dz I A d~ K. (2.1.10) 
l, k j = l  

2.1.8)' 
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I f  [E~p.q)(~) f3 Dr. we obtain  f rom (2.1.10) and (2.1.1) 

f ft.~ O]I, I O / I . L  tJ IIT*/II~+II~/II~= E'E a,/,.jKak/,.~,ce-+dV + E 'E  a~, a~, ~,Le-+dV, 
1, K j .  k d ~  1, I, LJ,  I 

(2.1.11) 

where e~ = 0 unless ?" r J, l r L and {]} U J = {/} U L, in which case e~ is the sign of the 

permuta t ion  (~). We shall rearrange the terms in the last sum. First  consider the terms 

with ] = l. Then J = L and ?" ~ J unless e jJtL-- 0, so the sum of these terms is 

y , ~ -  g al,. ,I ~' 
/. i t  .... I e-  d l / .  

Next  consider the terms with ~ # I. Then we have 1 r J and ?" r J if a~ # 0, and deletion 

of l f rom J or ~ from L gives the same mnlt i- index K. Since 

e jJ_ej~  ejz~ezj~_ ~J ojx I L - -  ]lK IlK IL --  --ClKC'L 

the sum of the terms in question is 

- E' E f ,  ah. ,K ah.,K e- ~d V. 
1, x j . l  ~ j  ~St 

We can therefore rewrite (2.1.11) in the form 

II T*/II~+ II S/II~ = Y' Y ajh.j~SJz.l,~re-VdV 
l, K i ,  k do 

fo~/l.'X~/~]lCe-~OdV+ : '  ~ [~/I. 112 q, 

So far we have only reorganized the terms in (2.1.11). However,  we shall now inte- 

grate  by  parts, moving all differentiations to the right. Using (2.1.8)' and the boundary  

condit ion (2.1.9) we obtain  

IIT*III#+IIS/II#= E'E f /,.,~h.~,~ a'v , - u v  
l. KJ,  k 

+ Z ' E  ~ V- 2 alz'kKe-*dS. (2.1.13) 
I, J J I. K 1, k f~/I, jK ~ aZ] 
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Now the function ~kfX,~K~O/~Z~ vanishes on ~ ,  so its gradiend is there proportional to 

grad ~. This means tha t  for every boundary point there is a constant ~ so tha t  

k \ ~ ~z~ ~r ~-r .... 

I f  we multiply b y / i ,  jg and add, we obtain in view of (2.1.9) 

j, k age ~ /  0, on ~ ,  

and using this equation in the last sum of (2.1.13) we have proved 

PROeOSITION 2.1.2. The/ollowing identy is valid when /E C~p. q)(~) f~ Dr -  

I. K j ,  k kK ~ 

+I~ '~ f~  I~/''JI2evdV+ : ' •  fo /1,jK/~.kK b2~--e-r (2.1.14) 
1. K i ,  k 

The proof of this result has entirely followed the ideas of Morrey [22], Kohn [14] 

and Ash [2], the only difference being the introduction of the weight function e -~. How- 

ever, we shall now see that  the first sum on the right of (2.1.14), which is caused by  the 

weight function e -~, is extremely useful in proving estimates, and makes it possible to 

simplify and extend the work just quoted which is based on the surface integral in (2.1.14). 

First we recall a definition. 

Definition 2.1.3. The boundary  ~ of ~ is said to be pseudo.convex if at  every point 

on ~ 

tji ~2~ >~0 if ~tj  ~ j, k=l k azj~k 1 ~zr =0" (2.1.15) 

Here (t I ..... tn) is a vector with complex components. If  the hermitian form is strictly 

positive for all such t 4 = 0, the boundary is called strictly pseudo-convex. Note that  these 

definitions are independent of the choice of the function Q. 

I f  ~ is pseudo-convex, it follows from (2.1.9) that  the last sum in (2.1.14) is non- 

negative, so we obtain 
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THE 3 R E,~I 2.1.4. If 0~ is pseudo-convex, we have when /E  0~v" q)(n) N D r ,  

f n ~ '  >" f,.jt: ],.~K [[ T*/II~+ II S/{I~. (2.1.16) e-~Od V 
I. KJ.~ OZj~X 

Remark. In the passage from (2.1.14) to (2.1.16) we have entirely neglected the terms 

in the second sum on the right-hand side of (2.1.14). We shall see in Chapter I I I  that  using 

the full force of these terms one can relax the hypotheses on ~ very much. 

To obtain a useful estimate from (2.1.16) we must of course choose q0 so that  the 

hermitian form 

w , ,  . ~'qo (2 .1 .17)  

is positive definite at every point in ~,  that  is, we have to choose the function ~0 strictly 

plurisubharmonic. (See e.g. Lelong [17].) 

2.2.  Existence theorems  

Combination of Proposition 2.1.1 and Thorem 2.1.4 with the first part  of Theorem 

1.1.4 (with F = H 2 )  gives the following result: 

THEOREM 2.2.1. Let ~ be an open set in C n with a C 2 pseudo.convex boundary. Let 

E C~(~) be strictly plurisubharmonic in ~ and let e ~ where ~t E C(~) be the lowest eigenvalue 

o/the matrix (02~o/OzjOSk). For every/eL~.q)(~,  ~), q>0,  such that h / = 0  and 

we can then find a form uEL~p.q_l)(~,q~) such that -Ou=/ and 

q f n  lul~e-~dV < f n  1/12e-(~+~)dV" (2.2.1) 

We now wish to remove the hypotheses concerning the smoothness of 0~ and of ~0 

in Theorem 2.2.1, which is quite easy because we have the estimate (2.2.1). First recall 

that  in general a function ~ with values in [ - ~ ,  + oo) is called plurisubharmonic if it is 

semi-continuous from above and locally integrable, and the sum 
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defined in the sense of distribution theory, is a positive measure for arbi trary complex 

numbers re. In  particular, ~ f / ~ z r  is then a measure for all ~ and all k. We shall say tha t  

e ~ where u fiC(~) is a lower bound for  the plurisubharmonicity of ~ if the difference 

is a positive measure for arbi trary complex numbers re. We also have to extend Definition 

2.1.3 so tha t  not only domains with smooth boundaries are allowed: 

Definition 2.2.2. An open set ~ c  (~ is called pseudo.convex if there exists a plurisub- 

harmonic function a in ~ such tha t  ~M={Z; ZE ~, (~(Z)<M} is relatively compact in 

for every real number M. 

I t  is a well-known and elementary fact that  if ~ E C ~ then ~ is pseudo-convex in the 

sense of Definition 2.1.3 if and only if ~ is pseudo-convex in the sense of Definition 2.2.2. 

(Cf. Bremermann [5], Oka [26, 27].) If  d is the distance to [ ~  and ~ is pseudo-convex, 

then a(z)= I z l ~ - l og  d(z), is a continuous plurisubharmonic function satisfying the re- 

quirements in the definition. 

THEOREM 2.2.1'. Let ~ be a pseudo-convex open set in C n, let 9~ be plurisubharmonic 

in ~ and let e ~ where uEC(~) be a lower bound/or the plurisbuharmonicity o/q~. For every 

] E L~p. ~)(~, loc), q >0,  such that ~/=0 and 

o~e can then/ind a /orm u E L~v ' q-l)(~, q~) such that -~u = / and 

q f a  luI~e-~dV ~ f ~  ]]l~e-(~+~)dV. (2.2.2) 

Proo/. We shall first solve the equation "~u=] in a relatively compact open subset 

co of ~ .  Choose M so that  sup~ a < M ,  where a is the function in Definition 2.2.2, and let 

> 0 be a lower bound for the distance from ~M to ~ .  With a function Z E C~ (~n), such 

that  g~>0, ~zdV=I , z ( z )  depends only on I z] and vanishes when I z] >1,  we put  for 

O<~<d} and zE ~M 

q)~(z) = f ~ (Z-  ez')g(z')dV(z'). ~2.2.3) 
3 

Then ~EC~(~-~M), ~e is plurisubharmonie and ~ ' ~  when e '~0.  If  we define u, so tha t  
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e "~ <~) = fe ~< . . . .  ")X(z')d V(z'), 

then  e ~ is a lower bound  for the  p lu r i subha rmon ic i ty  of ~0~ and  u:-->~ un i fo rmly  in ~)M 

when e -+ 0. 

Nex t  define a~ b y  subs t i tu t ing  a for ~v in (2.2.3). Then a:  is p lu r i subharmonie  in ~M 

when 0 < e < 5 .  I f  s u p ~ < m < M  we have  a~(z)<m<M for eve ry  z E ~  if e is small ,  and  

(r:(z) < M ,  zE ~ i  implies  zE ~M. By  a theorem of Morse [21], the  set of all  rE(m, M) such 

t ha t  there  is a cr i t ical  po in t  for a~ wi th  a:(z) = t is a set of measure  0. (Since ~ E C + the  resul t  

we need is in fact  qui te  e lementary . )  F o r  f ixed smal l  e we can therefore  choose t wi th  

m<t<M so t h a t  

f~' = {z; z e f ~ ,  ,r,(z) < t} 

has a C ~r boundary .  The b o u n d a r y  is then  pseudo-convex  in the  sense of Def ini t ion 2.1.3. 

Appl ica t ion  of Theorem 2.2.1 wi th  ~) rep laced  b y  ~ '  and  q0 rep laced  b y  ~v~ now shows 

t h a t  if / satisfies the  hypo theses  of Theorem 2.2.1' we can f ind a form u~E L(2p, q_i)(~r, ~0e) 
such t h a t  -~u~ =/in ~ '  and  

Here  we have  used t h a t  ~v: ~> ~. Since ~ ' ~  eo and  q0~ is un i fo rmly  bounded  from above  

in co we can f ind a weak l imi t  u of u~ in L~p, q-1)(eo, 0) when e --> 0. I t  is clear t h a t  ~ = /  

in eo and  since 

for every  ~ > 0, we o b t a i n  

q f~,[u]'e-~dV <-< f ~  lll~e-++")dV. 

Now let  ~o~ be an  increasing sequence of r e la t ive ly  compac t  open subsets  of ~ wi th  

union equal  to ~). W e  have  a l r ea dy  p roved  t ha t  for eve ry  v there  is a solut ion of the  equa-  

t ion ~u = / i n  ~o~ such t h a t  the  es t imate  (2.2.2) holds if the  in tegra t ion  in the  l e f t -hand  side 

is res t r ic ted  to  eo,. Taking  again  a weak l imi t  when v - ->~ ,  we have  p roved  the  theorem.  

We shall  now give some consequences of Theorem 2.2.1'. 
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THEOREM 2.2.3. Let f~ be a bounded pseudo-convex open set in C ~, let (3= 

sups. ~'~n ]z - z '  I be the diameter o / ~ ,  and let 9)be a plurisubharmonic /unction in f~. For 

every / E L~p. q)(~, q)), q >0,  with -~/=0, one can then lind u E L 2(,. q-1)(~, q)) such that -Su =/and 

Pro@ We may  assume tha t  0 E ~ ,  which implies tha t  ]z[ ~ when zEfL  With a 

positive constant a we now replace q0 by  ~0(z) +a[zl2 =q)(z) +a(zl~l+ ... +zn2n) in Theorem 

2.2.1'. Then we can choose e~=a, and Theorem 2.2.1' gives tha t  there exists a solution 

u of the equation ~u = ] such tha t  

q f o l u l ~e-~d g <.eat'a-ira I / [~e-'d r .  

I f  we choose a = d  -2, the right-hand side attains its minimum with respect to a and the 

theorem is proved. 

THEOREM 2.2.4. 1/ ~ is pseudo-convex, /EL(~,.q)(f~,loc), q>O, and / satisfies the 

integrability condition ~/= O, there exists a/orm u E L(~. q-1)(f~, loc) such that -Ou =/. 

Pro@ I t  follows immediately from Definition 2.2.2 tha t  we can find an increasing 

function Z of a real variable, vanishing for negative arguments, such tha t  /EL~p. q)(~,)~((~)). 

Since every such function has a convex increasing majorant,  we may  assume Z convex 

and increasing. But  then Z(a) is pltirisubharmonic so it follows from Theorem 2.2.1' with 

~0(z)=z(a(z))+ Izl 2 tha t  there is a form uEL~.q_~)(f~,q)) such that  "~u=/. This proves 

the theorem. 

T H E 0 R E M 2.2.5 (Cartan-Oka-Serre). I / 0  is the shea/o/germs o/holomorphic/unctions 

in f~, we have Hq(~"~, O) =0, q >0,/or every pseudo-convex f~. 

Pro@ This follows immediately from Theorem 2.2.4 by  the Dolbeault isomorphism, 

where of course we use the fine sheaf of germs of L ~ forms instead of the sheaf of germs 

of infinitely differentiable forms, which does not change the sheaf of germs of forms of 

type (0, 0) for which ~u =0.  See e.g. Malgrange [18]. 

We recall that  Theorem 2.2.5 implies tha t  the first Cousin problem in ~ can be solved 

and that  the second Cousin problem is solvable when it is possible topologically. (See 

Cartan [7].) From Theorem 2.2.5 it is also easy to deduce tha t  a pseudo-convex domain 

is a domain of holomorphy (see e.g. Bars [4] p. 74), so tha t  these classes of domains are 

identical (the Levi problem). However, we shall give a different proof of this fact in the  

next  section. 
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2 . 3 .  Approximation theorems 

In  this section we shah s tudy the properties of the operator T* which follow from 

Theorem 2.1.4. This leads to approximation theorems for the solutions of the equation 

~u ~0.  

L(~. q_ 1)(s In  the following theorem we use that  - ~ )  and L(2,. q-1)(~, qg) are antiduals 

of each other with respect to the sesquilinear form 

<u,v>= ( ~ '  uz.Kvt KdV; uEL~p q-l)(~, -qJ), vEL~.q-1)(~~, qg). 
J ~ l , K  " 

PROrOSITION 2.3.1. Let ~ be an open set in C" with a C ~ psendo-eonvex boundary. 

Let qDEC2(~) be strictly plurisubharmonic in ~,  and let u be a/orm in L2p.q_a)(~, -qD) such 

that <u, v> =0/or  every solution VE/~p,q-i)(~, ~ ) O/ the equation 0v=0.  Then there exists a 

/orm /E L~p. q)(~, loc) such that 

1) p-I ~ '  Z ~ KdZIA dS~= u, (2.3.1) #/= (-- 
I, K t  

where the ]irst equality is a de/inition o /# ,  and 

f~ O'q~ e~dV < f ,u,2e~dV. (2.3.2) 
X, K t ,  k 

Proo/. I f  we put  U=ue ~, the hypotheses concerning u mean tha t  UE L~p.q-1)(~, q~) 

and that  (U, v)~=0 for every vEi~p.q_D(~ , q~) with 0v=0.  With the notations used in 

section 2.1 this implies tha t  U is in the closure of RT.. First assume that  U belongs to 

RT.. Choose FE  L2n, q)(~2, ~) so that  T*F = U and F is orthogonal to the null space of T*. 

Then S F  =0 so from Proposition 2.1.1 and Theorem 2.1.4 it follows tha t  

0 ~ _ 

The equation T ' F =  U implies that  e~z~(Fe -~) = U. If  U is only in the closure of RT,, we 

L(p. q-D(~, q), with U'E RT., and determine corresponding F ~ take a sequence U ' ->  U in 

such that  (2.3.3) holds with F = F  ~, U= UL and er = U ~. By (2.3.3) we can ex- 

t ract  a subsequence which converges weakly in L 2 on all compact subsets of ~ ,  and for the 

limit F we have {2.3.3) and e~O(Fe -~) = U. If  we set ] = Fe-r the proposition is proved. 

Remark. I t  would of course have been possible to show that  / satisfies the boundary 

condition (2.1.9) in a weak sense. We shah not need this fact below but  it could be used 

to give somewhat more precise theorems. 
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PROPOSITION 2.3.2. Let the hypotheses on ~ and on q~ in Proposition 2.3.1 be/ul/ i l led 

and let ~pEC~(~) be another strictly plurisubharmonic /unction. Let u~L~.q_~)(~ , -q~) ,  let 

u =0  where ~p > 0 and assume that (u,  v ) = 0 / o r  every v such that ~v =0  and 

v ~ L~,.~_~)(~, 9~ +~Y'+) 

/or some ~ > 0 ;  here ~ = s u p ( ~ ,  0). Then there is a /orm [ satis/ying (2.3.1) and (2.3.2) 

u hich vanishes where ~p > O. 

Proo/. Let zEC*(R) be a convex function such that  z ( t ) = 0  when t < 0  and 0<Z' ( t  ) ~ 1 

when t > 0. With a positive parameter  )L we set ~ =~0 +)tg(y). Then we have ~0 ~< ~ ~< ~ + 2~0 +, 

and using the convexity of Z we obtain 

~2 ~ 
(2.3.4) 

�9 {7Zt OZk t, k OZt ~Zk j, k ~Z.j OZk 

Now apply Proposition 2.3.1 with ~ replaced by  ~ .  Since ~0 ~< ~0~ with equality in the support  

of u, it follows that  for every ~t one can f i n d / = f '  such tha t  (2.3.1) and (2.3.2) hold, and 

in addition 

fo fo 'V' I,( K " ' luFe  r. 
l , K . ~ , k  

Hence f--> 0 on every compact subset of (z; z e ~ ,  ~(z) > 0} when 2--> § ~ .  Since f~ satisfies 

(2.3.2) for every ~t we can find a weak limit / of/~ when ~-~ + ~ ,  and / also satisfies (2.3.1) 

and (2.3.2). When ~ > 0  we h a v e / = 0  so this proves the theorem. 

We shall now derive an approximation theorem from Proposition 2.3.2. I t  is then 

convenient to use the following terminology. 

De/inition 2.3.3. A compact subset' K of an open set ~ c  •" is called pseudo.convex 

with respect to ~ if for every z E ~ N CK there is a plurisubharmonic function ~0 in ~ such 

that  ~(z) >0  but  ~v < 0  in K. 

LEMMA 2.3.4. Let K be a compact set which is pseudo-convex with respect to a pseudo- 

convex open set ~ ~ K ,  and let o9 be an open neighborhood o/ K .  Then there exists a continuous 

plurisubharmonic /unction ~p in ~ such that ~p < 0 in K but ~p > 0 in ~ N Cog; moreover, y~ can 

be chosen so that {z; z E ~ ,  ~p(z) < M }  is relatively compact in ~ /or every M .  

Proo/. Let a be a continuous function satisfying the requirements in Definition 2.2.2. 

Adding a constant to a, if necessary, we may  assume tha t  a < 0  in K. Set 

K '  = {z; z E~,  a(z) ~2}  and L = {z; z E ~ n Co), a(z) ~<0}; 
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these sets are both compact. For every z EL we can choose a function ~v which is plurisub- 

harmonic in ~,  so that ~(z)>0 and ~fl<0 in K. Forming a regnlarization of v 2 as in the 

proof of Theorem 2.2.1' we obtain a continuous plurisubharmonic function y/, defined in a 

neighborhood of K',  such that ~fl'<0 in K and y / > 0  in a neighborhood of z. Since L is 

compact we conclude, using the Borel-Lebesgue lemma and the fact that the supremum 

of a finite family of plurisubharmonic functions is plurisubharmonic, that  there is a con- 

tinuous plurisubharmonic function ~])1 in a neighborhood of K' ,  such that yJx>0 in a 

neighborhood of L and ~v 1 < 0 in K. Let C be the maximum of ~v 1 in K',  and set for z E 

y~(z)=sup(~l(z),Ca(z)) if a(z)<2; and y~(z)=Ca(z) if a (z )> l .  

The two definitions agree when 1 <a(z)<2,  so ~p is a continuous plurisubharmonic func- 

tion in ~. I t  is obvious that yJ has all the required properties. 

THEOREM 2.3.5. Let ~ be an open pseudo-convex set in C ~ and let K be a compact subset 

o/ ~ which is pseudo.convex with respect to ~ .  Let u E L~p. q-1)(K, O) and let -~u =0 on K in 

the strong sense that ~K(u,O/)dV=O /or every/EL~p.q)(~, O) such that / = 0  outside K and 

O/E L~p.q_l)(~, 0). Then one can approximate u arbitrarily closely in L~p.q I)(K, O) by/orms 

u' E L~p. ~-1)(~, loc) such that ~u' =0. 

2 Remarks. (1) Note that  the assumption on u is satisfied if uE L(p.q_l)and ~u=O in a 

neighborhood of K, for then we have (u, v~/) =(~u, /~  =0. If K is the closure of an open 

set with C 1 boundary and ~u =0  only in this open set the assumption is also fulfilled in 

view of Proposition 1.2.3. 

(2) Since ~ is pseudo-convex it follows from Definition 2.2.2 that ~ is the union of 

an increasing sequence of compact subsets which are pseudo-convex with respect to ~. 

Before proving the theorem we note that Theorem 2.3.5 implies the Oka-Weil approxi- 

mation theorem. 

COROLLARY 2.3.6. Let ~ be a pseudo-convex open set in C n and let K be a compact 

subset which is pseudo-convex with respect to ~ .  I /  u is a/unct ion which is analytic in a 

neighborhood o/ K,  it is possible to approximate u arbitrarily closely in the maximum norm 

over K by/unctions which are analytic in ~ .  

Proo/. Let u be analytic in the open set o~ ~ K and choose yJ according to Lemma 

2.3.4. For sufficiently small e > 0  the set K~={z;v2(z)~< - e}  is then a compact subset of 

~o which is a neighborhood of K, and K~ is obviously pseudo-convex with respect to ~.  

Theorem 2.3.5 with p = q = 0  shows that there is a sequence uJE L2(~, loc) with ~uJ=0 
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such that  u~--->u in L~(K~). But every u s is by  Weyl 's  lemma an analytic function in 

(after correction on a null set), and u~-~u uniformly on compact subsets of the interior 

of K~. This proves the corollary. 

Proo/ o] Theorem 2.3.5. Let ~ '  be a relatively compact open subset of ~ with a C 2 

pseudo-convex boundary, and let K c  ~ ' .  We shall first prove tha t  u can be approximated 

bY solutions u'  E L~p. q-1)(~', 0) of the equation ~u' =0.  Let therefore U be an arbi trary form 

in L~p, q-1)(~', 0) such that  U =0  outside K and <U, u'> = 0  for every such u'. If  we can prove 

that  U=vq/ for some ]EL~p,q)(~', 0) vanishing outside K, it will follow that  <U, u>=  

<vq[, u} =0,  and Hahn-Banach ' s  theorem then gives that  u can be approximated by  the 

forms u' in question. 

To prove the existence of / we let K '  be a compact neighborhood of K contained in 

~ ' .  Taking a regularization of the function ~ in Lemma 2.3.4 and adding a small multiple 

of I z[ 2 we can construct a strictly plurisubharmonic function ~o E C~(~  ') such that  y~ < 0 

in K but  ~v > 0 outside K' .  We can therefore apply Proposition 2.3.2, with of(z)= [z12, for 

example, and ~ replaced by  ~ ' .  I t  follows that  there is a form [ ~ L~v. ~)(~', 0) with vq/= U, 

such that  [ = 0 outside K '  and 

q f~r I[l~eiZl'dV <~ fa" I Ul~elZl~dV" 

We now take a decreasing sequence of compact neighborhoods K j of K, all contained in 

El', and for each of them we choose a form fi with Off = U and fl =0  outside K j so tha t  

the estimate just given holds for each ft. If  / is a weak limit of fl when j-->o% we obtain 

vq] = U and ] = 0 outside K. 

To complete the proof we have to approximate a general pseudo-convex ~ by  subsets 

of the type just discussed. Let  G be a continuous plurisubharmonic function in El such tha t  

f~M= {z; Z E ~, (r(Z)<M} is relatively compact in f l  for every M. We may  assume that  

K c  ~x ~ ~ 1 ~  ~ c  ~ 2 ~  .... The construction used in the proof of Theorem 2.2.1' shows 

that  there exist pseudo-convex open sets (oj with C 2 boundaries such tha t  

~ j  c ~oj ~ flu+i, j = 1, 2 . . . . .  

For every ~>0  there is a sequence of forms uJEL~p.q_l)(Ogj, loc) such tha t  ~uJ=0 and 

lul ul2dV < �88163 f I u)+l_ ,//,/12d/< 824-J-1, ~= 1 ,2  . . . . .  
d~ 

In  fact, the compact subset {z; a(z)~<j} of coj contains ~ j  and since it is pseudo-convex 

with respect to co j+ 1 the existence of u j+l follows from the first part  of the proof if u j is 
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already selected. The estimates just given imply that  u '  = l imj_~ u s exists in L~v. e-1)(~, loc). 

Since ~u' = 0 and SE I u - u '  I ~ d V < e 2, the proof is complete. 

We shall now give the solution of the Levi problem in the case considered here. 

De/inition 2.3.7. A compact subset K of an open set ~ in C n is called holomorph-convex 

with respect to ~ if for every z E ~/3 CK there is an analytic function ~v in ~ such tha t  

I (z)l > 1  but  <1  in K. 

Since log Iv/1 is plurisubharmonic, comparison with Definition 2.3.3 shows tha t  holo- 

morph-convexity implies pseudo-convexity. Conversely, we have 

THEOREM 2.3.8. I /  ~ ks a pseudo-convex open set in C" and K ks a com~ct  subset 

which is pseudo-convex with respect to ~ ,  then K is holomorph-convex with respect to ~.  

Before the proof we note that  the theorem implies the following essentially equivalent 

result of Oka [26], [27], Bremermann [6] and Norguet [25]. 

COROLLARY 2.3.9. An  open set ~ c C  n is pseudo-convex i/ and only i~ it is a domain 

o/holomorphy. 

Proo/. I t  is an elementary fact that  every domain of holomorphy is pseudo-convex 

(see Bremermann [5]). Conversely, if ~ is pseudo-convex and a is a continuous plurisub- 

harmonic function satisfying the conditions in Definition 2.2.2, then {z; a(z)<~M} is 

pseudo-convex, hence holomorph-convex, with respect to ~ for every M. Since this set 

contains an arbi trary compact subset of ~ when M is sufficiently large, it follows from 

a classical theorem of Cartan-Thullen that  ~ is a domain of holomorphy (see [7]). 

Proo/ o/ Theorem 2.3.8. I t  is sufficient to prove that  if 0 E ~). N CK there is a function 

u E i ( ~ )  such that  sup~]u I < lu(0)]. By Lemma 2.3.4 there is a continuous plurisub- 

harmonic function ~ in ~ such that  ~ < 0 in K, a(0) = 0 and 

~ = { z ; z  E ~ , a ( z ) < c } ~  ~ for all cER. 

By means of a regularization we can, as in the proof of Theorem 2.2.1', approximate a 

by a strictly plurisubharmonic C :r function r in ~1 so closely tha t  r < 0  in K, ~0(0)=0, 

but  ~ > 0 outside a compact subset of ~1. Taylor 's  formula gives 

1, k = 1 0 Z ]  ~TZ k 

where w is an analytic second degree polynomial vanishing at  0. Since the hermitian form 

is positive definite, we conclude that  there is a neighborhood eo 0 of 0 such that  ~v(z) > Re w(z) 
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if 0 # z E r  o. We m a y  assume tha t  % N K = O .  If  tot and co~. are neighborhoods of 0 such 

tha t  r c cox c c too, it follows tha t  we can choose e > 0  and ~ > 0 so tha t  

R e w ( z ) < - e  if zEeoxNCco 2 and  ~(z)<~.  (2.3.6) 

Let  ~ '  = {z; z E ~1, q(z) <~}. This is a pseudo-convex open set since (1 _a ) -x  + (~ _~) -x  

is plurisubharmonic in ~ ' .  Wi th  a positive parameter  t and  a funct ion Z EC~(w 0 which 

is equal to  1 in eo~ we now set 

Us = ge s w _ vt 

where vt shall be chosen so tha t  u s E A ( ~ ' ) ,  t ha t  is, so tha t  

~v s =~ge tw. (2.3.7) 

Since R e w <  - e  if z E ~ '  N supp~Z, in view of (2.3.6), the L z norm of the r ight -hand side 

of (2.3.7) is O(e-S~). Hence it follows from Theorem 2.2.3 tha t  one can find a solution vs 

of (2.3.7) such tha t  

Since vt is analytic in a neighborhood of K and of 0, it follows tha t  v t (z )=O(e  TM) uni-  

formly when z E K U {0} and t -+ ~ .  For  large t we obtain 

suplusl<lu (0) l. 
K 

Now {z; z E ~x, r ~ 0} is a compact  pseudo-convex set relative ~1, and  it is con- 

tained in ~ ' ,  so Theorem 2.3.5 shows tha t  us can be approximated  uniformly on this set 

by  functions in A(~x). Theorem 2.3.5 also implies t ha t  functions in A ( ~  0 can be approxi-  

mated  uniformly on {z; z E ~ ,  a(z) <<. 0} by  functions in A(~) .  Hence one ean find u E A ( ~ )  

so close to us t ha t  

sup l u I < I u(O) 1. 
K 

The proof is complete. 

2.4. Cohomology with bounds 

Theorem 2.2.5 was obtained as a consequence of Theorem 2.2.4 which is a considerably 

weakened form of Theorem 2.2.1'. We shall now give an example of the analogous results 

which follows by  direct application of Theorem 2.2.1' and the usual proof of the Dolbeault  

isomorphism. I n  order to obtain shorter s ta tements  we only consider the case ~ =C  n 

8- -  652922. Acta mathematica. 113. I m p r i m 6  le 12 m a r s  1965. 
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which has a par t icular  interest  in certain applications.  (See Ehrenpreis  [9], Malgrange 

[19].) However ,  there is no difficulty in proving corresponding results for an a rb i t r a ry  

pseudo-convex open set. 

Le t  {~,}, v = 1,2 . . . . .  be a f ixed covering of C n b y  open subsets, t h a t  is, U ~3~ =(~ .  

I f  s is an integer /> 0 we denote  by  Cs(Z(p, q)({~}, ~)) the  set of all a l te rnat ing  cochains 

c={c~} where ~=(~0  . . . . .  :r is an ( s + l ) - t u p l e  of posit ive integers, c ~ E L ~ p . q ) ( ~ ) , ~ =  

~ ,  ~ ... f3 ~ , ,  ~c~ = 0 and  

Ilcl[ = Y/ :lc=l:e-"dV< 

As usual we define the coboundary  opera tor  (~ f rom 

CS+l[7. ~-(~. q)({~v}, ~)) by  
s + l  

(~c)~ . . . . . . .  8§ = Y ( -  1 ) ' c  . . . . . . .  ~j . . . . . .  8+~ 
1 = 0  

where &j means  t ha t  the index :9 shall be deleted. 

cs(z(,. ~)({~),}, ~)) to 

TrtEOR~M 2.4.1. Assume that the covering {f~,} has the/ollowing three properties: 

(i) All  f2, are pseudo-convex and the diameter o /D~ is bounded by a constant independ- 

ent o/~. 

(ii) There is an integer N such that more than N di//erent sets f2, always have an empty 

intersection. 

(iii) There exists a partition o /un i t y  Z, e C~(~ , )  such that ~ Z, = 1, Z~ ~ 0 and ~.~ I~Z,] ~< 

constant .  

Let q~ be a plurisubharmonic /unction and let u be a continuous /unction <~ 0 such that e ~ is 

a lower bound /or the plurisubharmonicity o/ q). For every cECS(Z(p.q)({~v}, cf+~)) with 

(~c=0, s~>l  one can then f ind a cochain ctECS-l(Z(p,q)({~v},~p)) such that ~C'=C and 

IIc'Hr <<.KIIcll~+~ , where the constant K does not depend on c. 

We are of course main ly  interested in the case p = q  = 0 but  the general s t a t emen t  is 

needed in the proof.  

Proo/. I f  we set  b~ = ~ Zj cs.~, I a I = s, 
t 

with the produc t  Zj cj. ~ defined as 0 outside the  suppor t  of gj, we obta in  a form b~ E L~r. q) (f2~), 

and  for the ( s - 1 )  cochain thus  defined we have  ~b=c.  I n  fact ,  using the  assumpt ion  

t h a t  ~c = 0 we find 

... . . . . .  s =  X ~ _ ( - -  1)~ZJ c; ' ....... ~ ..... " = ~.Z,c~ ...... =c  ........ s" (Sb) 
l k  o = ) 
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Cauchy's  inequal i ty  and  the equa t ion  ~ ~ = 1 give 

If we sum over all increasing ~ and  use the fact t ha t  the square of the norm of a fixed 

component  c .. . . . . . .  s occurs with a coefficient ~< 1, we ob ta in  

[ ~ ] = s - 1  ~ la[ = s  ar 

Obviously, we do no t  necessarily have 0b~ = 0. However,  since Pc = 0 and  c = (~b, we 

know tha t  5~b = 0, where 

i 

Using (ii) and  (iii) we ob ta in  with a cons tan t  C 

rfo ~,=~ I~b~l%-~-"ev~< c~ll ~ IIg+~. (2.4.3) 

Firs t  assume tha t  s = 1. Then  the fact t h a t  50b = 0 means  tha t  0b defines a global 

form of type (p, q + 1), and  for this form, which we denote b y / ,  we have the es t imate  

f I/I ~-~-~aV < c'  I1 ~ I1~+.. (2.4.a)' 

Since ~ / =  0 i t  follows from Theorem 2.2.1' t ha t  there is a form 2 " u E L(~. q) (C , ~0) such t h a t  

~u = / and  

l u ]%-'~d V <~ l/[ 2e-~~ "d V <~ C 2 II ~ II~+~. (2.4.4) 

By condi t ion (ii) this implies t ha t  

f ~  I ~ I~-~dV ~< NO~ II ~ IIg+.. (2.4.5) 

Now we have ~b=/=~u. If we pu t  c'~=b,-u in ~2~, we therefore ob ta in  a cochain in 

C~ q)(~2, ~0)) such tha t  6c' =c,  and  from the estimates (2.4.2) and  (2.4.5) i t  follows tha t  

IIc'll~-< Kllcll~+~, if we recall tha t  ~ ~< O. 

Next  we consider the case s > 1. I n  doing so we first note  tha t  finite intersections of 

the sets g2" are also pseudo-convex.  I n  fact, this is an  immediate  consequence of Defini t ion 
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2.2.2, since the sum of a finite number of plurisubharmonic functions is plurisubharmonic. 

We may  of course assume tha t  the theorem has already been proved for smaller values 

of 8. :Now ~bECS-i(Z(p.q+l)({~"~v}, 90 +g)) and 5~b =~c =0,  so it follows from the inductive 

hypothesis that  there is a cochain b' E CS-~(Z<r.q+1)({~,}, 90)) such tha t  ~b' =~b, and there 

is an estimate for b' of the form 

lib'lie <~ Kll-~bll++~. (2.4.6) 

Since ~b'~=O and ~ :  is pseudo-convex, Theorem 2.2.3 implies in view of the hypothesis 

(i) tha t  we can choose a form b'-' EL~p. e)(~:) such that  b;--~b': '  and 

(2.4.7) 

where K is a constant. But  then we have ~(b -Sb" )=~b-Sb '  =0, so tha t  with c' = b - J b "  

we obtain ~c'=O and Oc'=Sb =c. Furthermore, the estimates (2.4.2), (2.4.3), (2.4.6) and 

(2.4.7) give the estimate [[c'[I ~ ~ gHci]++~ for some constant K, which completes the proof. 

2.5. Some applications 

The purpose of this section is only to give some examples of constructions of analytic 

functions which can be based on the results of sections 2.2 and 2.3. For this reason we 

do not state the results in as general a form as possible. 

T~EOREM 2.5.1. Let 90 be a plurisubharmonic /unction in C n such that/or some con- 

stant C 

190(z+z')-90(z)l <C,  Iz'[ =<1. (2.5.1) 

Let Y, be a complex linear subspace o /C  n o/codimension k and denote the Lebesgue measure 

in Z by da. Then, /or every analytic/unction u in Z such that 

/ [ul:e-+d~< oo, (2.5.2) 

there e• an analytic/unction U in C" such that U = u in ~ and 

fc l Ul2e-+(1 § Izr)-3kdV < K f ]u[2e-+da (2.5.3) 

where K is a constant independent o /u .  
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Pro@ First note tha t  log (1 + I z 12) is strictly plurisubharmonic, for 

n 6~2 

tj ik - -  log (1 + I z I s) = (1 + I~ Ih-S(I t P( 1 + I z P) - I<t, ~> P) >~ (1 + I~ P)-~ I t I s (2.5.4) 

by  Cauchy's inequality. I t  is therefore enough to prove the theorem when Z is a hyper- 

plane and iterate this special result k times. We may  of course assume tha t  Y~ is the hyper- 

plane z~=0. Then u is an analytic function of z '= ( z  1 ..... Z~-l) which we may  regard as 

an analytic function in C = which is independent of zn. By (2.5.1) we have 

f~.w<~ l u I"e-~d V <<. ~eO f lu pe-~da. (2.5.5) 

Let ~,EC~(C) be equal to 1 in the disc with radius �89 and center at  0 and let ~v=0 outside 

the unit disc. Writing 

U (z) = V,(z.) u ( z  ') - z .  v(z) ,  

we have U(z)=u(z') when z~=0 so it only remains to show that  v can be chosen so that  

~U =0  and U has the required bound. The equation ~U = 0  is equivalent to 

~V = Zn lU(z t )~ / ) (2~n)  = 2~nlU(z ' )  ~/)- dSn = I .  (2.5.6) 

I t  is clear that  El=0,  for O~v/asn =0  when Iz.I <�89 and if C 1 is an upper bound for lewm.I, 
we have by  (2.5.5) 

f~ lllS~-~dV <<- (2G) s f~.,~ilup~-'dV <~~ f~ I ~ 12~-'d(,. 

We now apply Theorem 2.2.1' with ~ = C  = and with ~o replaced by ~0+21og(1 + Iz]2). By  

(2.5.4) and the plurisubharmonicity of q0 we can choose e~=2(1 + [zlS)-2 and conclude 

that  (2.5.6) has a solution v such that  

2j'o f I/P.- dv. d C,~ 
(2.5.7) 

From (2.5.5) and (2.5.7), the estimate (2.5.3) with k = 1 follows immediately. 

Theorem 2.5.1 can be used to prove an extension to several variables of a theorem of 

P61ya [28], which was given by  Martineau [20] and is also included in the fundamental  

principle of Ehrenpreis [9]. Let  us first recall som basic definitions. By  A we denote the 

set of all entire analytic functions in C ~. This is a Frdchet space with the topology of uni- 
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form convergence on all compact sets. The dual space is denoted by  A'.  I f /~  E A',  the 

Laplace transform is defined by ~(~)=/~(exp[z,~]) where [z,C]=zlCl+.. .  +z~=. I t  is 

obvious tha t /~  is an entire function of exponential type, and/~  determines/~ uniquely 

since linear combinations of exponential functions are dense in M. Conversely, every 

entire function of exponential type is the Laplace transform of an element g E ~4'. (This 

is also a consequence of the proof of Theorem 2.5.2.) 

Let  K be a compact set. We shah say that/~ is carried by K if for every neighborhood 

~o of K there is a constant C such that  

I~(/) I < c sup [/[, / e A. (2.5.s) 
0) 

Set HK (C) = sup Re [z, ~]. (2.5.9) 
z*If 

THEORE~ 2.5.2 (Pdlya-Ehrenpreis-Martineau). A /unctional /~ E.,4' is carried by the 

convex compact set K i/ and only i / /or  every 5 > 0  there is a constant C~ such that 

]/~(C) [ ,.<C~exp(Hk(C)+(~I$I) , CE(~ ~. (2.5.10) 

Proo/. The necessity is an obvious consequence of (2.5.8) and (2.5.9). In  proving the 

sufficiency we wish to construct for every e > 0  a Schwartz distribution v with support  

in the set K~ of points with distance ~< e from K, so that  v(/) =/~(/), /E I4, This will prove 

the theorem, for every distribution with compact support defines an analytic functional 

carried by the support of the distribution. In  fact, the derivatives of an analytic function 

in a compact set can be estimated by the maximum of the function in a neighborhood 

of that  set. Let  ~ be the Fourier-Laplace transform of v, which is an analytic function of 

2n complex variables 01 ..... 0~ defined by 

v(01 . . . . .  02n) = v ( e x p  ( - i x  1 0 1  - . . .  - i x ~ n O ~ ) ) .  

The analytic functional ~u is defined by  v if and only if 

/~(C1 ..... Cn) = v(exp ((x 1 + ix2) C1 ~-"" -~ (X$n--1 ~- iX2n) Cn))" 

(Recall that  the real and complex coordinate in C n are related by zk=x~_l +ix~.) Thus 

we must  have 

~(iC1, --Ca, iC2, --C2 . . . . .  iCn, --Ca)=]~(~1 . . . . .  ~n), CEC ~" (2.5.11) 

That  v has its support  in K~ means by the Paley-Wiener theorem that  for some constants 

C and N 
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I~(01, . . . ,  02n)[ < C(I "~- 1011 - ~ " "  "~- 102 n [) Ne~~ 

~0(0) = sup (x 11m 01 + . . .  + X2n I m  02~). 
Xe K e 

119 

(2.,5.12) 

(2.5.13) 

I t  is therefore sufficient to construct  an  entire analyt ic  funct ion satisfying (2.5.11) and  

(2.5.12). 

Le t  u denote  the funct ion 

tiC. -C~ ..... iC,. -Cn) ~(C~, ..., C.) 

which is defined and  analyt ic  in a subspace Z of C ~n of codimension n. H 

0 =( iC l  , -- C1 ..... iCn, --Cn), 
we obtain  f rom (2.5.13) 

~(0) = sup (x 1 Re  ~t - x2 I m  ~1 + . - . )  = sup Re  [z, ~] = HK(~) + e I ~1. 
zGK e z~K~ 

Hence (2.5.10) implies t h a t  

lu(0)l <O~exp(~(0)+(~-~)lCI), ~>0, 

choosing (~ < e we obtain  f ~  ] u I~e-~da < ~ .  (2.5.14) and 

Since ~0 is convex and  therefore plur isubharmonic ,  it follows f rom Theorem 2.5.1 t h a t  

there is an entire analyt ic  funct ion U in (]~ such t ha t  U = u  in Z and  

fcenl U ( O ) ( 1  101~)-3~d < ~ .  (2.5.15) + V 

B y  Cauehy 's  integral  formula  this implies t ha t  V(O) le-~(~ +101) -a~ is bounded.  Hence  

(2.5.12) and  (2.5.11) are lulfilled b y  ~ = U, which completes  the proof.  

Next  we shall give an appl icat ion of Proposi t ion 2.3.2. 

THEOREM 2.5.3. Let ~ be a plurisubharmonic /unction EC3(C~). Then the set o/entire 

/unctions v such that 

f l y  ]2e -| (1 I ~) < ~ ,  (2.5.16) + I z N d V 

/or some integer N, contains/unctions not identically zero. In/act ,  it is a dense subset o/ the 

space .,4 o/ all entire/unctions with the topology o/uni /orm convergence on compact sets. 
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Proo/. An equivalent topology in A is defined by L ~ convergence on all compact sets, 

and every element/x ~ • '  can therefore be extended to a continuous linear form on L~or 

that  is, there is a function u E L  2 with compact support  such that/~(v) =(v ,  u),  vEA. I f  

/t is orthogonal to all entire functions v satisfying (2.5.16) for some 2V, we claim tha t  there 

exist funct ions/ j  E L ~ such tha t  

u = - -  (2.5.17) 

and all ]j have compact support. In  fact, let u ( z ) = 0  when Izl > R ,  and apply Proposition 

2.3.2 with ~(z) =~P(z) +log(1 § Iz[ 2) and yJ(z) =log((1 § IzlZ)/(1 +R~)). The hypotheses of 

Proposition 2.3.2 are then fulfilled in view of (2.5.4). Hence (2.5.17) is valid for suitable 

/j with compact support. But  (2.5.17) implies that  

~v d v 

so the theorem follows from the Hahn-Banach theorem. 

HI .  Funct ion theory o n  m a n i f o l d s  

3.1. P r e l i m i n a r i e s  

Let M be a complex analytic paracompact  manifold of complex dimension n. The 

decomposition of differential forms into forms of type (p, q), the definition of the ~ ope- 

rator  and the definition of plurisubharmonic functions which we have introduced in Chap- 

ter I I  for domains in C ~ can immediately be extended to forms and functions on the mani- 

fold M, for all these definitions are invariant  for analytic changes of coordinates. 

In  order to s tudy the operator ~ with the Hilbert space techniques of section 1.1, 

we must  introduce hermitian norms on differential forms on M. We therefore choose a 

hermitian metric on M, that  is, a Riemannian metric which in any  analytic coordinate 

system with coordinates Zl, ..., z~ has the form 

h jk d z j dzk, 
J.k~l 

where hjk is a positive definite hermitian matrix with C ~~ coefficients. The existence of 

such a hermitian structure is trivial locally, and is immediately proved in the large by  

means of a parti t ion of unity. We keep the hermitian structure on M fixed in all that  

follows. The element of volume defined by the structure we denote by d V and the element 

of area on a smooth hypersurface we denote by dS. (For definitions see also Weil [29].) 
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I f  / is a form of type  (1, 0) and / = ~ / j d z j  in a local coordinate system, we set 

where (h jk) is the inverse of (htk). This has invar iant  meaning,  for 

I :!:/, a~, r ~ 
(1,1) = sup Z hj~ azj d~" 

By the Gram-Schmid t  orthogonalization process every point  in M has a neighborhood U 

where there are n forms ~o ~ .. . . .  w ~ of type  (1,0) with C ~ coeffieients such tha t  (w j, w k) = 

(~k; ?, k = 1 .. . . .  n. I f  we set 1 = ~ fi eoJ, it follows tha t  

~</,/> = ~I/;P. 
1 

More generally, a differential form I of type  (p, q) can be wri t ten in a unique way  in 

the form 

I / l - p ,  IJ l=q 

(for notat ions see also section 2.1) w h e r e / u  are ant i symmetr ie  in I and in J, 

co/=to ~ 'A . . .AO)  ip and ( ~ = r  h A . . . A E f i  q. 

We can define ( / , / )  by  ~ / , / > = [ / p = _ ~ ' l h J I  ~, 

for this definition is independent  of the choice of or thonormal  basis w 1 . . . .  , w ~. 

Let  f~ be an open subset of M and ~ a continuous funct ion in ~ .  We then define 

L~p. q)(f~, ~0) as the space of all measurable forms / in f~ of type  (p, q), tha t  is, forms with 

measurable components  in any  local coordinate system, such tha t  

illllg= folzP~-~ag< oo, 

forms which are equal almost  everywhere being identified. If  q >7 1, the operator  ~ defines 

in the weak sense a closed densely defined operator  

�9 ~ (f~, ~ ) - > H p ,  ~) (f~, T .  L(p, q - i )  ~0) 

and another  S : L~p �9 q) ( f L  ~ ) - - > L w .  q+i) (~'~, (P)" 

I f  f~ is relatively compact  in M and has a C a boundary ,  which we assume from now on, 

and if ~ E CI(~]), it follows from Proposit ion 1.2.4 by  application of a par t i t ion of un i ty  

tha t  C~p. q) fl DT. is dense in Dr .  N Ds for the graph norm. 
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I f  u~C 1 and the forms oJ ~ ..... eo = are a local basis for forms of type (I, 0) in an open 

analytic coordinate patch U, we set 

d u = ~  Ou ~ ~ Ou ~ 

as definition of the first order linear differential operators 0/&o ~ and 0/&5 ~ in U. Then 

we have 

and if / =  ~ ' /meo*  A DJ it follows tha t  

~/= ~ '  ~ % J ~ J  A edA r .... 
l . J  

where the dots indicate terms in which no/l,J is differentiated; they occur because 0to t 

and ~ J  need not be 0. I f  the sum is denoted by A / w e  obviously have [0/-A/I<-< C[/], 

where C is independent o f / .  

Now let / E C~(,. q)(~) f3 Dr ,  and let / = 0 outside a compact subset of U N ~ .  Then we 

have for u E C~p. q-i)(~'~) 

<T*/,u>e "dV= fw,. z ' z  K, un./' 
(3.1.1) 

where dots indicate terms where no derivatives occur. We shall integrate by  parts  in 

(3.1.1). Firs t  note that  with the notation 

~O(we -q~) 
~jw = e Oco~ 

Green's formula assumes the form 

where q denotes the distance to 0~ with respect to the hermitian metric, defined to be 

> 0  in C ~  and < 0  in ~ ,  and where aj is in C~176 Integrat ing by  parts  in (3.1.1) we 

conclude that  / satisfies the boundary condition 

Z/~.SK O-~-j = 0 on U n 0~, (3.1.2) 
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and t h a t  T * / =  ( - 1) p-1 ~ ~j]x.jK t J h  r K §  = B / §  (3.1.3) 

where the dots indicate terms where no ix.jr is differentiated and which do not involve ~. 

Hence I T*]- B]I <~ C Ill, and we obtain with another constant C independent of ] and 

I IIA/iB + IJB/I I~-I ls! l l~-I I  T'/JI l l  < Cll/ll41is/ll~ + II T*Iij~ + H!ila. (3.1.4) 

The arguments which led from (2.1.11) to (2.1.12) apply without change and give 

IIA/II~+HB/II~ = 2 ' 2  f (3j/1.~KSk/,.kKe-~dV 
1. K . ~ , k  J U f l ~  

- 2 ' 2  ~ oi,.,~ 2' o 
I .  K J, k Jvn~ a~ ~ e-~dV + ~ ~ )  ~ ~ , .  (3.1.5) 

l , J  j U r  

Before repeating the integration by  parts performed next in section 2.1 we must s tudy 

the commutators of the operators a/a~J and 5k. 

Thus let w be a smooth function and consider 

n aw I 

t 

a eo'~ j ,  ~ =1 1 

Since ato ~ is a form of type (1, 1) we may  write 

aeo ~ ---- ~ c~ r 3 A to k: (3.1.6) 
J ,  k = l  

( a2w ~ t a w \ _ ~  wk" 
which gives -a~w= j~.k \ ~ +  ~cJk-~i) w h 

I f  we replace w by ~ and take complex conjugates of all terms, we also obtain 

/ aM ~ a w ~  ~ .  

The identi ty a a w = - a ~ w therefore implies 

a~w i a w  a~w ~c~ aw 
w~r - 8t5~ ~ + ~ cr ato--- ~ - 8m--m~ + ~ ~ a~o~=7~" (3.1.7) 

where the left-hand equality is a definition. Note tha t  with this notation we have 

a~w = ~ w r  ~ A ~ .  
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A function ~ E C 2 is therefore plurisubharmonie if the form ~ ~jk ]jfk is positive definite, 

and the Levi form of ~ is ~Qjk]J~- 

From (3.1.7) it follows that  

~ k ~ w  ~kw~ ~2~0 ~c~ ~w ~w 
/ ~cSJ~w ~ ~ '  

or if we use the definition of (~t and (3.1.7) again, with w replaced by ~, 

Using Green's formula and (3.1.8) we now integrate by parts in (3.1.5), which gives 

~" ~ f 9~j~/,.jK/Z.k~e-q~dV-~tl-t-t~-t-ta-l-t4 (3.1.9) T 
l, K t, k J U f l ~  

where tx= ~.': f (/,jx~j~k/,kK--f, jx~_~_kO~Xle-~dS, 
L g I .  k U n O D \  ' (~(~ " ' (7o)  ~ o )  ] 

l, K t ,] ,k  Unf l  

The first term in the definition of t~ vanishes in view of the boundary condition (3.1.2), 

and arguing exactly as in section 2.1 when we passed from (2.1.13) to (2.1.14), we thus 

obtain 

~1 = ~ '  E ~ 9 k / l . i g / l ,  kKe  d S .  ( 3 . 1 . 1 0 )  
I, K 1. k UflO~ 

When studying the other terms we use the notation 

Ill lll = f oo I ~ ,., l~-&l ~-'dV+lllll~. 

This gives immediately I t. I < c III/III~ II / II~, (3 ~.~ 1) 
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where the  cons tan t  like all the  following ones is independent  of bo th  / and  ~. I f  we in- 

tegra te  b y  pa r t s  in t 3 we find t h a t  t 3 = t~ + t~' where 

ta= ~ J [:.m~k~/:.kKe- dS, (3.1.12) 
1, K i , j , k  UnO~' 

I t~'l < c III/II1~ II r I1~. (3.1.13) 

Combina t ion  of (3.1.10) and  (3.1.12) gives in view of (3.1.7) 

tl +t'~= ~' ~ f e,klz.,Klz.kKe-~dS. (3.1.14) 
I, K j . k  JUNO~'~ 

To es t imate  t~ finally we note  t h a t  if we in tegra te  by  par t s  in the  t e rms  containing (~k it  

follows f rom (3.1.2) t h a t  there will be no bounda ry  terms,  so we obta in  

Its I< c III ! II1~ II l I1~. (3.1.15) 

Summing  up  (3.1.4), (3.1.9)-(3.1.15), we have  proved  

PROPOSITION 3.1.1. For/orms / e  C~p. q)(~) N Dr* vanishing outside a/ixed compact 

subset o/a coordinate patch U in M we have, i/q~ e C z (~) and ~ e C ~, 

Ill T*/I1~ + II s /I1~- Q1 (/,/) - Q2 (!,/)  - Qz (f, /)l  ~< c II/I1~ (11T*/I1~ + II S/I1~ + Ill ! II1~), (3 1.16) 

f o , where Ol(],/)= z.~2' 2, una i ~  I e av, (3.1.17) 

O~(!,/) = ~' ~ f q~jJZ, jKf,.kKe-~dV, (3.1.18) 
I, K i, k J U f l ~  

Qa(/,/)= ~' Z f eJ~l'.jKl:.kK e-r (3.1.19) 
l, K j, k dUflO~'~ 

Note  t ha t  Qz and  Qa are independent  of the choice of (o I . . . . .  ~o n. 

So far  we have  essentially followed Ash [2] and  K o h n  [15]. I n  the  nex t  two sections 

we shall use Proposi t ion 3.1.1 to give a ra ther  complete  s tudy  of the es t imates  in which 

we are interested.  When  doing so we note  t h a t  (3.1.16) implies t h a t  for every  e > 0  there  

is a constant  C, such t h a t  

(1 -e)Qx(!,/)+Q2(/,/) +Qa(/,/) <~ (1 +e)(ll  T*/II~ + IIS/ll~)+ e~ll!ll~, (3.1.20) 

(1-e)(IIT*/II~ +IIs/II~)<(I +e)QI(/,/)+Q~(/,/)+Q~(!,/)+c~II/II ~. (3.1.21) 
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I n  the  proof  of es t imates  we shall  l a t e r  on make  ano ther  in tegra t ion  b y  pa r t s ,  using 

the nex t  two proposi t ions .  

PROPOSITION 3.1.2. Let U be a coordinate patch c ~ and let ~EC~(U). I /  wEC~(U) 

and w vanishes outside a / i x ~  compact subset o/ U, we have 

where C is independent o] w and o[ q). 

ProoJ. I f  we m u l t i p l y  the  complex  conjugate  of (3.1.8) b y  w a n d  in tegra te  b y  par t s ,  

we f ind t ha t  the  es t imate  to  prove  is equ iva len t  to  

Ow Ow ~0 

J u  0r ~ d u  

e ll w lll w lll . 

But  this  follows i m m e d i a t e l y  if we in tegra te  b y  p a r t s  in the  in tegrals  conta in ing the  dif- 

ferent ia l  ope ra to r  6. 

I f  U intersects  ~ we have  to  mod i fy  Theorem 3.1.2 since in tegra t ion  b y  pa r t s  will 

g ive  rise to  cer ta in  b o u n d a r y  terms.  Fol lowing K o h n  [15] we can then  since ~ Q  = 0  choose 

the  forms o~ j so t h a t  co = = 2~Q, which implies  t ha t  ~Q/~o~ j =  0 when ] < n. The forms co ~ .... .  w = 

can of course no t  be chosen wi th  C ~ coefficients as we have  assumed unt i l  now, b u t  if 

~ E C a the  forms 02 . . . . .  co = can be chosen wi th  C 2 coefficients which implies  t h a t  c~  E O .  

PROPOSITION 3.1.3. I /  wECe(U ;1 ~ ) ,  i / w  vanishes outside a/ ixed compact subset o/ 

U N ~,  and i] q~EC2(U fl ~),  we have i] both ] and k are <n 

< Cllwll lllwH[ , (3.1.23) 

where C is independent o / w  and % 

Proo]. Since ~ / ~ w  ~ = 0  on 0 ~  when 7" + n ,  i t  follows f rom (3.1.8) t h a t  

l r 

<<- CHwLIHw]II . 
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If  we apply (3.1.7) with ~ and k interchanged and with w replaced by  ~, it follows tha t  

@jk=g~k a ~ / ~  ~ which proves (3.1.23). 

Remark. Note tha t  in proving Propositions 3.1.2-3,1.3 we have only used tha t  M has 

an integrable almost complex structure. Hence the estimates in the following paragraphs 

also hold under that  hypotheses and can be used to prove the theorem of Newlander-  

Nirenberg [24] (see Kohn [14]). 

3.2. Est imates  f o r  f i xed  norms  

In  this section we shall s tudy estimates of the type discussed by  Morrey [22], Kohn  

[14] and Ash [2]. Let  U be an open coordinate patch in M such tha t  U N ~ is in C 3, and 

let ~ be a fixed function in C2(~ N U). If  z E U N a ~  we denote by  2x(Z) ..... 2=_x(z) the 

eigenvalues of the Levi form 

eJ~ b f~ 
j , k ~ l  

with respect to the form <],/> = Z  ]]jI 2 in the plane Z ~Q/~oJ/J =0. The eigenvalues are 

of course independent of the choice of the forms co j. For real ). we set ~t+=max(~, 0), 

~ - = m a x ( - ) t ,  0), so that  2 = ~ [ + - 2 -  and I ~] =~+§  

THEOREM 3.2.1. Assume that there are constants K and K' such that 

f ~  n o~ 1/12e-~dS <" K (liT*/II~ § [I § K' i[ / I1~ (3.2.1) 

/or all /EC~v" Q)(~) N DT, vanishing outside a compact subset o/ ~ N U. Then we have /or 

every point on U N ~ and every multi-index J/ormed with q di//erent o/ the indices 1 ..... n - 1 

(3.2.2) 

Proo/. We can choose the local coordinates zj in U so tha t  z =0  at  the point on U N ~ 

where we wish to prove (3.2.2), and co ~ =dzj at  z =0.  Shrinking U if necessary we may  as- 

sume that  U N ~ is defined by an inequality of the form 

Imzn=x2n>--~l(xl ..... X~n_l), ZE U, 

where ~1 E C 2 and vanishes to the second order at  0. (To shorten notations we do not dis- 

tinguish here between a point in U and the corresponding point in C~.) Since the shortest 

distance to ~ will in the first approximation be attained in the direction of the x~n axis, 
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when z is near  0, and  since the  he rmi t i an  metr ic  is ~ ]dztl ~ when z = 0 ,  we have  ~(z )~  

(x~. - Q~(~ . . . . .  x~_._O) (1 + 0 (  [z] )). 

~zQ ( 0 ) _  ~201 ( 0 ) .  i ,  k = 1 . . . .  , n -  1 .  
Hence  ~zj ~zk ~zj ~zk ' 

B y  a u n i t a r y  t r ans fo rma t ion  of the  var iubles  z 1 . . . . .  zn 1 we m a y  achieve t h a t  

~-1 ~Q (0) n-1 
- - -  ~ ~ ~ ~ ~ [ ~ I s. 

j. k = 1 ~zj~2, 1 

Then i t  fol lows f rom Tay lo r ' s  fo rmula  t h a t  

n--1 
O,(z) = 5 "t,[z,[~+ReA(z')+O([z,~][z'[+]zn]2)+~ 

1 

where z ' =  (z I . . . . .  Z~_x) and  A is a homogeneous  ana ly t i c  second degree polynomial .  

Le t  J be a mul t i - index  of length  q fo rmed  wi th  the  indices 1 . . . . .  n -  1, and  le t  I be 

an  a r b i t r a r y  mul t i - index  of l ength  p.  Then  we can choose a form ]EC~(p.q)(U) such t h a t  

/=dzZA d5 "~ a t  0 and  / satisfies the  b o u n d a r y  condi t ions  (3.1.2). I n  fact ,  if p = 0  and  q= 1, 

J = {]}, we can choose 

l<o 
/= 2i \az,~ dz j -  ~zj ] 

F o r  general  p and  q we need on ly  t ake  the  ex te r ior  p roduc t  of dz ~ with  the  forms const ruct -  

ed above  when j runs  th rough  J .  

W i t h  ~o E Cff(C n) and  a posi t ive  p a r a m e t e r  r we now set  

f (z) =/(z)y~(vz) exp ( iv2zn). 

Since the  l as t  fac tor  is ana ly t ic ,  we have  

O f ( z )  /(z) + O(1)~0(vz) exp(i~2zn). 

Note  t h a t  the  f irst  t e rm on the  r i gh t . ha nd  side will involve  a fac tor  v when calcula ted.  

I f  we in t roduce  as new var iables  ~2x2~ and  Tx s for ~ < 2n, we easi ly  ob ta in  

fl l im 01(~,[~)~2'~-I--~ ~(x ' ,O) ]2dx  ' e-2~2~dx~n, 
"c"~+ ~ J Oz(x') 

where LF2= ~ ~/)2 x ' =  (Xl,  x2n-1); 
1 ~z,i ' " ' "  
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dx' denotes the Lebesgue measure, and ~2 is the second order par t  of the Taylor expan- 

sion of ~1. Hence 

"~2n-lQ1 (~, ]~)-> fl tF (x', O)12e-~2(~:')dx ', 7:--> + o~. 2 

By the same substitution it follows tha t  

Q~(l',f)=o(~-~n-1), (ff, l')~=O(~:-~n-'), 7:-++oo, 

tel d 

If  (3.2.1) holds we thus conclude, using (3.1.21), tha t  

(1 - ~)fl ~ (x', 0)I~-~ ,~ ' )  dx' 

{(, + + : } 

f o r  e v e r y  e > 0, a n d  t h e r e f o r e  w h e n  ~ = 0. N o w  choose v 2 = v21 ~oi w h e r e  ~01 E C~ r (C " -1 )  is a 

function of x " =  (X 1 . . . . .  X2n_2) and Y~2EC~(C) is a function of (x2~-l, X2n) such tha t  

~p2/~n = 0  when X2n = 0. This equation does not in any way restrict the values of v22 

when x2~ = 0, so (3.2.3) implies 

K n - 1  ~!]) 1 2 

Now recall tha t  ~2 (x", 0) = L (z') + Re A(z') where A is an analytic polynomial and 

a - 1  

L(~ ' )= ~. ~,1~,1 ~. 
1 

I f  in (3.2.4) we replace ~, by  ~ l e  A and note tha t  multiplication by  the analytic function 

e A commutes with ~/~Sj, we get 

(1-Ki~e1~t)f[~)ll2e-2Ldxt~Kn-12 ~l f] ~Ol~Z) } 2e-2Ldx'~" ( 3 . 2 . 5 )  

From (3.2.5) the inequality (3.2.2) follows easily by a slight extension of Lemma 8.1.2 

in H6rmander  [12] which we shall now prowe. 

9 - -  652922.  Acta mathematica. 113. I m p r i m 6  le 15 m a r s  1965. 
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LV.MMA 3.2.2. Let L =  ~I~ylzsl 2 and assume that 

2cflzl~e-2~dx< f ~ l~X 2 -2L ~zj e dx, ZeC~(C ' ) ,  

where dx is the Lebesgue measure in C'. Then it [ollows that 

1 

which conversely implies (3.2.6). 

(3.2.6) 

(3.2.7) 

Proof. First assume that  )lj>0 for every ]. With zEC~,  Z(0)=1, we set 2~(z)=Z(ez). 

Then the right-hand side of (3.2.6) with Z replaced by Z ~ is O(~ 2) but ~[g~[~e-2Ldx--~ 

~e-2Ldx # 0  when e--> 0, which proves that  c ~< 0. More generally, if 2j/> 0 for all ], with 

equality for exactly/~ values of j, the right-hand side of (3.2.6) is O(e ~-~) whereas the inte- 

gral on the left is only O(e-g), which again proves that  c ~< 0. To study the general case we 

note that  with 5j = e2L~(e-~LX)/3Z s = aZ/~Z j -  2aL/azjz  we have (see 2.1.8)) 

0 ~ -  2 b2L 

Henee an integration by parts gives 

I f w e p u t  L ' =  la, and Z'(z)=Z(w I ... . .  w,)exp 2 , 

1 

where wj =zj  when 2j ) 0  and w~ = ~j when ~lj < 0, the inequali V (3.2.6) now reduces to 

e ax, z e t a ( C ) .  

:By the first par t  of the proof, this implies (3.2.7). The converse is obvious. 

COROLLARY 3.2.3. Assume that /or  some constant C 

olfl e- dS<C(llT*fll +ll /ll +llfll ), nDT.. (3.2.s) 

Then the Zevi  form has either at least n - q positive eiffenvalues or else at least q + 1 negative 

eigenvalues at every point  on ~2.  
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Proo/. Assume tha t  at  a boundary  point  there are at  most  q eigenvalues < 0 and 

at  most  n -  1 - q eigenvalues > 0. Then we can find a multi- index J of length q formed 

with indices ~ < n - 1 ,  such tha t  2j~<0 when j E J  and 2j>~0 when ? '~J .  But  then (3.2.2) 

cannot  hold for any  K. 

On the other hand, we note tha t  if the Levi form has at  least n - q  positive eigenvalues 

and I J I  = q, we can find j E J such tha t  2j > 0, and if the Levi forms has a t  least q + 1 

negative eigenvalues we can find j ~ J with 2j <0 .  I n  both  cases (3.2.2) is therefore valid 

for some K at  every point  on ~ .  For  reasons of cont inui ty  this implies t ha t  (3.2.2) is 

valid on the whole of ~ for some K, if the conclusion of Corollary 3.2.3 holds. 

THEOREM 3.2.4. Assume that (3.2.2) is valid /or the eigenvalues o/ the Levi /orm at 

a point z o E ~  , and let e > 0 .  Then there exists a neighborhood U o/zosuch that (3.2.1)ho/ds 

with K replaced by K(1 +e) and a suitable constant K' /or all/EC~,.q)(~) n Dr. vanishing 

outside a compact subset o / ~  • U. 

Proo/. We choose coordinates z so tha t  the coordinates of z 0 a r e  0, and choose the 

forms ~o j so tha t  ~on=2~0. By  a uni ta ry  t ransformat ion of (1) 1 . . . . .  (D n-1 we can achieve 

n-1 tha t  the Levi  form 21 0jk(0)/t[ k assumes the form ~'n-l~ A2.1 /~j /tl 2. Let  2 j<0 ,  ~=1,  ...,/t; Xj>~ 

0, j >/t .  By  Proposit ion 3.1.3 we have for fixed ~ with a constant  C 

Taking w =/z.~, adding and using (3.1.17) we obtain  if 0 < 5 < 1 

2'  2 -0111/LJ]2e-r �9 
I, ] Ur 1 

I n  view of (3.1.20) with e replaced by  (~ this implies 

( 1 - - ~ ) 2 2  --0i1 [/r.] § 2 0 i J I ,  t l~ f l . k  e - r  
u f l o ~  1 1. J l, K i ,  k 

(1 +  )(11 T*t + II s l  I1 ) + co II / I1 . 

At z = 0 the quadrat ic  form in the in tegrand is 

( T ) /+0, 

if (~ is small enough. Here J varies over multi-indices of length q not  containing the index 

n, for /z .~=O on ~Fs if n ~ J  in view of (3.1.2). I f  U is chosen sufficiently small it follows 

for reasons of cont inui ty  tha t  
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f ill'e r IIIII , 
U n 0~ 

which proves the theorem. 

By a carefully applied partition of unity we could prove a global version of Theorem 

3.2.4. (See HSrmander [12], remark on p. 198.) However, we only give a form where we 

neglect the size of the constants. 

THEOREM 3.2.5. Let ~ be relatively compact and have a C 3 boundary, the Levi /orm 

o/which has either at least n - q  positive eigenvalues or at least q § 1 negative eigenvalues at 

every boundary point. For a fixed qJ, the estimate (3.2.8) is then valid/or some constant C. 

Proo]. This follows immediately from Theorem 3.2.4 by application of a parti t ion 

of unity. 

In  Kohn [14] it is shown that  an estimate of the form (3.2.8), combined with the 

results of section 1.2 and the theory of elliptic systems of differential operators, implies 

that  the unit ball of Dr .  N Ds (with respect to the graph norm) is relatively compact in 

L~p.q)(s ~). The hypotheses of Theorem 1.1.3 are therefore fulfilled. However, we shall 

proceed in a different way here, making essential use of the weight function ~. Thus we 

shall in the next  section consider the dependence of our estimates on ~, which will also 

yield other results such as approximation theorems. 

3.3. Domina t ion  es t imates  

In  this section we shall prove estimates which allow us to extend the arguments of 

section 2.3 to open sets satisfying the conditions to which we were led in section 3.2. 

Thus we are interested in studying estimates where the weight function ~ is replaced by  

a convex increasing function Z of ~ and the dependence of the estimates on Z is examined 

carefully. First we consider the case of linear functions Z" The notations used are the same 

as in the two preceding paragraphs, and we assume throughout that  ~ECa(~) and that  

THEOREM 3.3.1. Let zoE ~.  In  order that there shall exist a neighborhood U c  ~ o / z  o 

and constants C, To such that 

*11t11 , < C(ll T*I l l ,  + IIslll, ,), , > (3.3.1) 

/or all/EC~p, q)(~) with compact support in U, it is necessary and su/licient that the hermitian 

]orm 
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• ~k (Zo) tfl~ (3.3.2) 
j , k = l  

has either at least q + 1 negative or at least n - q  + 1 positive eigenvalues. 

Here  T* denotes the adjoint  of the opera tor  T = ~  with respect  to the norms  [I [1~, 

so the coefficients of this differential opera to r  depend on 3. 

Proo/. a) Necessity. I f  (3.3.1) holds, we obta in  f rom (3.1.21) with ~0 replaced b y  T~0 

and e = �89 for example,(1) 

when ~ is large enough and l E C~p. q)(f~) has compac t  suppor t  in U. We m a y  assume t h a t  

U is contained in one coordinate pa t ch  and  choose the  local coordinates and  the  forms 

~o ~ so t h a t  the coordinates of z 0 are 0 and  co t = dz j a t  0. B y  a un i t a ry  t r ans fo rmat ion  we m a y  

achieve t ha t  

a~q~(~ t, ik=2 Z 2,[t,p=2L(t). 
J. k, = 1 ~Zj  ~ k  1 

Write  ~0(z) = 2{Re (@, N }  + A (z)) +L(z)} + o(Iz 12), 

where A is an analyt ic  second degree polynomial .  Wi th  a f ixed /eC~p. ~)(~) wi th  suppor t  

in U and ~pEC~r ~) we now set 

f(z) = ~%f(zV~) exp (~((z, N} + A (z))) 1. 

W h e n  ~ --> + ~ it  follows f rom (3.3.3) applied t o / "  t h a t  

I/(o)P Iwl~e-~a~<c ' If(o)l ~ I aw e -=a~+2  Z;~,II,.,~(o)P Iwl~e-~ax 
lae~l  ~.,~ J 

where dx is the Lebesgue measure  in 13 ~. I f  for fixed J v i th  [ J [ = q  and  f ixed I wi th  

I I I  = P  we choose / = dz ~ A d5 ~ a t  the  origin, we obta in  

( 1-2C'Z2, Iwl2e-~Ldx<.C ' ar e_~Ldx 
JeY ~ J  " 

B y  L e m m a  3.2.2 this implies 

(1) By using arbi t rar i ly  small  numbe r s  s we could determine the in f imum of the  cons tan t s  C 

t h a t  can be used in (3.3.1) as we did in a similar  con tex t  in section 3.2. 
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1 - 2 C '  ~ 2 j~<2C'~  ; ,  
.t~ig 1 

\ J~g  J 

I f  this holds for all J with I J I  = q, it follows as in the proof of Corollary 3.2.3 tha t  there 

are either q + 1 negative or n + 1 - q positive eigenvalues ~tj. 

b) Su[[iciency, Again we choose the coordinates so tha t  

n 

~ j ~ ( 0 ) t , i ~ = 2 ~ , l t ,  I ~ 
1, k = l  1 

Let  2 j < 0  for ~= 1 . . . . .  /~ and 2j>~0 for ~>/t .  By  (3.1.20) we have when/EC~p,q)(~) and 

/ has support  in a fixed coordinate patch U with 0 E U c 

LI~ " L 1,1  j l .  K J ,  k 

< (~ + ~) (11T*t tl?~ + II ~t I17~) + g II I II~. 

In  those terms in the first sum where ~'~</z we now use (3.1.22) and obtain 

r/Q, (z,/,/) e-'q~d V + e Ill/II1~ ~< (~ § ,) (ll T*! II~ + II ~1 I1~) + e: II / I1~ + c II/ll~ III / II1,~, 

(3.3.4) 

where we have used the notation 

p 

Q,(z , ! , / )=(1-2e )  ~ ' ~  -~vj,]!x..T]2+ ~ '  ~ cpjJ,.mli.k~ (3.3.5) 
l ,  g j = l  l .  K t ,  k 

I f  we estimate the last term in (3.3.4) by e I11/1117~ + c ~  --~ II/ll~, it follows tha t  

(3 o3~6~ 

which is a positive definite hermitian form since by hypothesis either 2j > 0  for some ~'~ J 

or i~ < 0  for some j ~ J .  Hence Q~(z,/,/) is uniformly positive definite if e is sufficiently 

small and z belongs to a sufficiently smell neighborhood U of 0. From (3.3.6) it follows 

therefore tha t  
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Tfl / [2e-~dV < C (ll T*/II   + II s/ll  ) + c'  II f (3.3.7) 

when the support  of / belongs to U and  ~ is fixed. W h e n  ~ >2C ' ,  the estimate (3.3.1) follows. 

At  the boundary  and for non-linear functions Z(~) of ~ instead of ~ our results are 

not  quite complete bu t  still adequate  for the applications. 

Definition 3.3.2. We shall say tha t  a real valued function ~ E O 2 satisfies the condi- 

t ion Aq at  a point  z 0 if grad~(z0) # 0  and 

7t-1 

X~ + ... +)[q + ~ g i  > 0, (3.3.8) 
1 

where X1 ~< As ~< ... ~< ttn are the eigenvalues of the quadrat ic  form (3.3.2) and/x1 ~</x2 ~ ... ~< gn-1 

are the eigenvalues of the same quadrat ic  form restricted to the plane 

n 

tj~j = 0. 
1 

We note tha t  the m i n i m u m - m a x i m u m  principle for the eigenvalues gives 

21 ~<~u 1 ~<~t~ ~< ... <lun_l <~.~, 

so the condition (3.3.8) implies 
Zt-1 

/.L 1 ~- . . .  -4- •q + ~ laj- > 0 (3.3.9) 
1 

if q < n. Conversely, if (3.3.9) holds, a slight modification of ~o will yield (3.3.8): 

LEMMA 3.3.3. Assume that gradq(z0)#  0 and that (3.3.9) is valid or that q =n.  Then 

e ~ satis/ies the condition Aq at z o i/~: is su//iciently large. 

Proo/. We m a y  assume tha t  ~(z0) =0 .  I t  is then clear tha t  

a t  z 0. Thus we have to prove tha t  the eigenvalues ~t 1 .. . . .  ~ of the quadrat ic  form 

~ qJcktr z tj~s (3.3.!0) 

for large z satisfy (3.3.8), where # j  are independent  of 3. The case q = n  is trivial so we 

assume tha t  q < n .  We have to show tha t  the trace of the restriction of the form (3.3.10) 

to  any  q-dimensional subspace of C ~ is > - ~ - 1 / x  i + ~ for large ~ and some s > 0. Suppose 

tha t  this were not  true. Since the set of all q-dimensional subspaces form a compact  space 
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and the form (3.3.10) increases with v, it follows that for every e > 0  one can find a fixed 

q-dimensional subspace such that the trace of the restriction of the form (3.3.10) to this 

space is ~< -~.~-~/xf §  for every v. But then the subspace must lie in the plane ~t+~ =0  

and we have a contradiction with {3.3.9) if e is small enough. 

We recall that  (3.3.9) means that at least n - q  of the eigenvalues/x~ are > 0 or that  

at  least q + 1 of them are > 0. 

De/init ion 3.3.4. We shall say that a real valued function ~EC "~ satisfies the condi- 

tion aq at  a point z 0 if grad~(z0)40 and if q < n  the form (3.3.2) restricted to the plane 

~ t j ~  =0  has at least q + 1 negative or at least n - q  positive eigenvalues. 

Note that the condition aq is independent of the choice of hermitian metric in M (which 

is not true for As) and that it only depends on the surface {z; ~(z)=~0(z0) } and the side 

of this surface on which r (Cf. H6rmander [12], p. 203.) The condition aq m a y  

therefore be considered as a condition on a piece of oriented C * surface. In  particular we 

shall say that  ~ satisfies condition aq if the function ~ introduced in section 3.1 satisfies 

this condition. 

T ~ ~ o R v. m 3.3.5. Let z o E ~ and let q~ satis/y condition A q at z o. I / z  o E BY2 we also assume 

that qJ is constant on ~ and < ~(zo) in  ~ .  Then there is a neighborhood U o/ z o and a constant 

C such tha t /or  all convex increasing/unct ions X E C~(R 1) we have 

fz ' (+)1112 ~-"+)d V < C (ll T*[ II~+)+ II SI II~+ + II l I1~+)) (3.3.11) 

/or all t E C~p. q) (~)  N D r ,  with support in  U fl ~ .  

Proo/. We start with the estimate (3.1.20) with ~ replaced by X(~). Noting that  

I (X(~))M~.j~h.,,K=X'(~) ~ ~j,,l~.J~:l~.k,:+ X"(~) ~jl,.j~: , 
j . k  L k  

where the last term is ~> 0, we obtain if 0 < ~ < �89 

f e-~+av+ ~1111111~+ + Z' ( 1 - 2 ~ )  V '  2 ~ , - -,<+) I.+ u ~ a l ~ m  i 1 .~j .k  v , ~  z(qJ)qDj~h's~lLk~e d V  

~.' Z ( ejJ,.s,/,.~e-~+dS<(l +s)(llT*/llw Ilslll~<+)+c~lllll~+. (3.3.12) + 
1. K LIC J U n O ~  

We ehoose the basis co j for forms of type (1, O) so that  ~o ~ is proportional to ~+, hence 
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~ j = ~ ] ~ o g ~ = 0  if j < n .  Since g r a d ~  and grad  ~ are proport ional  on ~ ,  t h i s ' m e a n s  t h a t  

Proposi t ion 3.1.3 is applicable.  B y  a un i t a ry  t r ans fo rmat ion  of the  forms w j, j < n ,  we 

can achieve t ha t  
n - 1  n - 1  

] , k = l  1 

L e t / ~ j < 0  when j = 1, ..., a and  gt>~ 0 when ]>a. We app ly  Proposi t ion 3.1.3 to the t e rms  

in the first sum in (3.3.12) where j ~< a. This gives 

f Z'(qJ)Q'(z'/'/)e-~C~'dV + f Re("/'/)~-~(~'aS+ ~111/111~(~ , 
r2 n O tr n O~q 

< (1 + ~)(liT*/I1,,(~, + II s/II:i(,.,) + c'e II/II~(~, + c ' l l / I I~. ,  I I l ! l l l~),  ( 3 . 3 . 1 3 )  

where we have  used the  nota t ions  

Qe(~,/,/)=-(1-2~) y' ~ ~r Z' Z ~f , .~/ , .~ ,  (3.3.14) 
1,1.~=1 l , K  ] , k  

R}z,/ , /)  = - ( 1 -  2e) ~ . '~ .  e,,l/z.Zl~+ Z '  Y ejk/z.,~r/z.ke. (3.3.15) 
z..z j = l  z, x j.,~ 

(In the  computa t ion  it  is i m p o r t a n t  t h a t  ~0j= 0 when )" < n.) 

The  hermi t ian  form Qo(zo,[,/) is posi t ive definite. I n  fact,  if 21~< )t 2 ~< ... ~< X= are 

the eigenvalues of the  form (3.3.2), we have  

l , K . ~ . k  

as is immedia te ly  seen if a f rame is used where the form (3.3.2) is diagonalized. Hence  

it follows f rom (3.3.8) t ha t  Qo(zo,/,/) is posi t ive definite. I f  U is a sufficiently small  

neighborhood of z 0 and  e is given a f ixed bu t  sufficiently small value, i t  follows t h a t  ] / ] ~ ~< 

CQ}z,/,/) for some constant  C when z E U. This implies t h a t  Re(z,/,/) >~ 0 when z E U f3 ~f~, 

for / satisfies the bounda ry  c o n d i t i o n / z . : = 0  when nE J ,  and  the  fact  t ha t  <p is cons tant  

on the boundary  implies t ha t  %k = c~jk, for some c > 0 if j, k < n. Theorem 3.3.5 now follows 

from (3.3.13), even with  the L 2 norm of / over  U f3 ~ with respect  to the densi ty  e-z(q~)dS 

added  on the  lef t -hand side of (3.3.11). 

3.4. Existence and approximation theorems 

The first existence theorem which we shall prove  could also have  been obta ined  

f rom Theorem 3.2.5 and  Proposi t ion 1.2.4 by  the  a rguments  of K o h n  [14]. However ,  we 

prefer to use the es t imates  involving weight funct ions in all the  existence proofs. 

1 0 - 6 5 2 9 2 2 .  Ac ta  mathemat ica .  113. I m p r i m 6  le 12 mar s  1965. 
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THEOREM 3.4.1. Let ~ be relatively compact in M and have a C a boundary ~ ,  satis/ying 

the condition aq. Then R r is closed and has finite codimension in N S. 

We recall that  T is the weak maximal operator from L~p.q-l)(~, ~0)to L~p.q)(~, ~0) 

defined by ~, and that  S is the weak maximal 0 operator from L~p. q)(~, ~0) t.oL~p, q+l)(~), ~9). 

Here ~ is any function ~ C(~). 

Proo/. The assertion is obviously independent of the choice of the function ~0 fi C(~), 

since changing q0 only means introducing equivalent norms in the three Hilbert spaces 

concerned. We choose ~0 fi Ca(~) so that  ~0 is near ~ of the form e ae with 2 so large that  

according to Lemma 3.3.3 the condition Aq is satisfied by ~ at every point on ~ .  I t  suffices 

to prove the assertion of the theorem with ~0 replaced by some multiple of ~o. From Theorem 

3.3.5 it follows that  every point on ~ has a neighborhood U such that  

/ ,  

~Ju n ~ It 12 e -~+d v < e(ll T*/II:~+ + II 8/II::+ + II 1 II?+) 

for large v and all ]EC~.o)(~)N Dr, with support in U fl ~ .  We can cover D~ by a finite 

number of such neighborhoods U, and choose y~:EC~(U:) so that  Y~f:=l in ~ outside a 

compact subset K. In view of the obvious estimates 

II T*(yM)II:+ < II T'I l l ,+ + cII/ll,+, 

where C is independent of I and of T (see also the proof of Proposition 2.1.1) we obtain 

with another C 

~(K2C [112 e -~dV <<" C(II T*/[n~ + II s / I I~ + II /I1~+), / e c~p. q)(~) (~ Dr. .  

If  we choose T so that  ~ > 2C, it follows that  

foKI/12e-'+~V<llr*/Ip,++lls/Ip,~+ f llpe-'+dV, l eck0) (n)nDr , .  (3.4.1) 

Since Proposition 1.2.4 implies that  C~(v.~)(~ ) N Dr* is dense in Ds N Dr. for the graph 

norm, the estimate is valid for all / E D s N Dr.. 

To prove the theorem it suffices to show that  (3.4.1) implies that  the hypotheses of 

Theorem 1.1.3 are fulfilled. Thus let /j fi Ds N Dr. (] = 1, 2 .... ) and let T*/j --> 0, S/j --> 0 in 

L~p, ~1)(~, Tq0) respectively. If the sequence /j converges in L~, q)(K, "lTI) ) we conclude that  

/j converges in L~v.q)(~),v~v ) by applying (3.4.1) to / = / j - / ~  and letting ?', k-+oo. (Note 

that  ~ is a fixed number such that  (3.4.1) is valid.) Therefore it only remains to prove 

the following simple lemma, where we write ~o instead of vqJ. 
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LEMMA 3.4.2. Let v2EC 2 and set 

B = {1; / e D s N DT,, 11!115 + IlS/ll~ + II T'Ill5 < 1}. 

Then B is relatively compact in L~p. q)(~, loc). 

Proof. Let U be a coordinate patch c ~ and let zEC~(U).  Writing g=x[, we have 

for some constant C and all ! E B 

IIgil~ + lisgll~ + II T*gll~ < c.  

From (3.1.20) we therefore obtain with another C 

~.., j J l a ~  I 

With still another C it follows that  

@~,~ 2~ 

where z k are the local coordinates, and taking Fourier transforms we obtain 

The set of all such g with support in a fixed compact set is compact in L 2 by Rellich's 

]emma (see e.g. HSrmander [12], Theorem 2.2.3). 

From every sequence of elements in B we can thus select a subsequence which is 

L 2 convergent in a neighborhood of any given point in ~.  Using the Borel-Lebesgue lemma 

and taking a diagonal sequence we can find a subsequcnce converging in Lw. a) on any 

compact subset of ~.  This completes the proof of Lemma 3.4.2 and therefore the proof 

of Theorem 3.4.1. 

De/inition 3.4.3. If ~ is relatively compact in the manifold M and ~ is continuous 

in ~ ,  we denote the quotient space Ns/R T by H(p. q)(~). (We recall that  

~v~ = {1; / c L~. q)(~, ~), ~t = 0}, 

and that  R T is the range of the weak maximal 0 operator from L~,. q-1)(~, ~) to L~. q)(~, ~). 

This quotient space is of course independent of ~.) We also denote by H(p,q)(~'~) the 

quotient space of {! ; /~L~,  q)(~, loc), ~! =0} with respect to 

L~,. q)(gs loc) fl {01; l C L(,. q_i)(~, Ice)}; 

here ~ may be any paracompact complex analytic manifold. 
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By the Dolbeault theorem (see the proof of Corollary 2.2.5) there is a natural  isomor- 

phism between the space H(p. q)(~) and the qth cohomology group of ~ with values in the 

sheaf of germs of holomorphic p-forms. 

When the hypotheses of Theorem 3.4.1 are fulfilled, we know that  H(~.q)(~) is a 

finite dimensional vector space. For a given q~ there is a natural  isomorphism 

where the last equality is a definition. I f  ~ '  ~ ~ we obtain by taking restrictions a canon- 

ical homomorphism/ t (p ,  q)(~')-->H(~, q)(~). Our next  purpose is to give conditions which 

guarantee that  this homomorphism is surjective or injective. At  the same time we shall 

obtain an approximation theorem for solutions of the equation ~u =0.  The proof depends 

on the est imates contained in the following two propositions. 

PROPOSITION 3.4.4. Let ~ be relatively compact with O~EC a, let ~0EC3(~) be equal to 

0 on ~ and < 0 in ~,  and assume that q~ satislies condition Aq in {z; z E ~,  q~(z) >~ c) ]or 

some c < O. Then there is a compact subset K o /~c  = {z; z E ~2, q~(z) < c} and a constant C such 

that/or all convex increasing/unctions Z E C2(R 1) 

Jc,: z'(q~)I I I' e ,', 'd V < C(ll T*I I1~(~, + II ,~I I1~,~, + II I I1~,~)), I e C~. q, (~) n DT,. (3.4.2) 

Proo[. In  virtue of Theorem 3.3.5 we can find a neighborhood U of any  point in 

N C~c such tha t  (3.4.2) holds when / has support in U N ~ .  I f  we use a partition of uni ty 

as in the proof of Theorem 3.4.1, the estimate (3.4.2) follows immediately from the fact  

tha t  it holds locally. The details may  be left to the reader. 

We shall now derive from (3.4.2) a more useful estimate. To do so we choose a se- 

quence of convex increasing functions gk E C 2 such tha t  

g~(v)=Tv when v<c,  ;~k'(z)/~+oo when k- ->~oandv>c.  

Here 7 is a constant larger than the constant C in (3.4.2). We set ~0 k =Z~(r 

(3.4.3) 

PROPOSITIO~ 3.4.5. Under the hypotheses o/Proposition 3.4.4 and with the notation just 

introduced, one can / ind  a constant C' such that ]or large k 

Illlb~ <c'( l lT*l l l~ +l lsI l l~) it leD~,nD~ 

I ( l ,g )e -r~dV=O /oraU g E N ( r . q ) ( ~ , 7 ~  ). (3.4.4) a n d  
j t~  
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Proo/. Assume that  the assertion is false. For any C' we can then find arbitrarily 

large values of/c for which (3.4.4) does not hold. Passing ff necessary to a subsequence 

of the given sequence we may assume that  (3.4.4) is not valid with C' =k. In view of Pro- 

position 1.2.4 we can then choose ]kEC~p.q)(~)~ Dr, (a space which is independent of k) 

such that  

II lx II,x = ~, II T*/x I1,,~ + II six I1,~,~ < 1/~, ,~0[o <Ix, ~> ~ , d  V = 0 for all g e N(~. q) ( ~ ,  ~q0). 

(3.4.5) 

Since Z~ >~ ~ we obtain from (3.4.2) that  

c~ I tx I ~ ~-~xav < c r- ' (1 +k--'), 

which implies fK Ilk 12 e-V'dV >1 1 - C y-i(1 + ]r (3.4.6) 

No subsequence of the sequence ]x can therefore converge to 0 in L 2 norm over K. 

From the first part  of (3.4.5) and the fact that  ~0x=2~0 in ~c it follows that  a sub- 

sequence of the sequence/x is weakly convergent in L~. q)(~c, 2~0) to a l imi t / .  Changing 

notations if necessary, we may assume that  the whole sequence converges. Now take 

tP E C~ (~c) so that  v 2 = 1 on K. From (3.4.5) it follows that  for some C 1 

IlT*(vlx) ll~,, + IIs(~l,~)ll~,, + I1~t~11~ < c, 

for all b. Hence the weakly convergent sequence ~0]k is strongly compact in L~. q)(~., y~) 

by Lemma 3.4.2, so it must in fact converge strongly. In view of {3.4.6) it follows therefore 

that  ]4=0, while {3.4.5) implies that  S]=O in ~c. We shall prove that  / e D r ,  and that  

T*/=O in ~c, that  is, ]ehr<~.q)(~c, ~ ) .  Since it follows from (3.4.5) that  ] is orthogonal 

to every element in N<p. q)(~,, 7~), this will yield a contradiction and prove the proposition. 

Thus introduce fke -~X =gx. We have 

/~ lgx I  ~ II lxIl~,~ ~, eq~kd V 

so gk converges weakly in L~p. q)(~, -7~0) to a limit g which is le- ~'~ in ~c and 0 outside 

~ .  Further, we have e-~xT*/x~V'}gx where v~ is the differential operator adjoint to ~, de- 

fined by 

f<Vg, u>dV= f<g,-~u>dV, (3.4,7) 

for all u e C~p. ~)(fl) with compact support. Thus v~ does not depend on k. Since ~0k >~ y~ 

and 
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T*/~ H~->o, 

it follows tha t  vag~-~ 0 in L(~. q)(~2, -?q~). Hence we obtain by applying (3.4.7) to g~ and 

letting k -~ c~ 

f n  (g ,~u)dV=O, uEC~,q)(~) ,  

for every u E C~v. q) (~c) can be extended to an element of C~v. q) (~2) with compact support.  

I f  we recall that  g = / e  - ~  in ~ ,  we obtain 

r 

and since C{v. q)(~c) is dense in the domain of T in ~c (with respect to the graph norm), 

it follows that  T ' l = 0 .  The proof is complete. 

THEOREM 3.4.6. Let ~ be relatively compact with a~2EC a, let q~ECa(~) be equal to 0 

on ~ and < 0  in ~,  and assume that qJ satislies condition aq in ~ outside~ = {z; z E~,q0(z) <c} 

lor some c < O. I l f E L~v. q)(~2, q~) and ~l = O, the equation ~u = / has a solution u E L2(p. q_ 1)(~'~, (~) 

i[ in ~2 c it has a solution E L~p. q-1)(~, q)). In  other words, the restriction homomorphism 

H(v, q)(~) --> H(v. q)(s is in~ective. 

Proo]. If  we replace q by  e ~ -  1 with a sufficiently large ~t, we can by  Lemma 3.3.3 

achieve that  q satisfies iq outside ~c, and this makes Proposition 3.4.5 applicable. Choose 

a fixed k so that  (3.4.4) holds. Let  F be the set of all/EL~p.q)(~, q)k) such that  ~ / = 0 a n d  

the equation t~u=/ has a solution uEL~v.q)(~c, ~q)) on ~c. Since ~no</, g>e-~dV=O for 

every gEl~(p.q)(~c, ~ )  if ]EF, the estimate (3.4.4) shows that  we may  apply  Theorem 

1.1.4 with A equal to a multiple of the identity. This proves the theorem. 

TH]~OREM 3.4.7. Let the hypotheses o/ Theorem 3.4.6 be /ul/illed. For every 

u E L(~. q-1)(~2c, q~) satis/ying the equation ~ u = 0  in g2c ang /or every e > 0  one can find 

u I ~ L2p, q_ 1)(~, ~9) satis/ying the equation ~ul = 0 in ~,  so that ~ o  ]u - u 1 ]2e-Cd V < e. 

Proo]. As in the proof of Theorem 3.4.6 we may  assume that  ~ satisfies Aq outside 

~c, which makes Proposition 3.4.5 applicable. Let  v E L~p. q-i)(~c, - q )  be orthogonal to the 

restriction to ~c of every u 1E L~v. ~-1)(~, q) satisfying the equation ~u 1 = 0  in ~.  I f  we define 

v to be 0 in ~ outside ~c, this means that  

f (u  1,v~dV=O 
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for all u~ such that  Tu~ =0. Hence ve ~ belongs to RT. for RT. is closed by  Theorem 3.4.1 

and Theorem 1.1.1. By  Theorem 1.1.4 and the estimate (3.4.4) we can therefore find 

[~eDT. so that  T*/~=ve r and II/~[[r <--.C'IIT*/~Hv,=C'[[vH_~. Now set g~=/~e - ~ .  With 

the notation ~ used in the proof of Theorem 3.4.5 we have Og~ = v  for every k, and the esti- 

mate just given for ]~ implies 

Since ~0~ >~ ~ ,  we can choose a weak limit g of the sequence g~ in L~. q){~, -7~0), and from 

(3.4.8) it follows tha t  g =0  outside ~c. From the equations v~g~ =v, we obtain v~g =v. Hence 

f~o( v,u} dV = fao(g , '~u}dV 

for every u E C~p. q)(~c), and therefore for every u in the domain of the maximal differential 

operator defined by  b in L2(~c, ~) (Proposition 1.2.3). This proves tha t  Sn~ (v, u}dV =0 

for every uEL~p.q-l)(~c, q)) satisfying the equation bu=0 ,  so Theorem 3.4.7 follows from 

the Hahn ,Banach  theorem. 

THEOREM 3.4.8. Let gs be relatively compact with ~)-EC a, let ~EC3(~) be equal to 0 

on ~ and < 0 in ~ ,  and assume that cf satis[ies the conditions aq and aq+ 1 in ~ outside ~-1~ = 

{z; z e ~,  qJ(z) <c} [or some c<0 .  Then the restriction homomorphism H(p.q)(~) -->/7(,.q~(~r 

is an isomorphism. 

Proo[. By Theorem 3.4.6 the homomorphism is injective. To prove that  it is surjective 

we shall use Theorem 3.4.7. Choose an orthonormal basis gl ..... g~ for N(,.q)(flc, ~0). Since 

bgj=O, we can for every e > 0  find GjeL2(~.q)(~, ~) such that  ~)G~=O and 

I f~o( (q j -Gj ) ,gk}e-r  

This follows from Theorem 3.4.7 since ~0 satisfies aq+l. Writing 

ajk = 3 c~f~ (Gj. g~) e-~dV, 

we have lajk--~jkl <~, so the matr ix  (ajk) has an inverse (Ajk) if e is sufficiently small. 

I f  we set Gj =ZAj~Gz, it follows tha t  

f ((qj - G~), gk} e-VdV = ~k - ~ Aj~azk ~- 0 
c ! 
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for all j and k. Hence the restriction of G~ to ~2c has the same image as gj in H~,.a)(~c), 

which proves that  the homomorphism in the theorem is surjective. 

We shall now study H(p.q)(~2 ). In doing so it is convenient to assume that  ~ - ~ +  o~ 

at  the "boundary" of ~; this can be achieved if the hypotheses of the preceding theorems 

are fulfilled, for the validity of condition a a is not affected if ~ is replaced by an increasing 

function of ~. 

THeOReM 3.4.9. Let ~ be a complex analytic mani/old o/complex dimension n and let 

q) be a C a/unction in ~ such that the open sets ~c = (z; z E ~,  q~(z) < c) are relatively compact 

in ~ /or every real number c. Further assume that q~ satis/ies condition aq in the complement 

o] Bc /or some c. Then the restriction homomorphism H(p,q)(~)--->H(l~,q)(~c) i8 injective /or 

L, 2, q-i,(~c, the same c, which implies that H(~.q)(~-])has/inite dimension. Further, every uE qg) 

such that ~u=0  can be approximated arbitrarily closely in the norm o/ i~p.q_l)(~-~c, qg) by the 

restrictions to ~ o~/orms Ul EL~p,q_l)(~-] ,]oc) such that ~Ul=O. I/  ~p satis/ies both conditions 

aq and aq+ 1 outside ~c, the homomorphism H(p,q)(~-])---> H(p.q)(~c) i8 an isomorphism. 

Proo/. As observed in paragraph 3.1, we can introduce a hermitian metric in ~.  If 

d >c, the preceding theorems are then applicable with ~ replaced by ~a. Now let 

] E L(Zp. q)(~,loc), assume that ~/= 0 and that  the equation~u = /h a s  a solution u E L(2p, q-1)(~c, ~9). 

For every integer j >0  we can then find ujEL~v" q-1)(~r qJ) such that  ~u~ = / i n  ~ + j  and 

fnc+jluj - I ~e-~dV~ 2 -j. (3.4.9) +1 U t 

In  fact, assume that  u,, ..., uj have already been chosen. To construct us+ ~ we first note 

that  in virtue of Theorem 3.4.6 we can find u6  L~. a_D(~c+~+l, ~)such that-~u =/ in  ~lc+~+~. 

This implies that  ~ (u -u~)=0  in ~)c+~, so by Theorem 3.4.7 there exists a form 

v@ L(~. a_l)(l)c+~+,, ~0) such that  ~v =0  and (3.4.9) is valid for u~+~ =u - v .  Since ~u~+~ =~u =] 

in glc+~+~, this proves the statement. From (3.4.9) it follows that  u = l i m ~ u ~  exists in 

L~. a_a)(~, loc), and it is obvious that  ~u =/ .  This proves that  the homomorphism H(~. a)(gl) --> 

H(v.a)(~r is injective, and since /~(~.q)(~c) is finite dimensional by Theorem 3.4.1, we 

conclude that  H(,,.q)(~) has finite dimension. The approximation theorem follows im- 

mediately by iterated use of Theorem 3.4.7. We leave the details to the reader in order 

not to repeat the arguments already used in the proof of Theorem 2.3,5. The final state- 

ment now follows by repetition of the proof of Theorem 3.4.8, so we omit these details too. 

Remark. The part  of condition aa, which requires that  grad~0 #0,  is unnecessarily 

restrictive and could be removed by applying the theorem of Morse [21] as in Chapter II ,  

provided that  ~0 fi C ~'. We can also give another supplementary result: 
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T~EOREM 3.4.10. Let ~ be a complex mani/old o/complex dimension n, and let q~ be 

a C 2 /unction in ~ such that the open sets ~ = {z; z E ~,  q~(z) < c} are relatively compact in 

/or every real c. Further assume that ~ satis/ies condition aq outside ~co /or some c o and 

that the/orm (3.3.2) has either at least q + l negative or n - q  + l positive eigenvalues /or every 

zoe ~.  Then it/ollows that H(~.q)(~) =0.  

Proo/. We obtain g ( v . q ) ( ~ ) = 0  for every c > c o by  using Theorem 3.3.1 and Theorem 

3.3.5. As weight function we then use Z(~) where Z is convex on R and linear with a large 

slope on ( - ~ ,  co). In  view of Theorem 3.4.9, this proves the theorem. 

3.5. Behavior of the Bergman kernel function at the boundary 

Let ~ be a paracompact  open subset of a complex hermitian manifold M of dimen- 

sion n, and let ~ E C~ The set of analytic functions in ~ with 

Ilull -- lul:e-+dV 

forms a Hilbert  space with this norm. If  Ul, u 2 . . . .  is a complete orthonormal system in 

this space, the Bergman kernel function of ~ (with respect to the weight function e -~) 

is defined by  

g(z ;~ ,q~)=K(z )= ~[uj(z)l~=sup]~ajuj(z)]2/~lajl2=sup[u(z)[~/Hull~,  z e ~ ,  (3.5.1) 

where the supremum is taken over all u ~=0 in the Hilbert space. The last form of the deft- 

nition shows that  K is independent of the choice of the orthonormal system. 

Bergman [3] has studied the behavior of the function K(z; ~,  r at  the boundary of 

when ~ is a bounded domain of holomorphy in C ~ and T =0. (It  is also well known tha t  

the kernel function is regular at  a point on the boundary where some eigenvalue of the 

Levi form is negative.) We shall here extend the results of Bergman as follows: 

THEOREM 3.5.1. Assume that the weak maximal operator ~:L~0.0)(~,~)-+L~0.1)(~,~) 

has a closed range, and let z o be a point on ~ such that ~ E C 2 in a neighborhood o/ %. Further 

we assume that ~ is strictly pseudo-convex at zo, that is, that the Levi /orm ZQm(zo)tj~ ~ is 

positive de/inite in the plane Z ~j(z0)tj=0. (~ is the distance to ~ ;  /or other notations see 

sections 3.1 and 3.2.) Let k(z0) be the product o/the n - 1  eigenvalues o/ this /orm. Then 

n~ 
[#(z) [n+lK(z; ~ ,  ~)-+k(z0) e~(Zo)4----n, z-->z o. (3.5.2) 
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The hypothesis that  the range of 0 be closed is always fulfilled if ~ is a domain of 

holomorphy in C n and ~(z)= Iz] 2, for example (see Theorem 2.2.1'); or if f~ is a bounded 

domain of holomorphy in C n and ~ is any function in C(~); or if ~ E C  a and the Levi 

form of ~f~ has everywhere either n -  1 positive or 2 negative eigenvalues (Theorem 3.4.1). 

Thus Theorem 3.5.1 implies Grauert 's  theorem that  f~ is holomorph-convex if the boundary 

is strictly pseudo-convex. 

The main step in the proof is to show that  the statement (3.5.2} can be localized. 

First note that  if ~ ' ~  it is a trivial consequence of (3.5.1) that  

K(z; ~' ,  q~) >~ K(z; ~ ,  q~), z E ~' .  (3.5.3) 

On the other hand, we shall prove 

LEMM)~ 3.5.2. Let the range o/ the weak maximal 0 operator T /rom L~o.o)(~, q~) to 

L~o.1)(~, ~) be closed. Let zoE ~ and assume that/or some neighborhood U o/ z o there is an 

analytic /unction u o in f 2 ' = ~ N  U such that luol ~<1 in ~' ,  lu0(z)l- l when z-->z o, and 

lUo(Z) l has an upper bound < 1 in ~ ' N  C U o /or some neighborhood U o o / z  o with compact 

closure contained in U. Then it/ollows that 

K(z; ~ ,  qJ)/K(z; ~ ' ,  qJ) ---> 1, z ->z o. (3.5.4) 

L(0.o)(~ ,~) Proo/. L e t z E C ~ ( U  ) be equal to 1 in Uo, and le t  0~<X ~< leverywhere.  I f u ' E  2 , 

and u' is analytic in ~2', we set with an integer v to be determined later 

u =Zu'u~ - v .  

The product Zu'u~ shall be defined as 0 where Z =0,  and vEL~o.o)(~, q)) shall be chosen so 

that  ~u = 0 in ~ ,  that  is, 
- -  t v Ov = (O)Qu Uo. 

Since Rr  is closed by  hypothesis, it follows from Theorem 1.1.1 that  this equation, besides 

the obvious solution v - ~ u  u0, has a solution v with 

S [v[2e-~dV < C f~.~ c uo[u' u~[2e-~dV. (3.5.5) 

I f  e is any positive number,  we obtain 

fa Iu-u'u [2e-r 1) f ,.cv lu'u l e- dV<e f  lu'12e- dV, (3.5.6) 

provided that  r is chosen so large that  lUo12~<e2/2(C+l) in f~'N CU 0. From the defini- 

tion of the kernel function in f~' and (3.5.6) it follows tha t  
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In(z) - u'(z)no(Z) ~ 12 < ~3K(z; ~', ~) f~, l u' ]3e-+aV, z e ~'. 

( )' . t 
Hence lu ( z ) l~ lu ' ( z ) l lu0 ( z ) l~ -~  K ( z , n , ~ )  lu'i~e-~dV , zen' .  

i 

Since the  sup remum in the  def ini t ion (3.5.1) of the  kernel  funct ion  is obv ious ly  a t t a ined ,  

we can for every  z E ~ '  choose u '  ~ 0 so t h a t  

u'(z/13 = r(z;  ~', ~) f~. l u' I*e-~av. 

F o r  the  corresponding funct ion  u we then  ob t a in  the  e s t ima te  

K(z; ~', ~)([ Uo(~)I v - ~)~ f~, l u' [~ e-~d V, (3.5.7) l u(z) 13 

when z E ~ '  and  [Uo(Z ) [~> e. B y  the  t r iangle  inequa l i t y  and  (3.5.5) we have  

Combined  wi th  (3.5.7) th is  e s t ima te  implies  

>/  r t K(z; f l ,  q ) ) ~ K ( z ; n , q ~ ) ( l U o ( Z ) l ' - s ) 2 ( l + e )  -2 if z e a ,  ] % ( z ) ] ' > e .  

Hence  lira K(z; fl, cf)/K(z; ~ ' ,  q) >! (1 - e) 2 (1 + s) -2, 

a n d  since e is a rb i t r a ry ,  th is  proves  the  l emma  if we recal l  (3.5.3). 

Note  t h a t  the  proof  is ve ry  close to  t h a t  of Theorem 2.3.8. 

Using L e m m a  3.5.2 and  the  mono ton ic i ty  (3.5.3) we can reduce the  proof  of Theorem 

3.5.1 to the  s t u d y  of some special  domain  ~ ,  for which the  kernel  func t ion  is easy  to  

compute .  

LEMMX 3.5.3. Let ~o be the ellipsoid in fJ= defined by 

~-~0 = ( Z ;  ZeC n, a l ] Z l [ 2 +  . . .  +a~]znl2<ao}, 

where ao, a t . . . .  , a= are positive numbers, and let the element o/ volume in the definition o/ 

the kernel /unct ion be the Lebesgue measure. Then 

g ( z ;  ~0, O) = n!~r- nao ... an(a o 7 at I zl 12 - ... - a~lz~13)- ~-1. 

Proo/. W e  m a y  assume t h a t  a o = 1 and,  a f te r  a l inear  change of var iables ,  t h a t  a t = 

... =a~ = 1. I n  view of the  u n i t a r y  invar iance  of K i t  is no res t r ic t ion  to  let  z = (0 . . . . .  0, ~). 
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If  U is a square integrable funct ion in A(~o), then a un i ta ry  t ransformat ion B of the 

variables z 1 .. . . .  ~-1  leaves ~o, u(0 .. . . .  0, ~) and ~ ] u] 2d V invariant.  I f  we form 

ul(z ) = ~u(Bz', ~)dB,  

where dB is the normalized Haa r  measure on the un i t a ry  group, we therefore obtain a 

funct ion UlEA(O0) such tha t  

ul(O .. . . .  O, ~) = u(O .. . . .  O, ~), 

and by  Minkowski 's inequal i ty  we have 

f~.iul[2dV < f~.'u[ 'dv. 

But  u I is invariant  for un i ta ry  t ransformations of zl, ..., z,_ 1 and must  therefore be a 

funct ion of z, only. I n  determining the supremum in (3.5.1) we m a y  thus assume tha t  u 

is an analytic function of z, when [z~l < 1. Pu t  

oo 
u(z) = Z ct zJ.. 

0 

Since the volume of the uni t  ball in R ~"-2 is ~n-1/(n - 1)!, we obtain 

f2. f l  
f ['2o [u[edV=~'['Ta-1/(n- 1 ) [ J 0  JO I"('d~ 

=7e"-l/(n--1)! 2 [c,l '2g r~'+a(1-r')"-ldr 
0 

= n " 5  cjl~i!/(]+n)!. 
0 

B y  Cauchy-Schwarz '  inequal i ty  it follows t h a t  

I~(0 . . . .  , 0 , : ) l ' < ~ - " ~ l r  
0 ~ o 

where equali ty is a t ta ined for some u. Since the sum of the series is n ! ( 1 -  [r the 

lemma is proved.  

In  the proof of Theorem 3.5.1 it is convenient  to apply  Lemma 3.5.3 in a slightly 

different form: 
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LEMMA 3.5.4. Let ajk (?, k = 1 . . . .  , n) be a positive de]inite hermitian symmetric matrix, 

and set 

~ o =  {z ; Imzn  > L~=a,kzJzk} �9 

Then 

where 

K(z; ~o, O) = nn[ 4_lx _n ( i m  zn_ J.~=1 "l-n-1 

__ n--1 :r - de t  (aj~)j. k=l. 

Proo]. B y  a u n i t a r y  t r ans fo rma t ion  of the  var iab les  z 1 . . . .  , z._ 1 we can reduce the  

m a t r i x  n- (aj~)j. k~l to  d iagonal  form, and  the  s t a t e m e n t  of the  theorem then  remains  inva r i an t .  

Assuming  this  r educ t ion  a l r eady  made,, we can in t roduce  zs+zna~/ajj, i=l . . . .  , n - l ,  and  

z~ as new var iables .  The  d e t e r m i n a n t  of this  t r ans fo rma t ion  is equal  to  1, so again  the  

s t a t e m e n t  is invar ian t .  Hence  we m a y  assume t h a t  the  whole m a t r i x  (ajk) has  d iagonal  

form. I f  we wri te  Imz~ - a~n I z~l~ = 1/4an~- ann ] z, - i/2ann ]~, the  l emma  now follows f rom 

L e m m a  3.5.2. 

Proo/o/  Theorem 3.5.1. As in L e m m a  3.3.3 we can f ind  a real  va lued  func t ion  

E C 2 which is s t r ic t ly  p lu r i subharmonic  in a ne ighborhood  of z 0 where ~ is def ined b y  the  

equa t ion  ~ < 0, and  g rad  ~ is the  exter ior  un i t  no rma l  on ~ .  W e  choose local coordinates  

at. z 0 so t h a t  the  coordinates  of z 0 are  al l  0 and  the  different ia ls  dzj are  o r thonormal  a t  z 0. 

This  implies  t h a t  the  R ieman n ia n  e lement  of in tegra t ion  has  dens i ty  1 wi th  respect  to  

the  Lebesgue measure  in the  coordina te  space. F u r t h e r  we choose the  coordinates  so t h a t  

~o(z) + I m z n  = O([z[ ~) a t  %. By  Tay lo r ' s  formula ,  ~ is therefore  def ined in a ne ighborhood  

of z 0 b y  an  inequa l i ty  of the  form 

J, k ~ l  Ogi ~Zk  

where A is an  ana ly t ic ,  homogeneous,  second degree polynomia l .  I f  we replace the  coor- 

d ina te  z n b y  z n -  iA(z), the  dif ferent ia l  a t  z 0 is no t  changed,  so we m a y  assume wi thou t  

res t r ic t ion  t h a t  A = 0 f rom the  beginning.  P u t  aj~ = ~2~(0)[~zj~Sk, which is a he rmi t i an  sym- 

metr ic ,  pos i t ive  def ini te  ma t r ix .  

W i t h  an  a r b i t r a r y  ~ > 0 we set  

~ ,  = {z; I m  zn > 

Then  
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is contained in ~ if 5 is sufficiently small. (We do not distinguish between a point in 

near z 0 and the point in C ~ defined by its coordinates.) For small 5 the product of e -~ and 

the density of the Riemannian element of volume with respect to the Lebesgue measure is 

larger than exp ( -~ (z0 ) - e )  in this set. Using the monotonieity (3.5.3) we therefore obtain 

K(z; ~, ~) < er g~, 0). 

If  we let z--> 0 so that  Im zn/[ z[ has a positive lower bound, it follows from Lemma 3.5.2 

and from Lemma 3.5.4, applied to ~ and ~ ,  that  

lim (Im z~)n+lK(z; ~, cf) < e~(Z')+~lim (Im zn)n+l K(z; ~ ,  O) 

= e~(~o)+~lim (Imz~)~+lK(z;g2~,O)=n!4-17r-ne~(~~ + sSj~)s.n-lk=l. 

Since e is arbitrary, this proves with the notations used in Theorem 3.5.1 that  

lim J ~)(z)In+lK(z; ~,  q~) < k(Zo) e~(~~ 
Z--~Zo 

(3.5.9) 

if z --> z 0 while z remains inside a small cone in the coordinate space around the normal of 

~g2 at z 0. But a moment's reflection shows that this result is valid uniformly in Zo, so it 

remains true for arbitrary approach to %. 

So far we have not used the hypothesis in Theorem 3.5.1 that the range of the 

operator be closed. However, this is of course a vital assumption when we wish to estimate 

K from below, for without it we would not even know that there are non-trivial analytic 

functions in ~.  

Let e be > 0 but smaller than the smallest eigenvalue of the matrix (aj~). For suffi- 

ciently small 5 we have 

z e Izl < 6 }  c 

Hence Lemma 3.5.2 can be applied with U={z; ]z] <6} and uo(z)=e '~.  From Lemma 

3.5.2 and the monotonieity (3.5.3) we then obtain if 5 is sufficiently small 

lira (Im z,~)n+l.K(z; ~, ~) = lira (Ira z,~)n+lK(z; ~ ,  ~) ~> e v(~~ lira (Im z,~)~+lK(z; ~_~, 0), 

when z---~z o and remains in a small cone around the normal of ~g2. Arguing exactly as in 

the proof of {3.5.9) we conclude that 

lim [ e(z)p+lK(z; ~, ~) >~ k(zo) e~(Z')n!/(4~n). 
2~-~Za 

(3.5.1o) 

The repetition of the details of this argument may be left to the reader. 
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