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Preface

The theory of analytic function of several complex variables, as presented for example
in the Cartan seminars [7], consists in a reduction to the theory of analytic functions of
one complex variable. First one only studies functions in polycylinders (products of open
sets in the different coordinate planes). The extension of the results to more general do-
mains is then achieved by embedding them as submanifolds of polycylinders in spaces

of high dimension. The success of this procedure depends of course on the invariance of

(1) This investigation was supported by the Office of Naval Research under contract No. 225(11)
at Stanford University.
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the notion of analytic function under analytic mappings, so similar techniques do not seem
applicable to many overdetermined systems of differential equations other than the
Cauchy-Riemann equations for analytic function of several complex variables. It is there-
fore of interest to give a different treatment of these equations which is more suitable
for extension to general overdetermined systems.

Such a technique was suggested by Garabedian and Spencer [11]. The execution of
their ideas caused considerable difficulties, however, and it was not until 1958 that Morrey
[22] found a general method for proving the L? estimates required in this approach. His
method was extended and simplified by Kohn [14] and Ash [2]. In [15] Kohn has also
announced some results on boundary regularity which are required in this context and
were still missing in Morrey’s fundamental work. The proofs of these results have recently
appeared in [15 a] and have later on been simplified by Kohn and Nirenberg jointly,
and also by Morrey.

The aim of this paper is to simplify and develop this work. The most important sim-
plification is that we bypass the difficult questions of boundary regularity discussed by
Kohn [15] and use instead only fairly elementary results on “identity of weak and strong
extensions of differential operators”. These can be proved with the methods of Friedrichs
[10] and are essentially well known before in a different context (see Lax-Phillips [16]).
Further, we characterize the open sets for which estimates of the Morrey-Kohn type
are valid. This leads to new proofs of results obtained by Andreotti and Grauert [1] with
sheaf theoretic methods; our results are essentially the restriction of theirs to the sheaf
of germs of analytic functions. To prove global existence theorems and approximation
theorems of the Runge type, we introduce L? estimates which involve densities depending
on a parameter. This technique has its origin in the Carleman method for proving unique-
ness theorems for solutions of a partial differential equation, which we have combined
with the ideas of Morrey and Kohn. Part of our results have been obtained with similar me-
thods by Andreotti and Vesentini in a manuscript to appear in Publ. Inst. Hautes Etudes.

The plan of the paper is as follows. In Chapter I we present the facts from functional
analysis and the theory of first order differential operators which we need. Chapter Il
is devoted to the study of function theory in pseudo-convex domains in C*. The basic a
priori estimates are then easy to prove, and they lead to very precise existence and approxi-
mation theorems for the @ operator in such domains. The results obtained can be used
to construct analytic functions satisfying growth conditions, which does not seem as easy
to do with the classical methods. (See however Ehrenpreis [9] and Malgrange [19].) We
give a few applications here. For further applications of results of this type we refer to the

papers just quoted.
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In Chapter III we consider function theory in open subsets of a complex manifold.
We then aim at maximum generality rather than precision in the results as in Chapter II.
The estimates discussed are of the same types as in Chapter II, but in Chapter III we
determine almost completely when they are valid. As we have already mentioned, this
leads to results of Andreotti and Grauert [1], due in part to Ehrenpreis [8]. In a final
section we also show that the L2 methods developed here give in a very simple way results
on the boundary behavior of the Bergman kernel function extending those given by Berg-
man [3] for domains of holomorphy in C2

Apart from the results involving precise bounds, this paper does not give any new
existence theorems for functions of several comples variables. However, we believe that

it is justified by the methods of proof.

I. Functional analysis and first order differential operators

1.1. Basic facts from functional analysis

In this section we shall collect some classical facts on operators in Hilbert space in
a form which is suitable for the following applications.
Let H, and H, be two Hilbert spaces and let

T:H,—H,

be a linear, closed, densely defined operator. Then 7™:H,—H, has the same properties,
and T**=1T. (See e.g. Nagy [23], p. 29.) By definition of the adjoint operator, the ortho-
gonal complement of the range R, of T is the null space N+ of T, which implies that the
orthogonal complement of N, is the closure [R;] of R;. When R is closed we therefore

have a good description of R; in terms of Nyx.

THEOREM 1.1.1. The following conditions on T are equivalent:
(a) Ry is closed.
(b)Y There is a constant C such that

Il <ClTflls FEDrN[Bya]. (1.1.1)
(¢) Ry« is closed.
(d) There is a constant C such that -

lgll-<O||T*g|l;, 9€DreN[RL] (1.1.2)

T he best constants in (1.1.1) and in (1.1.2) are the same.
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Proof. Assume that (a) holds. Since the orthogonal complement of [Rz.] is equal to
N, the restriction of 7 to D, N[R;] is a closed, one to one, linear mapping onto the
closed subspace R; of H,. Hence the inverse is continuous by the closed graph theorem,
which proves (b). Conversely, (b) obviously implies (a). In view of the symmetry between
T and T™, it is now clear that (¢) and (d) are also equivalent, and it suffices to prove that
(b) implies (d). From (b) we obtain

I(ga Tf)zl = I(T*ghf)ll < |IT*9||1I|f||1 <C"T*g"1" Tf”zi gE Dy, fED;N[Rp].

Hence |(g,h),| <C||T*g||,||2]|>» 9€ Dys, k€ Ry, which implies (d).

In the usual applications of Theorem 1.1.1 to existence theorems for differential
operators T', the range R; is expected to have at most finite codimension, and this makes
(1.1.2) much easier to study than (1.1.1). In the applications to overdetermined systems
of differential operators, on the other hand, one can only hope that R; shall consist of all
elements in H, satisfying certain compatibility conditions given by the vanishing of
some differential operators—and perhaps a finite number of additional linear equations.
To put this in an abstract form we assume given another Hilbert space H, and a closed

densely defined linear operator §: H,—Hj such that
ST =0. (1.1.3)
Then the range of 7' is of course included in the null space of 8.

THEOREM 1.1.2. A necessary and sufficient condition for R, and Rg both to be closed
is that

lgllz<C(|| T*glii+ ||Sgl|3); g€EDr+N D5, g LN=NpNNs=N;O[R;]. (1.1.4)

Proof. First note that H,=[R;]®N®[R]. (1.1.5)

In fact, (1.1.3) implies that R, and Rg. are orthogonal, and the intersection of the ortho-
gonal complements of these spaces is N. Now § vanishes on [ R;], and 7™ vanishes on [ Eg.]
since T*S*=0. By (1.1.2) R, is closed if and only if the inequality (1.1.4) is valid when
g€ Dy N [Ry]. Similarly, by (1.1.1) with 7 replaced by 8, R is closed if and only if the
inequality (1.1.4) is valid when g€ DsN [Rs.]. Since every g occurring in (1.1.4) can be
split into two such orthogonal components, the theorem follows.

Note that the dimension of N is equal to the codimension of [R;] in Ng so that in
the applications there is hope that N shall be finite dimensional. It is the fact that (1.1.4)
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is expected to hold essentially for all ¢ such that the right-hand side is defined which
makes it easier to study than (1.1.1) or (1.1.2). Sufficient conditions for (1.1.4) can be ob-

tained by compactness arguments:

THEOREM 1.1.3. Assume that from every sequence g€ Dy N Dg with |gi||s bounded
and T*g,— 0 in H,, Sg,—> 0 in Hy, one can select a strongly convergent subsequence. Then
(1.1.4) kolds and N is finite dimensional.

Proof. By hypothesis the unit sphere in N is compact, so N has to be finite dimen-
sional. Now if (1.1.4) were not valid, we could choose a sequence g, L N such that ||g,|[,=1
and T%g,— 0 in H,, Sg,— 0 in H;. Let g be a strong limit of the sequence g;,, which exists
by hypothesis. Then [|g||;=1 and g is orthogonal to N although T*y=8g=0, so that
g €N. This contradiction proves (1.1.4).

In the applications we shall also encounter modified forms of (1.1.4):

THEOREM 1.1.4. Let A be a closed, densely defined, linear operator in H,, and let F
be a closed subspace of H, which contains R,. Assume that

l47E<|i T*f||§+ IS7ll3; f€DmnDsN F, (1.1.6)

which in particular shall mean that f € Dpx N DN F implies f€ D,. Then we have Ry s N NgN F
S Ry if g=A%h, h€D s, and gENN F, we can find w€ Dy so that Tu=g and |[u,<| A,
Furthermore, if v€ Rys, we can choose f€ D, N Dya so that T*f=v and || Afl|s < [|o||,.

Proof. With g and % as in the theorem we have to find w€H, so that [l < ||2]|2 and
Tu=g, that is,

(, T*)1=(9, f)s» [€Dps.
By the Hahn-Banach theorem this is equivalent to proving the inequality
[, el <Pl T*ll1s  FE Dy (LL7)

First note that if f1. N¢N F, we have T%f=0 because R, NgN F. Since gEN N F, it is
therefore enough to prove (1.1.7) when fEN N F and f€ Dy.. But then we obtain from
(1.1.6) that || 4f||, < || T*f||,, which gives

1@, el = (4%, flo| =, Af)o| < ||B]|2||Af]|2 < BNl T*F]:-

This proves (1.1.7) and the first part of the theorem. To prove the second part we note

that the range of 7™ is equal to the range of its restriction to the orthogonal complement
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of N« that is [R;], which is contained in NgNn F. Hence one can find f€ENsN F N Dps
so that T*f=v. But then it follows from (1.1.6) that f€ D, and that || Af||,<{v|,. The

proof is complete.

L.2. Identity of weak and strong extensions of first order differential operators

In our applications of the results proved in section 1.1, the operators T' and § will
be first order systems of differential operators. The a priori estimates discussed in section
1.1 will first be obtained only for smooth elements in Dy« N Dg, and to prove them in
general it will be necessary to show that such elements are dense in Dz N Dg for the graph
norm. This follows essentially from known results (Friedrichs (10], Lax-Phillips [16])
but we shall sum up what is required here.

Let u be a positive measure with compact support in RY and u(1)=1. Define u. by

fu(x)d,us(x) = fu(ex)dlu(x)

when u is continuous and has compact support. Then we have p.(1)=1, so if v€L? it
follows that

el e <lloflze.

Since p, % v —v uniformly if v is a continuous function with compact support and since
such functions are dense in L2, it follows that u. % v—>v in L? when ¢ — 0 for every v€ L2

A much more subtle fact concerning the regularization by convolutions is given by
Friedrichs’ lemma (Friedrichs [10]; see also Hérmander [13]).

LEMMA 1.2.1. Let u be a positive measure with compact support in RY such that u(1)=1
and D,u=2auloz, is a measure for a certatn ¢ (1 <i< N). If v€ L2(R") has compact support

and a s a Lipschitz continuous function in a neighborhood of the support of v, it follows that
a(Dv % u,) — (aDv) % u.—> 0 in L2 when ¢ — 0.

Note that the product of a Lipschitz continuous function and a first order derivative

of an L? function is well defined in the sense of distribution theory.

Proof. If M is a Lipschitz constant for a and if m, is the total variation of |y|D,u,
the arguments of Friedrichs [10] give (see [13], p. 393)

" a(D;v % u) — (aDi T) % e "L’ < M(1+my) " v "L=- (1.2.1)
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Since the left-hand side of (1.2.1) tends to 0 when ¢ — 0 if »€(}, which is a dense set in
L2, the assertion follows. ‘

Lemma 1.2.2. Let uy, ..., u; be L? functions with compact support in an open set U< RV,
let a;; (6=1, ..., N; j=1, ..., J) be Lipschitz continuous in U and assume that for each ¢ and j

either a; is a constant or D,y is a measure. Then

0, ¢ 0, (1.2.2)

L?

N J N J
2 2 ayDy(us% u.) — (Z > a; D, Uj) * e
i=14=1 i=14-1

and D(u;% u.)€L? for all © such that D,y is a measure.

Proof. Since multiplication by a;; and convolution with u, commute if a,, is a constant,
the lemma is an immediate consequence of Lemma 1.2.1.

We shall now consider a system of differential equations
N T J
Z ZailciDiui+zb.ilcui=fka k=1,..., K,
i=14=1 i=1

which we write in the form Au+ Bu=f. (1.2.3)
As norm on u we take || || = (21 || % [|3:)* and similarly for f.

Prorositiox 1.2.3. Let U be an open set in R”, let o € CY(U) be real valued, and assume
that grad ¢ +0 when ¢=0. Set Ut={x; x€U, p(x)20}. Suppose we have a solution of
(1.2.3) in the interior of U~, such that the components of w and of f are tn L*(U~) and vanish
outside a compact subset of U=. The coefficients of A are assumed to be Lipschitz continuous
and those of B bounded measurable in U. Then there is a sequence w’ €C*(U~), vanishing
outside a fixed compact subset of U—, such that

@~ x>0, || Auw +Bu’~f

IL’(U_) —0 when Py —> 00,

If the Cauchy data of w on the surface ¢ =0 with respect to the sysiem (1.2.3) vanish in the
sense that Au+ Bu=fin U if u and f are defined as 0 in UN{U-, one can choose w’ with

support in the interior of U—.
Proof. First assume that there is an open convex set I' with 0€ I" such that
p(x)=0, z€suppu=>xty€elUt, yel. (1.2.4)
Extend u and f to be 0 in U outside U~. Then

Au+ Bu=f+y, (1.2.3)
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where the support of ¢ lies in {x; x €supp u, p(x) =0}; the hypothesis in the latter part
of the theorem is that g=0. Now choose u € C5°(I"), which implies that u,€C§°(I'), 0 <e<1.
Then u; % u €Cs*(U) and by Lemma 1.2.2

Aluxp) + Bluxu) —f*pu.—~g*p~~0 in L¥U) when £—0.

But gxu,=0 in U~ in view of (1.2.4), and ||f%u,—f|.=—> 0 when £~ 0 so u’ =uxpy,
has the required properties. To prove the last statement we choose ¢ between —1 and 0.
Then the support of ux . lies in the interior of U~ if ¢ is small enough, again by (1.2.4),
and since g =0 by hypothesis now, we have ||4(uxu.) + B(uxpu.) —f|| L0y 0.

In general there is no convex set I' with the required properties, but for every point
x€supp % one can choose a set I' which can be used in a neighborhood of z. By using a
partition of unity we can therefore decompose % into a sum of a finite number of terms
such that the hypotheses in the first part of the proof are fulfilled for each term. This
completes the proof.

In the next proposition we shall consider solutions of a system of differential equations
(1.2.3) satisfying Cauchy boundary conditions only with respect to some of the equations.
Thus let K°<K (the number of equations in (1.2.3)), set fO=(f,, ..., fxs) and write the
first K° equations (1.2.3) in the form

A%+ Boy = fo. (1.2.5)
N
If p €C* we set A(grad(p)=(z af g(«p)kﬂ _____ .
i=1 Lifj=1,..7

and define the matrix 4° similarly with K replaced by K°.

ProprosiTION 1.2.4. Let U be an open set in RY, let p €C"1(U) be real valued, r>1,
and assume that grad =0 when ¢=0. Set U-={x; 2€U, ¢p(x) <0}. Suppose we have a
solution of (1.2.3) in the interior Uy of U™, such that the components of u and of f arein
LUy ) and vanish outside a compact subset of U~. We assume that the coefficients of A are
in C'(U), that those of B are bounded measurable in U, and that the matrices A(grad ) and
A%grad ) have constant rank in a neighborhood of {x; x€ U, p(x)=0}. In addition assume
that the Cauchy data of u with respect to the operator A® on the surface ¢ =0 vanish in the
sense that (1.2.5) is valid in U if u and f° are defined as O outside Uy . Then there is a sequence
w with components in C(U™), vanishing outside a fixed compact subset of U™, such that

"u"—u"uwo—)—>0, ”Au"+Bu"—f“L.(UE)—>0, y—>00,

and the Cauchy data of w’ with respect to the operator A® vanish, that is, A%grad @)u’=0
when ¢ =0.
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Proof. First assume that ¢(z) =xy and that the coefficients a}; in A(grad ¢) all vanish
except when j=k=1, ..., r,, the rank of 4%grad ¢), and when J+1—j=K+1-k=1, ...,
77y, Where r is the rank of the whole matrix A(grad ¢); these coefficients are assumed
to be equal to 1. Define u and f as 0 in U outside Uy ; the equations (1.2.5) are then ful-
filled in the whole of U. Now choose u as a measure with support in the plane z,=0 with
a C® density. Since D,y is then a measure for every ¢+ N, the hypotheses of Lemma 1.2.2
are fulfilled. Hence the components of u*=uyu°® and all their derivatives with respect

to other variables than z are in L? and we have

Au*+Bu—f—>0 in L*Uy) when &¢—0; A% +Bw—f0—>0 in L*U) when &¢— 0.
(1.2.6)

This proves that »° has Cauchy data 0 with respect to the equations (1.2.5). Also note
that (1.2.6) proves that ouj/ox” € L3(U) if j<r, and that ouj/ox" € L¥(Uy) if j>J +ry—7.
These are the only xy derivatives occurring in the operator 4.

Now choose positive measures u+ and y— with supports in the half spaces {x; 2, >0}
and {w; xy <0} respectively, with total mass 1 and density in C5°. We set with 6 >0

w=u%us, j=1,..., Ky ul=uxpui, j=K,+1, -, K.

Then %’ €0 (U) for small ¢ and 8, and the support is contained in the interior of U-
when j<K,. When 6 >0 we have D,u>—> D,u in L}(U) if i<N or if i=N and j <r,.
In addition, Dyu®—Dyuf in L¥(Uy) if §>J +ry—r. If we define u” as u*® with first £ and

then 8 chosen sufficiently small, we can therefore achieve that
1
%" =l oo+ | 4w + B — f || 12w < e

This completes the proof in the special case.

In general it suffices to prove that every point in U where ¢ =0 has a neighborhood
where a suitable change of dependent and independent variables leads to the situation
just considered. Indeed, when we have proved that, a partition of unity can be used to
split » into a finite sum consisting of one term with support in the interior of U, to which
we can apply Proposition 1.2.3, and otherwise only terms which can be approximated
in view of the first part of the proof. .

Thus take a point 2,€U with ¢(x,) =0. By the implicit function theorem there is a
C"*! change of variables in a neighborhood of x, such that ¢(z) is one of the new coordi-
nates. This substitution preserves the regularity properties of the coefficients required
in the theorem and also keeps the class of C" functions invariant. We may therefore without
any restriction assume that ¢(x) =xy. By hypothesis, the matrix
7 652922, Acta mathematica. 113. Imprimé le 11 mars 1965.
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(@hy)ie, o
has constant rank equal to r; in a neighborhood of z,. We may assume that the matrix
with j, k=1, ..., 7y is non-singular at xz, and therefore in a neighborhood of z,. In this
neighborhood we can then introduce

J
L k — . s
Uy = Zamuj, ’C—l, cees Tos g = Uy, 7'0<k<¢],

i=1
as new dependent variables. Since the coefficients of this transformation and its inverse
are in (7, the regularity hypotheses in the theorem will be fulfilled by the new system.

The equations (1.2.3) now assume the form
N J 7
Zza;ikD‘u;+Zb;ku;=fk, k=1, eay K,
11 1

with Cauchy boundary conditions for the first K, equations; we have ay; =4, for k=1,...,
re; =1, ..., J, and ay;=0, j>7, k<K, since the rank of the matrix ay;, k=1, ..., K,
j=1, ..., J, is r, everywhere. By subtracting linear combinations of the first r, equations
from the others we may attain that ay; =0 when j <r, for every k>r,.

The first K, equations have now obtained the desired form. Further, the matrix
ay; with §>7, and k> K, must now have constant rank equal to r —r,. Introducing suit-
able linear combinations of w1, ..., u; as new dependent variables in the same way as
above and forming linear combinations of the equations with k> K, we obviously obtain
a system of differential equations of the special form considered in the beginning of the
proof. The linear change of dependent variables as well as its inverse has C" coefficients.

This completes the proof.

IL. Function theory in pseudo-convex domains in C*
2.1. Notations and estimates
We shall denote the real coordinates in C* by z;, I <j < 2n, and the complex coordinates
by z;=u,;_, +ixy;, =1, ..., n. A differential form f is said to be of type (p, q) if it can be
written in the form

f= 2 friddAd,
1=p. \J]=q
where I=(iy, ..., ¢,) and J={j,, ..., j,) are multi-indices, that is, sequences of indices be-
tween 1 and n. The notation >’ means that the summation only extends over strictly

)

increasing multi-indices, and we have written
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d2' AdF =dz N ... Ndzi, A3 A ... N dF,

The coefficients f; ; may be distributions in an open set, and are supposed to be defined
for arbitrary I and J so that they are antisymmetric both in the indices of I and in those
of J. We set 0/0Z, = (0/0%y,_; +10/0%4)/2 and

=33 o Tdz, A d2T A d7. (2.1.1)

I,J k a-

The form 2f is then of type (p,q+1) and
daf=0. (2.1.2)

If Fis a space of distributions we denote by F, ., the space of forms of type (p, q)
with coefficients belonging to F. In particular we shall use this notation with J=C*(Q),
where Q is an open set in C", or with F=C*{2), the space of restrictions to Q of functions
which €C* in the whole space. We shall also use the space C*(Q) consisting of elements in
C*(1)) vanishing outside a large sphere. If ¢ is a measurable function in Q, locally bounded
from above, we denote by L*(£2, ¢) the space of functions in Q which are square integrable

with respect to the density e™?; the norm in L, ,(Q, @) is defined by

112= [l Pemav, jezh.o @9 213)
where dV is the Lebesgue measure and

[12) B =<1@), 1(2)> = 2" | fr.1(2) | (2.1.4)

Finally, we write L*((2, loc) for the space of functions which are square integrable on all
compact subsets of Q.

It is clear that L7, ,,(Q, ¢) is a Hilbert space. If p and ¢ are fixed with ¢>0 we de-
note by T the maximal (weak) differential operator from L7, , 1,(Q, ¢) into L%, ;(Q, ¢)
defined by &; thus a form »€ LY, ,_1(Q, ¢) is in D, if and only if du, defined in the sense
of distribution theory, belongs to L, ,(Q, ¢). It is clear that 7' is closed and densely
defined if ¢ is continuous. Similarly, 8 defines a closed and densely defined operator S
from L%, ((Q, ¢) to LY, 441(Q, @). By (2.1.2) we have

ST =0, (2.1.5)

which makes the results of section 1.1 applicable provided that we can prove the required

estimates. To do so, we first need the following
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ProrosiTioN 2.1.1. CL (Q)N Dye is dense in DN Dg in the graph norm
F= I+ N7z + ||Sf]|2)t if the boundary 8Q of Q is of class C* and ¢ €CYKY). Further
Cly. ¢-1(Q) is dense in Dy in the graph norm f— (||f]|2+ || T7]|2)*.

Proof. First note that if y€0*(Q) and f€ Dy, then yf€ Ds and
18 —28f|l» < C sup|grad x| [|f[l¢-

A similar result holds for T'. From the fact that

[(xf, Tw)o—(f, T(Fu))e| <C sup|grad x| ||||o||ulle» =€ Dr,

we also conclude that if f€ Dy« then yf€ Dy« and

" T*(xhH _XT*f"w <C sup|grad XI "f"w f€Drps.

Now let y€C5°(C") satisfy the condition y(0)=1 and set y°(z) =y(ez). If f€Dp N Dy it
follows that y°f€ Dy N D and that y°f—f, S(x°f)—>8f, T*(x°f) > T*f in the appropriate L?
spaces when £— 0. To prove the theorem we therefore only have to approximate elements
f in Dz N Dg which vanish outside a large sphere. If we note that 7* is a differential
operator with constant coefficients in the first order terms and continuous coefficients
otherwise and that elements in D,. satisfy the Cauchy boundary conditions in the weak
gense, the result then follows from Proposition 1.2.4. That the hypotheses of Proposition
1.2.4 are fulfilled is obvious in view of the unitary invariance of the g-operator. The last
statement follows in the same way from Proposition 1.2.3.

In what follows we assume throughout that the boundary 6Q of Q is in C?%, and we
denote by g a real valued function in C2(Q}), which vanishes on 8, is negative in Q and
satisfies the condition |gradg| =1 on 9Q. These conditions imply that grad g is the exterior

unit normal on 8€, so Green’s formula may be written in the following form when v,w € ovQ).

P Ge-vdy = —f v(a—w—wa—(p)e"’dV+f % ,pe-vds,
0 0%; a \o% oz, 20 0%;

where dS is the Euclidean surface element on Q. Writing

ow_ 0p_ ,0owe™)

- (2.1.6)
3zj 82, 82,

9

we obtain a—?ﬂ)e"’dV= —f vme_”dV-Ff g—_g—vu')e"”dS. (2.1.7)
0 %% o o0 0%
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For later reference we note that when ¢ € C* we have the commutation relations

d P
, weC 2.1.8
(5 o3 6z,6k) Yoeor, (2.1.8)

which imply the identities

— 80 ow
| o ~dV — 14
J;) O;v0, we AV e Bz,
fo do — _
= + d 4 ?
fg vw@z,@’ 14 fm 6zjv(S,‘,we dS
o0 6w - - ,
- . 1.
fagaZk 6z, dS; v,weCY(Q) (2.1.8)

In fact, (2.1.8)' is an immediate consequence of (2.1.7) and (2.1.8) if w€C2(Q) and follows
when w€CY(Q) since C2(Q) is a dense subset.

We shall now describe explicitly the space C%,, ,,(Q2) N D;s occurring in Proposition
2.1.1. To do so, we form

(Ou, f)p= fn {ou, e ?dV,

where f€CT, ,(Q) and w€CL, ,_1,(Q). We shall move the differentiations from u to f.
Writing u=>"u;, xd2’ A dzx, where |I|=p and |K|=¢—1, we have

5'“: ( - ].)p Z;‘ KZI 8u,_ K/@Z,dz’ A de A diK,

which gives in view of (2.1.7)

@up=(-17 | > Za““‘fme way

QLK j

=(_l)p_1 ZZu,Kéf”Ke”dV-i- “‘l f Z uIKZijK—*—‘e‘PdS

QLK j

Since (%, 4 1, is dense in Dy for the graph norm by Proposition 2.1.1, we conclude that

an element f€C},, ;) (Q) belongs to Dy if and only if

n
Z .2 —0 on Q) for all I and K, (2.1.9)

n
and then we have T*f=(~— 1)’"112;2'12 8;11, ;g d2" A dZ5. (2.1.10)
k-1



102 LARS HORMANDER

If f€C%,. o (Q) N Dy we obtain from (2.1.10) and (2.1.1)

ZI Z afllafIL i] _q;dV
J,Lj 1

2+ 8f = 50S f 8311,k On o e~V + :
LEj.kJQ 1.7 o 0z, 0%

(2.1.11)

where /7 =0 unless j¢J, 1¢L and {j} UJ={l} U L, in which case ¢]7 is the sign of the
permutation (j7). We shall rearrange the terms in the last sum. First consider the terms
with j=1. Then J = L and j ¢ J unless &7 =0, so the sum of these terms is

f Ohsf*
IJJ‘J l

Next consider the terms with j+1I. Then we have l€J and j€J if /7 +0, and deletion

e ?dV.

of | from J or j from L gives the same multi-index K. Since

i iJ K K _

o K
8L = &R EYREIL = TEKEL >

the sum of the terms in question is

, 1 ik Ok oy,
— = e,
IZKJ% fﬂ oz; 0%

We can therefore rewrite (2.1.11) in the form
VT 71+ 0S70E = 375 [ ouhusedefomme vV
LEjkJQ

O

-5'S fﬂ@f}n{@fﬂm gV S o

LEjk oz, 0% LJ

e?dV.  (21.12)

So far we have only reorganized the terms in (2.1.11). However, we shall now inte-
grate by parts, moving all differentiations to the right. Using (2.1.8)" and the boundary

condition (2.1.9) we obtain

e %V

W ille+Mslle= 372 | fow frex

I,

2
%‘?] V=35 | w2 ook gy, (213
)

I.K j.k avk a-

+2'>

LJr j
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Now the function D f; xx80/0% vanishes on 9Q, so its gradiend is there proportional to
grad g. This means that for every boundary point there is a constant A so that

of . v 69 5o ) oo .
— =1, ..., n.
Z ( 32, 8zk fI kK aZ] azk 165/ ! ’ "

If we multiply by )TJ-_K and add, we obtain in view of (2.1.9)

of 0 o
z}:c(ft K IE:K azg +f1 el % g ) 0, on 9Q,

J

and using this equation in the last sum of (2.1.13) we have proved

Prorosirion 2.1.2. The following identy is valid when f€CL,. ¢ () N Dy~

a ’ e 82 _
ESTEA T A s S0
LELkJQ 02 ;0%
, P ) &
f”\ WAV + 35S | frixfies o o748, (2.1.14)
L7 Zj LEjkJoQ 0z 8

The proof of this result has entirely followed the ideas of Morrey [22], Kohn [14]
and Ash (2], the only difference being the introduction of the weight function ¢™%. How-
ever, we shall now see that the first sum on the right of (2.1.14), which is caused by the
weight function e, is extremely useful in proving estimates, and makes it possible to
simplify and extend the work just quoted which is based on the surface integral in (2.1.14).
First we recall a definition.

Definition 2.1.3. The boundary.8Q of Q) is said to be pseudo-convex if at every point
on 9

n

§ &% : oo
t8 >0 if St 2 —o. 2.1.15
2 4t % oz, 0% it 2 i3z, 0 - B9

i

Here (¢, ...,t,) is a vector with complex components. If the hermitian form is strictly
positive for all such t+0, the boundary is called strictly pseudo-convex. Note that these

definitions are independent of the choice of the function g.

If 1) is pseudo-convex, it follows from (2.1.9) that the last sum in (2.1.14) is non-

negative, so we obtain
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TrEOREM 2.1.4. If 8Q is pseudo-convex, we have when f€C}, o, (Q) N Dre

’ e 32 -
[ 505 hnlimn ok cvav <o+ sl e.116)
QILKjk j Y%k

Remark. In the passage from (2.1.14) to (2.1.16) we have entirely neglected the terms
in the second sum on the right-hand side of (2.1.14). We shall see in Chapter III that using
the full force of these terms one can relax the hypotheses on 8Q very much.

To obtain a useful estimate from (2.1.16) we must of course choose ¢ so that the

hermitian form

SStht (2.1.17)
i k

is positive definite at every point in (), that is, we have to choose the function ¢ strictly
plurisubharmonic. (See e.g. Lelong [17].)

2.2, Existence theorems
Combination of Proposition 2.1.1 and Thorem 2.1.4 with the first part of Theorem
1.1.4 (with F=H,) gives the following result:

TaeEorEM 2.2.1. Let Q be an open set in C* with a C? pseudo-convexr boundary. Let
@ €CHQ) be strictly plurisubharmonic in Q and let €* where x €C(L2) be the lowest eigenvalue
of the matrix (0%p|dz,0%,). For every f€L%, o(Q,®), ¢>0, such that 3f =0 and

f |f 2@+ dV < oo
Q

we can then find a form w€ L%, , 1, (Q, @) such that ou=f and
qf |ulPe?dV < f |fPPe= @™ av. (2.2.1)
Q Q

We now wish to remove the hypotheses concerning the smoothness of 9Q and of ¢
in Theorem 2.2.1, which is quite easy because we have the estimate (2.2.1). First recall
that in general a function ¢ with values in [ — oo, + oo} is called plurisubharmonic if it is

semi-continuous from above and locally integrable, and the sum

n 32¢p
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defined in the sense of distribution theory, is a positive measure for arbitrary complex
numbers ¢;. In particular, 0%p/0z;0%, is then a measure for all § and all k. We shall say that
¢ where x €C(Q)) is a lower bound for.the plurisubharmonicity of ¢ if the difference

n 62(p

j k=1 32,- 3Zk

n
tiho— e 2 |4
1

is a positive measure for arbitrary complex numbers ¢, We also have to extend Definition

2.1.3 so that not only domains with smooth boundaries are allowed:

Definition 2.2.2. An open set Q<= C" is called pseudo-convex if there exists a plurisub-
harmonic function ¢ in Q such that Q. ={z;2€ Q, o(z) <M} is relatively compact in Q

for every real number M.

It is a well-known and elementary fact that if 8Q€C? then 0} is pseudo-convex in the
sense of Definition 2.1.3 if and only if Q is pseudo-convex in the sense of Definition 2.2.2.
{(Cf. Bremermann [5], Oka [26, 27].) If d is the distance to (Q and Q is pseudo-convex,
then o(z)= |z|2—log d(z), is a continuous plurisubharmonic function satisfying the re-

quirements in the definition.

THEOREM 2.2.1". Let Q be a pseudo-convex open set in C", let ¢ be plurisubharmonic
in L and let ¢* where x€C(Q) be a lower bound for the plurisbuharmonicity of ¢. For every
fE L%, o(Q, loc), ¢>0, such that f =0 and

f |f2e @ @V < oo,
Q

one can then find a form u€Lg, 4_1)(Q, @) such that du=f and
g f uffevdv < f | e V. (2.2.2)
Q Q

Proof. We shall first solve the equation du =} in a relatively compact open subset
o of Q. Choose M so that sup; 0 <M, where ¢ is the function in Definition 2.2.2, and let
0>0 be a lower bound for the distance from Q, to 9Q. With a function y € C§°(C"), such
that x>0, fydV =1, y(2) depends only on |z| and vanishes when |z|>1, we put for
0<g¢<dand 2€Q, ’

@e(2) = J‘q)(z —e2")X(z )V (2'). (2.2.3)

Then ¢, €C*(Qy), ¢. is plurisubharmonic and ¢, @ when £\ 0. If we define », so that
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exe (2) — fex(Z-sz')x(zl)d V(Zl),

then e*s is a lower bound for the plurisubharmonicity of ¢, and »,~# uniformly in Q,,
when ¢ — 0.

Next define g, by substituting ¢ for ¢ in (2.2.3). Then o, is plurisubharmonic in £,
when 0<g<§. If supz o <m<M we have g,(z) <m<M for every z€q if ¢ is small, and
o(z) <M, € Q,, implies z€ Q,,. By a theorem of Morse [21], the set of all t€ (m, M) such
that there is a critical point for ¢, with o,(z) =t is a set of measure 0. (Since ¢, € 0™ the result
we need is in fact quite elementary.) For fixed small ¢ we can therefore choose ¢ with
m<t<M so that

Q' ={z; 2€Qy, 0.(2) <t}

has a C” boundary. The boundary is then pseudo-convex in the sense of Definition 2.1.3.
Application of Theorem 2.2.1 with Q replaced by Q' and ¢ replaced by ¢, now shows
that if f satisfies the hypotheses of Theorem 2.2.1’ we can find a form u,€ L%, ,_1,(Q’, @)
such that du,=f in Q' and

q f |, |te % dV < f |f]e-@a V.
o o

Here we have used that ¢.>¢. Since Q'>w and g, is uniformly bounded from above
in w we can find a weak limit w of %, in L%, ,_1)(w, 0) when e — 0. It is clear that du=f

in w and since

f |ufPedV < Hf | u |?e~?dV
@ =0 Jo

for every 6>0, we obtain

qf lulze“’dV<f |f[2e~®+aV.
o Qu

Now let w, be an increasing sequence of relatively compact open subsets of Q with
union equal to Q. We have already proved that for every » there is & solution of the equa-
tion éu=f in w, such that the estimate (2.2.2) holds if the integration in the left-hand side
is restricted to o,. Taking again a weak limit when » —co, we have proved the theorem.

We shall now give some consequences of Theorem 2.2.1'.
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TurorEM 2.2.3. Let Q be a bounded pseudo-convex open set in C*, let 6=
SUp;, -eq |2—2'| be the diameter of Q, and let @ be a plurisubharmonic function in Q. For
every f€ LEy, o(Q, @), ¢>0, with 3f =0, one can then find u€ L%, ,_1)(Q, @) such that gu=f and

qf |u|Pe?dV < eézf |f[Pe?dV. (2.2.4)
Q Q

Proof. We may assume that 0€(Q, which implies that |z| <6 when z€ Q. With a
positive constant ¢ we now replace ¢ by @(2) ta|z|2=@(z) +a(2Z, + ... +2,%,) in Theorem
2.2.1’. Then we can choose ¢“=a, and Theorem 2.2.1’ gives that there exists a solution
u of the equation gu =f such that

qf |ulPe ?dV < e*¥a f |f2e®aV.
Q Q

If we choose a =42, the right-hand side attains its minimum with respect to @ and the

theorem is proved.

TarorEM 2.24. If Q is pseudo-convex, f€ L%, ,(Q,loc), ¢>0, and f satisfies the
integrability condition 0f =0, there exists a form uw€ L%, o 1)(Q, loc) such that du=f.

Proof. Tt follows immediately from Definition 2.2.2 that we can find an increasing
function y of a real variable, vanishing for negative arguments, such that fELZ, ,(Q,%()).
Since every such function has a convex increasing majorant, we may assume y convex
and increasing. But then y(c) is plurisubharmonic so it follows from Theorem 2.2.1" with
@(z) =yx(0(2)) + |z|? that there is a form u€ L%, ,_1,(Q, ) such that du=f. This proves
the theorem.

TurOoREM 2.2.5 (Cartan—Oka—Serre). If O is the sheaf of germs of holomorphic functions

in Q, we have HY(Q, 0)=0, ¢>0, for every pseudo-convex Q.

Proof. This follows immediately from Theorem 2.2.4 by the Dolbeault isomorphism,
where of course we use the fine sheaf of germs of L2 forms instead of the sheaf of germs
of infinitely differentiable forms, which does not change the sheaf of germs of forms of
type (0, 0) for which du =0. See e.g. Malgrange [18].

We recall that Theorem 2.2.5 implies that the first Cousin problem in Q can be solved
and that the second Cousin problem is solvable when it is possible topologically. (See
Cartan [7].) From Theorem 2.2.5 it is also easy to deduce that a pseudo-convex domain
is a domain of holomorphy (see e.g. Bers [4] p. 74), so that these classes of domains are
identical (the Levi problem). However, we shall give a different proof of this fact in the

next section.
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2.3. Approximation theorems

In this section we shall study the properties of the operator 7™ which follow from
Theorem 2.1.4. This leads to approximation theorems for the solutions of the equation
ou=0.

In the following theorem we use that L%, ,_1,(Q, —¢) and Lg, -1, (L, @) are antiduals

of each other with respect to the sesquilinear form

<mvr=ﬁ“2wuxa;dm €LY, o1y (Q, — @), vELL 41, (Q, ).
. K

Prorosition 2.3.1. Let Q be an open set in C* with a C? pseudo-convexr boundary.
Let p€C2(Q)) be strictly plurisubharmonic in Q, and let u be a form in LY, o 1(Q, —¢) such
that (u,v> =0 for every solution v€ L%, o 1,(Q, @) of the equation dv=0. Then there exisis a
form f€ L%, (Q, loc) such that
S =(—1p15'S a—’ézﬁdzw\ 4=, 2.3.1)
]

1, K )

where the first equality is a definition of &, and

>3 fuifrex

QILKjk

79 iy < f |uferdV. (2.3.2)
025 0% Q

Proof. If we put U=wue?, the hypotheses concerning w mean that U€ L% - 1(Q, 9)
and that (U, v),=0 for every v€ L%, ,_1,(Q, ) with dv=0. With the notations used in
section 2.1 this implies that U is in the closure of Ry.. First assume that U belongs to
Rys. Choose F€ LY, ,(Q, ¢) so that T*F =U and F is orthogonal to the null space of 7™.
Then SF =0 so from Proposition 2.1.1 and Theorem 2.1.4 it follows that

S'S FrxFrax az‘”_ e"”dV<f | UlPe?av. (2.3.3)
QOLEk 02; 0% Q

The equation T*F =U implies that e?$(Fe ¥)=U. If U is only in the closure of R;., we

take a sequence U'—U in L{, o—1)(€2, ¢), with U”€ Ry, and determine corresponding F”

such that (2.3.3) holds with F=F", U=0U", and "} F e %)=U". By (2.3.3) we can ex-

tract a subsequence which converges weakly in L? on all compact subsets of Q, and for the

limit ¥ we have (2.3.3) and ¢*9(Fe ?)=U. If we set f=Fe ?, the proposition is proved.

Remark. It would of course have been possible to show that f satisfies the boundary
condition (2.1.9) in a weak sense. We shall not need this fact below but it could be used

to give somewhat more precise theorems.
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ProPOSITION 2.3.2. Let the hypotheses on ) and on @ in Proposition 2.3.1 be fulfilled
and let w€C()) be another strictly plurisubharmonic function. Let w€ LE, o 1)(Q, —¢), let
u=0 where >0 and assume that {u, v> =0 for every v such that ov =0 and

CAS L?p.a—l) (Q, @ +2yT)

for some A>0; here y*=sup(yp, 0). Then there is a form f satisfying (2.3.1) and (2.3.2)
uhich vanishes where p>0.

Proof. Let y € C*(R) be a convex function such that x(t) =0 when <0 and 0 <y’(f) <1
when ¢>0. With a positive parameter 1 we set g3 =@ +Ax(y). Then we have ¢ <@, <¢ + Ay,
and using the convexity of y we obtain

s tf/z tl—i—lZl(tp KNy (2.3.4)
G 02,05, a o " Vo 0% '

Now apply Proposition 2.3.1 with ¢ replaced by ¢;. Since ¢ < ¢, with equality in the support
of u, it follows that for every A one can find f=f* such that (2.3.1) and (2.3.2) hold, and

in addition

A Z Zflurfz ex X' 'P)a o5,

¥_erqv < f | w[?ePdV.
Q
Hence f*— 0 on every compact subset of {z; 2€Q, p(2) >0} when A— + co. Since f* satisfies
(2.3.2).for every 1 we can find a weak limit f of f* when A— + oo, and f also satisfies (2.3.1)
and (2.3.2). When ¢ >0 we have =0 so this proves the theorem.
We shall now derive an approximation theorem from Proposition 2.3.2. It is then

convenient to use the following terminology.

Definition 2.3.3. A compact subset K of an open set Q< €" is called pseudo-convex
with respect to Q if for every z€ QN (K there is a plurisubharmonie function p in Q such
that (z) >0 but v <0 in K.

LemmaA 2.34. Let K be a compact set which is pseudo-convex with respect to a pseudo-
convex open set > K, and let o be an open neighborhood of K. Then there exists a continuous
plurisubharmonic function v in Q such that <0 in K but >0 in QN Gw; moreover, y can
be chosen so that {z; z€Q, p(z) <M} is relatively compact in Q for every M.

Proof. Let o be a continuous function satisfying the requirements in Definition 2.2.2.

Adding a constant to ¢, if necessary, we may assume that ¢ <0 in K. Set

={2,2€Q, 0(2) <2} and L={z; 2€ QN (o, 6(z) <0};
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these sets are both compact. For every z€L we can choose a function y which is plurisub-
harmonic in , so that ¢(z) >0 and <0 in K. Forming a regularization of ¢ as in the
proof of Theorem 2.2.1’ we obtain a continuous plurisubharmonic function ¢’, defined in a
neighborhood of K’, such that 3'<0 in K and ' >0 in a neighborhood of 2. Since L is
compact we conclude, using the Borel-Lebesgue lemma and the fact that the supremum
of a finite family of plurisubharmonic functions is plurisubharmonie, that there is a con-
tinuous plurisubharmonic function y, in a neighborhood of K’, such that ;>0 in a
neighborhood of L and y, <0 in K. Let € be the maximum of y, in K’, and set for z€ Q

p(z) =sup (p,(2), Co(z)) if o(z)<2; and 9(z)=Co(z) if o(z)>1.

The two definitions agree when 1 <g(2) <2, so v is & continuous plurisubharmonic func-

tion in Q. It is obvious that ¢ has all the required properties.

THEOREM 2.3.5. Let Q be an open pseudo-convex set in C* and let K be a compact subset
of Q which is pseudo-convex with respect to Q. Let w€ L%, . (K, 0) and let u=0 on K in
the strong sense that [x(u,9f>dV =0 for every f€ L%, (Q,0) such that =0 outside K and
Of€LE . 1(Q,0). Then one can approxrimate u arbitrarily closely in L%, , 1,(K, 0) by forms
w €L%, , 1(Q, loe) such that Gu’ =0.

Remarks. (1) Note that the assumption on w is satisfied if w€ L%, , ;, and du=0ina
neighborhood of K, for then we have (u, #f> =<{ou, f>=0. If K is the closure of an open
set with €1 boundary and d» =0 only in this open set the assumption is also fulfilled in
view of Proposition 1.2.3.

(2) Since Q is pseudo-convex it follows from Definition 2.2.2 that € is the union of
an increasing sequence of compact subsets which are pseudo-convex with respect to Q.

Before proving the theorem we note that Theorem 2.3.5 implies the Oka-Weil approxi-

mation theorem.

COROLLARY 2.3.6. Let Q be a pseudo-convex open set in €C* and let K be a compact
subset which is pseudo-convex with respect to Q. If u is a function which is analytic in a
netghborhood of K, it is possible to approximate w arbitrarily closely in the maximum norm

over K by functions which are analytic in Q.

Proof. Let u be analytic in the open set @ > K and choose y according to Lemma
2.3.4. For sufficiently small ¢>0 the set K,={z;9(2) < —¢} is then a compact subset of
o which is a neighborhood of K, and K, is obviously pseudo-convex with respect to Q.
Theorem 2.3.5 with p=¢ =0 shows that there is a sequence w’€ L?(Q, loc) with du’=0
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such that w'—u in L*K,). But every % is by Weyl’s lemma an analytic function in
(after correction on a null set), and w'—u uniformly on compact subsets of the interior

of K,. This proves the corollary.

Proof of Theorem 2.3.5. Let Q' be a relatively compact open subset of  with a C?
pseudo-convex boundary, and let K< ’. We shall first prove that » can be approximated
by solutions u’' € LY, ,_1,(€)', 0) of the equation du’ =0. Let therefore U be an arbitrary form
in L, ,-1(€’, 0) such that U =0 outside K and (U, u"> =0 for every such u’. If we can prove
that U =19f for some f€ L%, ,(Q,0) vanishing outside K, it will follow that (U, u)=
{9f, uy=0, and Hahn-Banach’s theorem then gives that u can be approximated by the
forms %' in question.

To prove the existence of f we let K’ be a compact neighborhood of K contained in
(). Taking a regularization of the function  in Lemma 2.3.4 and adding a small multiple
of |z|? we can construct a strictly plurisubharmonic function y€C* (') such that v <0
in K but 9 >0 outside K’'. We can therefore apply Proposition 2.3.2, with ¢(z) = |2|?, for
example, and Q replaced by Q'. It follows that there is a form f€ L%, ,,(Q’, 0) with 9f=U,
such that f=0 outside K’ and

qf |f e =rd v < f | Ute="av.
Q Q

We now take a decreasing sequence of compact neighborhoods K’ of K, all contained in
Q’, and for each of them we choose a form f with 9f =U and f' =0 outside K’ so that
the estimate just given holds for each f. If f is a weak limit of // when j —oo, we obtain
9f=U and f=0 outside K.

To complete the proof we have to approximate a general pseudo-convex ) by subsets
of the type just discussed. Let o be a continuous plurisubharmonic function in Q such that
Qy={z,2€Q, 6(z) <M} is relatively compact in Q for every M. We may assume that
Kc O, Q,cQ,c 0Q,< .... The construction used in the proof of Theorem 2.2.1’ shows

that there exist pseudo-convex open sets w; with C? boundaries such that
Q,cw;<Q;,, 7=1,2,...
For every >0 there is a sequence of forms w/€L%, ,_1)(w;, loc) such that u/=0 and

flul—ulzdvqa f |/ — w2 dV <4777, j=1,2, ....
K Qi

In fact, the compact subset {z; o(z) <j} of w, contains Q, and since it is pseudo-convex

with respect to w,,, the existence of /™ follows from the first part of the proof if / is
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already selected. The estimates just given imply that u’=1lim,_, ., %’ existsin Lg, ,_1,(Q,loc).
Since du' =0 and [x|u—u'|2dV <¢?, the proof is complete.
We shall now give the solution of the Levi problem in the case considered here.

Definition 2.3.7. A compact subset K of an open set Q in C" is called holomorph-convex
with respect to Q if for every z € QN (K there is an analytic function  in Q such that
|p(z)| >1 but |p| <1in K.

Since log || is plurisubharmonic, comparison with Definition 2.3.3 shows that holo-

morph-convexity implies pseudo-convexity. Conversely, we have

THEOREM 2.3.8. If Q is a pseudo-convex open set in C* and K is a compact subset
which ts pseudo-convex with respect to Q, then K is holomorph-convex with respect to Q.

Before the proof we note that the theorem implies the following essentially equivalent
result of Oka [26], [27], Bremermann [6] and Norguet [25].

. COROLLARY 2.3.9. An open set Q<= C" is pseudo-convex if and only if z;t s a domain
of holomorphy.

Proof. It is an elementary fact that every domain of holomorphy is pseudo-convex
(see Bremermann [5]). Conversely, if Q is pseudo-convex and ¢ is a continuous plurisub-
harmonic function satisfying the conditions in Definition 2.2.2, then {z;o(z) <M} is
pseudo-convex, hence holomorph-convex, with respect to 2 for every M. Since this set
contains an arbitrary compact subset of 2 when M is sufficiently large, it follows from
a classical theorem of Cartan—-Thullen that Q is a domain of holomorphy (see {7]).

Proof of Theorem 2.3.8. It is sufficient to prove that if 0€Q N (K there is a function
u€ A(Q) such that supg|u|<|u(0)|. By Lemma 2.3.4 there is a continuous plurisub-

harmoniec function ¢ in Q such that ¢ <0 in K, ¢(0)=0 and

Q.={z,2€Q,0(z)<c}c<Q forall c€R.

By means of a regularization we can, as in the proof of Theorem 2.2.1’, approximate o
by a strictly plurisubharmonic C*° function ¢ in Q, so closely that ¢ <0 in K, ¢(0)=0,
but ¢ >0 outside a compact subset of ,. Taylor’s formula gives
=R 4 bR AN P A 2 ,
o) =Rews)+ 3 2o 2zt ozl
where w is an analytic second degree polynomial vanishing at 0. Since the hermitian form
is positive definite, we conclude that there is a neighborhood w, of 0 such that ¢(z) >Rew(z)



L? ESTIMATES AND EXISTENCE THEOREMS 113

if 0%2€m, We may assume that w,N K=9. If v, and w, are neighborhoods of 0 such

that w, < Cw, < Sy, it follows that we can choose ¢ >0 and 4 >0 so that
Rew(z)< —¢ if 2€w,N0w, and ¢(z)<0. (2.3.6)

Let Q' ={z; z € Q,, p(2) <8}. This is a pseudo-convex open set since (1 —¢)~1+ (6 —¢)~?
is plurisubharmonic in Q. With a positive parameter ¢ and a function X €C3°(cw,) which

is equal to 1 in w, we now set

uy=xet” —v,
where v; shall be chosen so that u,€ 4(Q’), that is, so that
v, =oxe™. (2.3.7)

Since Rew < —¢ if 2 € Q' N suppdy, in view of (2.3.6), the L2 norm of the right-hand side
of (2.3.7) is O(e"*). Hence it follows from Theorem 2.2.3 that one can find a solution v,
of (2.3.7) such that

f |0, [PdV < G-,
N

Since v; is analytic in a neighborhood of K and of 0, it follows that v(z) =0(e *) uni-
formly when z € K U {0} and { — oo, For large { we obtain

Sl}{Pl“t' <|ul0)].

Now {z; 2z €Q,, ¢(2) <0} is a compact pseudo-convex set relative Q,, and it is con-
tained in €, so Theorem 2.3.5 shows that u; can be approximated uniformly on this set
by functions in A(€);). Theorem 2.3.5 also implies that functions in A(£2,) can be approxi-
mated uniformly on {z; z €Q, 6{(z) <0} by functions in 4(Q2). Hence one can find % € A(Q)

so close to u, that
sup|u | <|u(0)].
K

The proof is complete.

2.4. Cohomology with bounds

Theorem 2.2.5 was obtained as a consequence of Theorem 2.2.4 which is a considerably
weakened form of Theorem 2.2.1’. We shall now give an example of the analogous results
which follows by direct application of Theorem 2.2.1’ and the usual proof of the Dolbeault

isomorphism. In order to obtain shorter statements we only consider the case Q=C"
8 — 652922, Acta mathematica. 113. Imprimé le 12 mars 1965.



114 LARS HORMANDER

which has a particular interest in certain applications. (See Ehrenpreis [9], Malgrange
[19].) However, there is no difficulty in proving corresponding results for an arbitrary
pseudo-convex open set.

Let {Q,},v=1.2, ..., be a fixed covering of €* by open subsets, that is, Ui°Q,=C".
If sis an integer >0 we denote by C%(Z,, ({2}, ¢)) the set of all alternating cochains
¢={c,} where a={(a, ..., ;) i3 an (s+1)-tuple of positive integers, ¢,€L%, ;(Qy), Q=
QN ...NQ,, dc,=0 and

lellz= Z'f |cu|te~9dV < oo.
« Qn

As usual we define the coboundary operator & from C%Zg, ({0}, ¢)) to
C* 2. o({Q}, @) by

s+1
(66)%. @yl }ZO( - l), Cotorenns &,.. T
where &; means that the index o, shall be deleted.
THEOREM 2.4.1. Assume that the covering {Q,} has the following three properties:

(i) AU Q, are pseudo-convex and the diameter of C, is bounded by a constant independ-

ent of v.
(i) There is an integer N such that more than N different sets Q, always have an empty

tntersection.

(iii) There exists a partition of unity y, € C3°(Q,) such that 3 y, =1, 3,20 and 2, | 5)&] <
constant.
Let ¢ be a plurisubharmonic function and let x be a continuous function <O such that ¢* is
a lower bound for the plurisubharmonicity of @. For every c€C*(Zy,, ({Q.}, @ +ux)) with
dc=0,5>1 one can then find a cochain ¢’ €C° NZy o({}, @) suck that oc' =c and
le'llg < K||c||p+n, where the constant K does not depend on c.

We are of course mainly interested in the case p=¢ =0 but the general statement is
needed in the proof.

Proof. If we set be=2 %10, |a|=s,
7

with the product X;c; , defined as 0 outside the support of X,, we obtain aform &, € L%, ,,(Q.),

and for the (s—1) cochain thus defined we have db=c. In fact, using the assumption

that d¢c =0 we find

s
(6b)1o. N = jzkzo( - l)kxj Cj, ay, ... &k"" ag = ;chu‘,. s g = Ca, .... ag:
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Cauchy’s inequality and the equation > X;=1 give

f | by |2~ ? AV < Zf Xil 6. oPe P AV,
Qe i Qo

If we sum over all increasing « and use the fact that the square of the norm of a fixed

component ¢,, . . occurs with a coefficient <1, we obtain

5 f e av< S [ Jeurerav. (2.4.2)
Qe

lel=s-1 la| =3 J Qa

Obviously, we do not necessarily have 8b, = 0. However, since gc=0 and ¢ = 6b, we
know that 66b =0, where

Using (ii) and (iii) we obtain with a constant C

>’ fﬂ |8b, |27 *dV < C*|| ¢ |2 (2.4.3)

lel=s

First assume that s=1. Then the fact that 685 =0 means that &b defines a global
form of type (p,q+1), and for this form, which we denote by f, we have the estimate

f oAV <G| c |21 @2.4.3)

Since 3f = 0 it follows from Theorem 2.2.1’ that there is a form u € L% 4 (C", @) such that
du=f and

| f |ultesav < f IflEe=" "V < C2|| ¢ |21 (2.4.4)
By condition (ii) this implies that
» JQ |ufte?aV < NCE|| | 2.4.5)

Now we have db=f=2au. If we put ¢,=b,~u in €),, we therefore obtain a cochain in
CUZp, (Q, @)} such that d¢’ =c, and from the estimates (2.4.2) and (2.4.5) it follows that
le’]l¢ < K|c]l4+x if we recall that x <0.

Next we consider the case s>1. In doing so we first note that finite intersections of

the sets (), are also pseudo-convex. In fact, this is an immediate consequence of Definition
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2.2.2, since the sum of a finite number of plurisubharmonic functions is plurisubharmonic.
We may of course assume that the theorem has already been proved for smaller values
of s. Now dbEC*NZ, ¢01)({}, @ +%)) and 68b=0c =0, so it follows from the inductive
hypothesis that there is a cochain b’ €C°*(Z, ¢.1,({€Q,}, )) such that b’ =0b, and there

is an estimate for b’ of the form

18 lle < K [|2b]] sx- (2.4.6)

Since @b, =0 and Q, is pseudo-convex, Theorem 2.2.3 implies in view of the hypothesis
(i) that we can choose a form b, €LZ, o,(€,) such that b,=0b, and

f b, Fe*dV < K fga |6, eV, (2.4.7)
Qa

where K is a constant. But then we have a(b—0b") =9b—8b’ =0, so that with ¢’ =b—3b"
we obtain 8¢’ =0 and dc’ =0b=c. Furthermore, the estimates (2.4.2), (2.4.3), (2.4.6) and
(2.4.7) give the estimate ||¢’||, < K||¢||y-» for some constant K, which completes the proof.

2.5. Some applications

The purpose of this section is only to give some examples of constructions of analytic
functions which can be based on the results of sections 2.2 and 2.3. For this reason we

do not state the results in as general a form as possible.

THEOREM 2.5.1. Let ¢ be a plurisubharmonic function in C* such that for some con-
stant C

|p(z+2)—p2)| <C, |2'|<1. (2.5.1)

Let 3 be a complex linear subspace of C* of codimension k and denote the Lebesgue measure
in X by do. Then, for every analytic function u in X such that

f |« [P ?do < oo, (2.5.2)
)
there exists an analytic function U in C" such that U=u in X and
f |U o1 + |2[)**dV < K f |ufe-7de (2.5.3)
Cn =

where K is a constant independent of u.
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Proof. First note that log (1 +|z|?) is strictly plurisubharmonic, for

t,-ikaz—aaz—klog(l+|z|2)=(1+|z|2)'2('|t|2(1+|z|2)—|<t,z>|2)>(1+|z|2)-2|t|2 (2.5.4)

1 i

2
Jok=
by Cauchy’s inequality. It is therefore enough to prove the theorem when X is a hyper-
plane and iterate this special result k times. We may of course assume that X is the hyper-
plane z,=0. Then » is an analytic function of 2’ =(z,, ..., z2,-1) which we may regard as

an analytic function in C* which is independent of z,. By (2.5.1) we have
j |u|2e‘“’dV<necf |u|Pe ?do. - (2.5.5)
fenl<l =

Let p €CF(€) be equal to 1 in the disc with radius § and center at 0 and let =0 outside
the unit disc. Writing

U(z) =p(z:) u(z’) —2,0(z),

we have U(z)=u(z') when z,=0 so it only remains to show that » can be chosen so that

U =0 and U has the required bound. The equation U =0 is equivalent to
Ty = 5= Loy (VB 1,0, o=
o =2z, u(2)oP(z,) = 2, u(z )6? dz,={. (2.5.6)

It is clear that of =0, for dy/6Z, =0 when |z,| <}, and if C, is an upper bound for |y/?z,]|,
we have by (2.5.5)

f |f|2e“”dV<(2Ol)2f ‘ |u|2e"”dV<nec(2Cl)2f |« |Pe?do.
Cn lznl<1 z

We now apply Theorem 2.2.1' with Q=C" and with ¢ replaced by ¢ +2log(l +|z|?). By
(2.5.4) and the plurisubharmonicity of ¢ we can choose ¢*=2(1+ |z|%)~2 and conclude
that (2.5.6) has a solution » such that

2fc ]v]ze‘¢(1+|z]2)“2dV<fC |f2e2dV. (2.5.7)

From (2.5.5) and (2.5.7), the estimate (2.5.3) with k=1 follows immediately.

Theorem 2.5.1 can be used to prove an extension to several variables of a theorem of
Pélya [28], which was given by Martineau [20] and is also included in the fundamental
principle of Ehrenpreis [9]. Let us first recall som basic definitions. By 4 we denote the

set of all entire analytic functions in C". This is a Fréchet space with the topology of uni-
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form convergence on all compact sets. The dual space is denoted by A’. If u€.4’, the
Laplace transform is defined by u(l)=u.(exp[z,(]) where [2,{]1=2{,+ ... +2,{,. It is
obvious that g is an entire function of exponential type, and u determines g uniquely
since linear combinations of exponential functions are dense in 4. Conversely, every
entire function of exponential type is the Laplace transform of an element u€4’. (This
is also a consequence of the proof of Theorem 2.5.2.)

Let K be a compact set. We shall say that u is carried by K if for every neighborhood

o of K there is a constant C such that

lu(h|< Csuplf], €A (2.5.8)
Set Hg(l)= sug Relz,{]. (2.5.9)

THEOREM 2.5.2 (Pélya—Ehrenpreis—Martineau). A functional u€A' is carried by the
convex compact set K if and only if for every 6>0 there is a constant Cs such that

|2(2)] < Csexp(H(L)+0|L|), LEC™ (2.5.10)

Proof. The necessity is an obvious consequence of (2.5.8) and (2.5.9). In proving the
sufficiency we wish to construct for every £>0 a Schwartz distribution » with support
in the set K, of points with distance <e from K, so that »(f) =u(f), € A, This will prove
the theorem, for every distribution with compact support defines an analytic functional
carried by the support of the distribution. In fact, the derivatives of an analytic function
in a compact set can be estimated by the maximum of the function in a neighborhood
of that set. Let » be the Fourier—Laplace transform of », which is an analytic function of

2n complex variables 6, ..., 0,, defined by
26y, .., Og,) =v(exp(—iz,0; — ... —123,05,)).
The analytic functional 4 is defined by » if and only if
(815 oo Ga) =¥(XP (g +029) {3 F oo + (Tpny +1%30) Cn))-

(Recall that the real and complex coordinate in C* are related by z, ==y, +ixy.) Thus

we must have

a(icl’ —Cl’ iCZ’ ‘Cz: seey iCni ‘Cn) =.‘1(C1! seey En)’ Cecn (2511)

That » has its support in K. means by the Paley-Wiener theorem that for some constants
Cand N
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{96y, ..., 02,)| SCAA+]6,] + ... +]05,])Ve® (2.5.12)

where (@)= sup (z,Im 0, + ... + 22, Im 62,). (2.5.13)
T€K, . .

It is therefore sufficient to construct an entire analytic function satisfying (2.5.11) and

(2.5.12).
Let u denote the function

(/':Cl’ —Cl’ neey iCm —Cn) —>/“"'(Cls eeey Cn)

which is defined and analytic in a subspace X of €?" of codimension n. If

0 = (12‘17 - Cla eeny iCn) ——Cn);
we obtain from (2.5.13)

(0) = zseuI? (;Rel, —w,Im(, + ... )= zseuly Re[z, C]=HK(C)+le|.

Hence (2.5.10) implies that

|u(0)] < Coexp(p(6) +(6—¢)[]), >0,
and choosing 4 <¢ we obtain f | u|%e%*do < oo. (2.5.14)
>

Since ¢ is convex and therefore plurisubharmonic, it follows from Theorem 2.5.1 that

there is an entire analytic function U in C?" such that U=wu in £ and
f 2 | U@) 2~ 2@ (1 +|6]2) 2 dV < oo. (2.5.15)
cen

By Cauchy’s integral formula this implies that |U(9)]e™*®(1+|6|)~*" is bounded. Hence
(2.5.12) and (2.5.11) are fulfilled by »=U, which completes the proof.
Next we shall give an application of Proposition 2.3.2.

THEOREM 2.5.3. Let @ be a plurisubharmonic function €C2C"). Then the set of entire
Junctions v such that
f [ofe=® (1 + |2y ~YaV < oo, (2.5.16)

for some integer N, confains functions not identically zero. In fact, it is a dense subset of the

space A of all entire functions with the topology of uniform convergence on compact sets.
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Proof. An equivalent topology in 4 is defined by L? convergence on all compact sets,
and every element u€ .4’ can therefore be extended to a continuous linear form on .,
that is, there is a function » € L? with compact support such that u(v)=<{v, u>, v€A. If
o is orthogonal to all entire functions v satisfying (2.5.16) for some N, we claim that there
exist functions f;€ L? such that

<9
= >- 2.5.17
o ;821 ( )

and all f; have compact support. In fact, let u(z) =0 when |z| > R, and apply Proposition
2.3.2 with @(z) =®(2) +1og(l +|z|?) and y(z) =log((1 + |z|2)/(1+ R?)). The hypotheses of
Proposition 2.3.2 are then fulfilled in view of (2.5.4). Hence (2.5.17) is valid for suitable
{; with compact support. But (2.5.17) implies that

ulv)= fvddV= - Zfa%)f,dV=0; vE A,
1 8z,~

so the theorem follows from the Hahn-Banach theorem.

II1. Function theory on manifolds

3.1. Preliminaries

Let M be a complex analytic paracompact manifold of complex dimension n. The
decomposition of differential forms into forms of type (p, ¢), the definition of the @ ope-
rator and the definition of plurisubharmonic functions which we have introduced in Chap-
ter 1I for domains in C* can immediately be extended to forms and functions on the mani-
fold M, for all these definitions are invariant for analytic changes of coordinates.

In order to study the operator & with the Hilbert space techniques of section 1.1,
we must introduce hermitian norms on differential forms on M. We therefore choose a
hermitian metric on M, that is, a Riemannian metric which in any analytic coordinate

system with coordinates z,, ..., 2, has the form

i kikdzidzj
juk=1
where 4, is a positive definite hermitian matrix with C* coefficients. The existence of
such a hermitian structure is trivial locally, and is immediately proved in the large by
means of a partition of unity. We keep the hermitian structure on M fixed in all that
follows. The element of volume defined by the structure we denote by dV and the element
of area on a smooth hypersurface we denote by dS. (For definitions see also Weil [29].)
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If f is a form of type (1, 0) and f=>7{;dz, in a local coordinate system, we set

B = Z W

where (1) is the inverse of (kj). This has invariant meaning, for

lZf,dz,P

<f’ f> = Sdgp zkjkdzjdzk'

By the Gram-Schmidt orthogonalization process every point in M has a neighborhood U
where there are n forms w?, ..., w" of type (1,0) with C* coefficients such that (o', »*)> =
89, k=1, .., n. If we set f=2 f;o’, it follows that

an=3lge

More generally, a differential form f of type (p, ¢) can be written in a unique way in
the form
f= 2" frio'nd
Hi=p.7|=¢
(for notations see also section 2.1) where f; ; are antisymmetric in I and in J,
o'=0"A...No® and & =d"A... AD"

We can define ¢f,f> by == 11l

for this definition is independent of the choice of orthonormal basis w?, ..., @™
Let £ be an open subset of M and ¢ a continuous function in Q. We then define
L%, »(Q, @) as the space of all measurable forms f in Q of type (p, g), that is, forms with

measurable components in any local coordinate system, such that

I#43= [ [Peear < o,

forms which are equal almost everywhere being identified. If ¢ > 1, the operator & defines

in the weak sense a closed densely defined operator
T:L%, on(Q, (P)_>L?p. o (2 9)
and another S:LE o (Q @) =>LE, 451, (Q, ¢).

If Q is relatively compact in M and has a C? boundary, which we assume from now on,
and if p€CYQ), it follows from Proposition 1.2.4 by application of a partition of unity
that C%, 4 N Dy is dense in Dy N Dg for the graph norm.
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If u€C! and the forms o?, ..., w™ are a local basis for forms of type (1, 0) in an open
analytic coordinate patech U, we set

toou ou
du=35 2 ot+ S X G
u=2 2@t 2o

as definition of the first order linear differential operators 8/ow’ and ¢/é@’ in U. Then

we have

and if f=2"f; ;o' A @ it follows that
3f = Z'Zéif{d)’/\w’/\d)’+...,
L o0

where the dots indicate terms in which no f, ; is differentiated; they occur because dw'
and &»’ need not be 0. If the sum is denoted by Af we obviously have |3f —Af| <C|f|,
where C is independent of f.

Now let f€C%, () N Dy and let f=0 outside a compact subset of U N Q. Then we
have for u€C}, 4-1,(Q2) A

[, atwear- | gavear-rzs| e
UnQ UnQ LE ] JUnQ

Py e %V +...
03

(3.1.1)
where dots indicate terms where no derivatives occur. We shall integrate by parts in
(3.1.1). First note that with the notation

(we™ %)

S,w=e?
! o0’

Green’s formula assumes the form

f P peeay - —f va,"—we-q’dV+f a,vﬁ;e'v’dwrf 2 vivevds
UnQ0® uvna uno vnoa 00

where ¢ denotes the distance to dQ with respect to the hermitian metric, defined to be

>0 in (Q and <0 in Q, and where g, is in C*(U). Integrating by parts in (3.1.1) we
conclude that f satisfies the boundary condition

Zfz.;x:—::, =0o0n UnoQ, (3.1.2)
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and that T*f = (=1 38frix’ N@"+ ... =Bf+ ..., (3.1.3)

where the dots indicate terms where no f; ;; is differentiated and which do not involve ¢.
Hence |T*f— Bf| <C|f|, and we obtain with another constant C independent of f and ¢

LA+ 1B~ ISAIE — 1 T*f7] < CUAaCISHle + 1 T*Flo + I Fllo)- (3.14)

The arguments which led from (2.1.11) to (2.1.12) apply without change and give
V4RI 0B10E= 35 [ 8yfusedelumse vaV
LEKj,kJUNQ

ofrs|?

Sei| €V, (3.1.5)

_Z'Zf afI_JKafle “'PdV‘FZ Z
[xikJung 00°

1.7 j UnQ

Before repeating the integration by parts performed next in section 2.1 we must study
the commutators of the operators 9/0@’ and §,.
Thus let w be a smooth function and consider

2

ow
. Saear® @ A "+Z~—8w

= -2 ow i
Bw=35> — o=
gaw" lcz

3.

Since dw' is a form of type (1, 1) we may write

dw'= 3> dpd' Ao* (3.1.6)
1, k=1
which gives dow= Y ( — chk )w A .
ik 3w

If we replace w by @ and take complex conjugates of all terms, we also obtain
- &*w 4 ow
66w= Z S +Zc,k -i 607/\
i

The identity 80w= — 98w therefore implies

Pw 2
o‘w & ow
ErYrm Z jka ; awkaaﬁ; *k,a_, (3.1.7)

Wy =

where the left-hand equality is a definition. Note that with this notation we have

85w=2w,-kw’ N d)k.
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A function @ € C? is therefore plurisubharmonic if the form X g f; /. is positive definite,
and the Levi form of aQ is 2o f; /-
From (3.1.7) it follows that

w+Zc,k chia-w
i

or if we use the definition of §; and (3.1.7) again, with w replaced by g,

(ak ow 36kw

awj _ad) ) ¢k1w+ ZCjkaiw chja_ (3.1.8)

Using Green’s formula and (3.1.8) we now integrate by parts in (3.1.5), which gives

0 _
larliiziiz- 35 [ (%l ey
+2'> @icfrxfripe PV b+, + b+, (3.1.9)
LELKJUNQ
' , P p— 90 0 _
where =22 f (fI i® o ,5kf1 w1, 1xa.?k gkx) ?ds,
LELEJUnaQ
= 3 =5 7 Of 1,1k -
ty=2"2 fr.161 011 fz_jxo'k—a‘:,- e %V,
LELKEJUAQ >
ty= 2 2 f fr.1x G Oifraxe” PAV,
LELLkJUnQ
, . fran -
b= — > f fr.1x Cis Ji k,K vV
LEtfxJuna

The first term in the definition of ¢, vanishes in view of the boundary condition (3.1.2),
and arguing exactly as in section 2.1 when we passed from (2.1.13) to (2.1.14), we thus

obtain

' &%
t, = e %dS. 3.1.10
! J.ZK fzk fvnan 3‘073‘”1 ]Kfl . ( )

When studying the other terms we use the notation

- s [ |2

This gives immediately [t <ClIlle 11 #llos (3.1.11)

e dV+ £ 5.
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where the constant like all the following ones is independent of both f and ¢. If we in-

tegrate by parts in ¢, we find that £, =1t3+1t;" where

’ ’ - 8 - .
ta= 2 2 f fl.chika—gifl.kKe %ds, (3.1.12)
gk JUABD W

LEi

& 1< Cl1Fllo 1 £ - (3.1.13)

Combination of (3.1.10) and (3.1.12) gives in view of (3.1.7)

f+ti= 'S Qe,kf,.mﬂl;e*"’ds. (3.1.14)

IL,KjkJUN®D

To estimate £, finally we note that if we integrate by parts in the terms containing Jy it

follows from (3.1.2) that there will be no boundary terms, so we obtain

(el <Ol 11 711, (3.1.15)

Summing up (3.1.4), (3.1.9)—(3.1.15), we have proved

ProrosiTionN 3.1.1. For forms f€ 0%, 4 () N Drs vanishing outside a fized compact

subset of a coordinate patch U in M we have, if p € C*(Q) and 8Q € C?,

W lle+ 11 SFle ~ @t ) = Qe th N = Qa (OIS N Nlo (N T llo + 1 SFlle + [l £1lle), (3 1.16)

where QhH=3"> a’%,’ 2e"”dV, (3.1.17)
1717 Juanl0d
Qth=2"2 f Pictrixtrixe *dv, (3.1.18)
LEKjkJUNQ
Qs(f: f)= Z' Z ijfl,ijI,kKe'(pdS~ (3.1.19)
ILKjik UnoQ

Note that @, and @, are independent of the choice of w?, ..., w".

So far we have essentially followed Ash [2] and Kohn [15]. In the next two sections
we shall use Proposition 3.1.1 to give a rather complete study of the estimates in which
we are interested. When doing so we note that (3.1.16) implies that for every ¢>0 there
is a constant C, such that

1 =&)Qu(f.N) +Qulf. /) +Qslf. ) < M +e) (| T2 + || SFI|5) + Celi 1|3 (3.1.20)
A=) (| T*15 + 1SHID) < (1 +&)Qy(f, ) +Qulf. ) +Qulf. ) +CellF|2- (3.1.21)
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In the proof of estimates we shall later on make another integration by parts, using

the next two propositions.

Prorosition 3.1.2. Let U be a coordinate patch < Q and let p€C(U). If w€CXU)
and w vanishes outside a fixed compact subset of U, we have

8w5;

& 2 vy - f 5 wirwevdV + f (p,klwlze_"’dV]<C”w”q,”]w”].,,, (3.1.22)
v 00" 9 v v

where C is independent of w and of .
Proof. If we multiply the complex conjugate of (3.1.8) by w and integrate by parts,

we find that the estimate to prove is equivalent to

wmc:—w,e faV - f w66 we ?dV — Zf dewdwe *dV + Zf ckjw@e «pdyt

<Cflw ol lo-

But this follows immediately if we integrate by parts in the integrals containing the dif-
ferential operator 4.

If U intersects 02 we have to modify Theorem 3.1.2 since integration by parts will
give rise to certain boundary terms. Following Kohn [15] we can then since 8¢ =0 choose
the forms w’ so that w™=29p, which implies that dg/0w’ =0 when j <n. The forms o!,...,0"
can of course not be chosen with C*® coefficients as we have assumed until now, but if

8QEC® the forms w!, ..., »" can be chosen with C? coefficients which implies that ¢}, €C.

Prorosition 3.1.3. If w€CHU N Q), if w vanishes outside a fixed compact subset of
UNQ, and if p€CU N Q), we have if both | and k are <n

\ f 3w 310 el V — f éjwak—we_q,dv_*_ f (ijlw!ze—¢dv+ f o | w|?e?dS
Ung 00" unQ UnQ UnoQ
<Cllwlollelll, (3.1.23)
where C s independent of w and ¢.

Proof. Since 8p/0ey’ =0 on &Q when j +n, it follows from (3.1.8) that

f Wkaiuie“”dV f 5,-w5k_u;e"”dV+f (p,klwlze_WdV—Ff c,k|w|2—~e “dS
Unﬂaw oW unQ UnQ UnoQ

<Cllw ”«J'”w”'w
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If we apply (3.1.7) with j and k interchanged and with w replaced by p, it follows that
05 = &% 0p/o®™ which proves (3.1.23).

Remark. Note that in proving Propositions 3.1.2-3.1.3 we have only used that M has
an integrable almost complex structure. Hence the estimates in the following paragraphs
also hold under that hypotheses and can be used to prove the theorem of Newlander—
Nirenberg [24] (see Kohn [14]).

3.2. Estimates for fixed norms

In this section we shall study estimates of the type discussed by Morrey [22], Kohn
[14] and Ash [2]. Let U be an open coordinate patch in M such that U N 2Q is in C3, and
let @ be a fixed function in C2QNU). If 2z€U N2Q we denote by 4,(2), ..., A,_,(2) the
eigenvalues of the Levi form

M=

Qikf:'f;c

=

J k=1

with respect to the form <f,f>=2 |f;|2 in the plane > 8p/ow’f,=0. The eigenvalues are
of course independent of the choice of the forms ’. For real A we set A+=max (4, 0),
A~=max(—4,0), so that A=A*—2- and |4} =A++1-.

THEOREM 3.2.1. Assume that there are constants K and K' such that
f pmaa 1€ IS <K AT U+ 1815+ K (1717 (3:2.1)
n

for all €0, ,(8) N Dye vanishing outside a compact subset of QN U. Then we have for
every point on U 0 Q) and every multi-index J formed with q different of the indices 1,...,n—1

n-1 :

1<K(zz;+ Z;{,)=K(Zz,++ Zz;). (8.2.2)
1 jeJ jel jeJ

Proof. We can choose the local coordinates z; in U so that z=0 at the point on U N 2Q

where we wish to prove (3.2.2), and o’ =dz; at z=0. Shrinking U if necessary we may as-

sume that U N Q is defined by an inequality of the form
Imz, =u,, = 0,(%y, ..., Tg_,), 2€U,

where g, €C? and vanishes to the second order at 0. (To shorten notations we do not dis-
tinguish here between a point in U and the corresponding point in C.) Since the shortest

distance to o) will in the first approximation be attained in the direction of the z,, axis,
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when z is near 0, and since the hermitian metric is 3 |dz;|2 when z=0, we have o(z)=
(x2n _Ql(xl’ seey xzn—l))(l +O( IZ' ))

&0 (0)_ 20, (0),

Hence — — 3
oz j 6zk o0z 7 6zk

By a unitary transformation of the variables z,, ..., 2,1 we may achieve that

n-1 329(0)
j k=1 6zj8'

Z Al 2.

Then it follows from Taylor’s formula that
n-1
@)= 2 LlzP+Red (') +0(|z:]|2' | +]2. ) +o (2],
1

where 2’ =(z,, ..., z,_;) and 4 is a homogeneous analytic second degree polynomial.

Let J be a multi-index of length ¢ formed with the indices 1, ..., n~1, and let I be
an arbitrary multi-index of length p. Then we can choose a form f€C%, ,(U) such that
f=dz' A dZ’ at 0 and f satisfies the boundary conditions (3.1.2). In fact, if p=0 and ¢=1,

J ={j}, we can choose
.{ 0 op
= “Sdz.— —=d .
f=2¢ (az,, dz; o zn)

For general p and ¢ we need only take the exterior product of dz’ with the forms construct-
ed above when j runs through J.

With ¢ € C5°(C") and a positive parameter T we now set

[(2) ={(z)y(r2) exp (:7%2,).

Since the last factor is analytic, we have

afr(z) ("( )31/) TZ)+0(1) (TZ)) exp (i17%,).

Note that the first term on the right-hand side will involve a factor v when calculated.

If we introduce as new variables 72z,, and 12, for j<2r, we easily obtain

hm Q. ()T ‘—>ﬁ‘l"(x 0) [%le e endr,,,
4

2(z°)

’ l=(x1’ meey x2n~1);

where Y2 = Z l

a-i
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dz' denotes the Lebesgue measure, and g, is the second order part of the Taylor expan-
sion of g,. Hence

%%%Mﬁﬂ»ﬂ?@ﬁwfwﬁmzr»+m-

By the same substitution it follows that

R =0a*), (ff)=0@"""), 7>+ oo,

wﬂ%Mﬁ»ZLﬁwmmW%“wzr»+m
jel

21 f |f|2e-¢dS—>f|zp(x’,o)lze“z‘f*""dx’, 7>+ oo,
aQ

If (3.2.1) holds we thus conclude, using (3.1.21), that

1- E)ﬁ p (@', 0) Pe™ ) dat’

< K{(l +e)} J | (@', 0)Fe 2 da’ + 3 A,ﬁ«,; (', 0) |2e 22" dz’} (3.2.3)
jel

for every >0, and therefore when ¢=0. Now choose y =1, p, where y, €C5° (C"") is a
function of &'’ =(x, ..., ¥2n_2) and 4, €C5°(C) is a function of (wgn_1,7s,) such that
y,/0%,=0 when x5, =0. This equation does not in any way restrict the values of y,
when z;, =0, so (3.2.3) implies

n 1
(I_K 2 l;')ﬁ'/’l( |2 2020 gt L K j
jeJ

Now recall that g,(x”’,0)=L(z') + Re A(z') where A is an analytic polynomial and

a‘/’l :

o2 Mgt 324
0%, ( )

n-1
= % Aj|z,-|2.

If in (3.2.4) we replace , by y,e* and note that multiplication by the analytic function
e* commutes with 9/9z;, we get

n-1
(15 3.2) fias < X5 [

From (3.2.5) the inequality (3.2.2) follows easily by a slight extension of Lemma 8.1.2
in Hérmander [12] which we shall now prowe.

e 2Ldy”, (3.2.5)

9 — 652922, Acta mathematica. 113. Imprimé le 15 mars 1965,



130 LARS HORMANDER
LeMMa 3.2.2. Let L= 37 2,|%|* and assume that

ox ? —-2L 00 ¢ 1
55 e dz, ZGCO (C ), (326)

j

2cﬁ Z P *dx < fz

1

where dx is the Lebesgue measure in C'. Then it follows that

c< él{, (3.2.7)

which conversely implies (3.2.6).

Proof. First assume that 4,>0 for every j. With y €Cs°, x(0)=1, we set y*(z) =yx(ez).
Then the right-hand side of (3.2.6) with y replaced by y° is O(e?) but [|y°|% **dz—
fe *rdx +0 when &£— 0, which proves that ¢ <0. More generally, if 1,>0 for all §, with
equality for exactly u values of j, the right-hand side of (3.2.6) is O(¢"*) whereas the inte-
gral on the left is only O(¢™*), which again proves that ¢ <0. To study the general case we
note that with 8,=e*29(e"*Ly)/0z,= 0y [0z, — 20L|0z,y we have (see 2.1.8))

o @0 &L

Si————0,=2 =2,
‘ez, 0% 0 oz o5 ¢

Hence an integration by parts gives

J

Ifweput L' =3>|A||z? and x'(2)=2X(w, ...,w,)exp(221,-‘|z,|2),
1 1

o

2
% e 2dy = ﬁ 0, X |%e*dx — 22,J.Ix [Pe~?Ld.
i

where w; =2, when 4;> 0 and w;=2; when 4;<0, the inequality (3.2.6) now reduces to

By the first part of the proof, this implies (3.2.7). The converse is obvious.

2

XK o2y yeop ().

;

CoroLLARY 3.2.3. Assume that for some constant C
[ itperas<cqmilz Iz 10, fecho@npn @29

Then the Levi form has either at least n — q positive eigenvalues or else at least ¢ + 1 negative

eigenvalues at every point on 0L2.
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Proof. Assume that at a boundary point there are at most ¢ eigenvalues <0 and
at most n —1 —gq eigenvalues > 0. Then we can find a multi-index J of length ¢ formed
with indices <n—1, such that 4,<0 when j€J and 1,20 when j¢ J. But then (3.2.2)
cannot hold for any K. 7

On the other hand, we note that if the Levi form has at least n —g¢ positive eigenvalues
and |J| =g, we can find j€ J such that 1,>0, and if the Levi forms has at least ¢+1
negative eigenvalues we can find j¢ J with 1,<0. In both cases (3.2.2) is therefore valid
for some K at every point on Q. For reasons of continuity this implies that (3.2.2) is
valid on the whole of 6Q for some K, if the conclusion of Corollary 3.2.3 holds.

THEOREM 3.2.4. Assume that (3.2.2) is valid for the eigenvalues of the Levi form al
a point 2,€0Q, and let £>0. Then there exists a neighborhood U of zy such that (3.2.1) holds
with K replaced by K(1+¢) and a suitable constant K' for all f€C%, 1(Q) N Dy vanishing
outside a compact subset of QN U.

Proof. We choose coordinates z so that the coordinates of z, are 0, and choose the
forms @’ so that w"=20p. By a unitary transformation of w!, ..., "' we can achieve
that the Levi form 37 10 ;(0)f,f, assumes the form X7 7'2,|f;|% Let 4;<0,j=1, ..., u; ;>
0, 7> u. By Proposition 3.1.3 we have for fixed ¢ with a constant C

2

ow |* _
—1le "’dV+C'IIWI|¢|||w|||¢-

— 0y w2e‘“’dS<f
fUnBQ Q”‘ I vnq |00

=

Taking w = f; ;, adding and using (3.1.17) we obtain if 0 <d <1

’

]
2 f,,nm% — 0l frs P dS < Q (L N+ C U Fllo £ llle < (L= 0)'Qu(F ) + Ca | 1112

1,7

In view of (3.1.20) with ¢ replaced by & this implies
I —_
J ((1 =02 —ey 2 P+ 2 2 kafl,ﬂrfz.kx) e %dS
UnoQ) 1 1,7 I,Kj. &k

<A+ (IT* 115+ 11 8¢112) + Call £ 13-

At z=0 the quadratic form in the integrand is

n-1 |2
Vo2l —62 3 A + /1-)> 140y 3 s , f*0,
I‘Z]UI.JI (( ) % J jeZ] i) > ( )IZJ K +e) /
if 4 is small enough. Here J varies over multi-indices of length ¢ not containing the index
n, for f; ;=0 on 9Q if n€J in view of (3.1.2). If U is chosen sufficiently small it follows
for reasons of continuity that
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[ itteras<kaadzelze s+ el

which proves the theorem.
By a carefully applied partition of unity we could prove a global version of Theorem
3.2.4. (See Hormander [12], remark on p. 198.) However, we only give a form where we

neglect the size of the constants.

THEOREM 3.2.5. Let Q) be relatively compact and have a C3 boundary, the Levi form
of which has either at least n—q positive eigenvalues or at least g+1 negative eigenvalues at
every boundary point. For a fixed @, the estimate (3.2.8) is then valid for some constant C.

Proof. This follows immediately from Theorem 3.2.4 by application of a partition
of unity.

In Kohn [14] it is shown that an estimate of the form (3.2.8), combined with the
results of section 1.2 and the theory of elliptic systems of differential operators, implies
that the unit ball of Dy N Dy (with respect to the graph norm) is relatively compact in
L%, »(Q, ¢). The hypotheses of Theorem 1.1.3 are therefore fulfilled. However, we shall
proceed in a different way here, making essential use of the weight function ¢. Thus we
shall in the next section consider the dependence of our estimates on ¢, which will also

yield other results such as approximation theorems.

3.3. Domination estimates

In this section we shall prove estimates which allow us to extend the arguments of
section 2.3 to open sets satisfying the conditions to which we were led in section 3.2.
Thus we are interested in studying estimates where the weight function ¢ is replaced by
a convex increasing function y of ¢ and the dependence of the estimates on y is examined
carefully. First we consider the case of linear functions y. The notations used are the same
as in the two preceding paragraphs, and we assume throughout that ¢ €C3(() and that
oQeCs,

TurorEM 3.3.1. Let 2,€ Q. In order that there shall exist a neighborhood U< Q of z,
and constants C, t, such that

|l < CUIT*HI% +1Sfllze), 7> 70 (3.3.1)

for all f€C%,, 4,(Q) with compact support in U, it is necessary and sufficient that the hermitian
form
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P (Zo) Eite » (3.3.2)

1

M=

7,

has either at least g +1 negative or at least n—q-+1 positive eigenvalues.
Here T™* denotes the adjoint of the operator T'=8 with respect to the norms || ||+,
so the coefficients of this differential operator depend on 7.

Proof. a) Necessity. If (3.3.1) holds, we obtain from (3.1.21) with ¢ replaced by ¢
and £ =1}, for example,(?)
ofr.s[*
o6’

sfivemarsofzs

VT 3 lon f,,,.Kf',I,;e*"’dV} (3.3.3)
LEjk

when 7 is large enough and f€C%, ,(Q) has compact support in U. We may assume that
U is contained in one coordinate patch and choose the local coordinates and the forms
o’ so that the coordinates of z, are 0 and w’ =dz’ at 0. By a unitary transformation we may
achieve that

i 32<p(0)t‘ik= 2 iajlt,|2= 2L@.

si1 02,08,
Write @(z) =2{Re (¢z, N>+ A(2)) +L(z)} +o(]2]?),

where 4 is an analytic second degree polynomial. With a fixed f€C%, ,,(Q) with support
in U and 9 €C§°(C™) we now set

fi(z) =72 (V) exp (z({z, Ny + A2)].

When 17— + o it follows from (3.3.3) applied to f° that

lf(O)lszwlze‘zde <c {| £(0) [ﬁ? ‘Z_;/;

2
e P dx+2 3 3 Al f1.5x(0) lzﬁ'l’ lze_ud"}a
Lx5

where dz is the Lebesgue measure in C". If for fixed J vith |J|=g¢ and fixed I with
|I]=p we choose f =dz! A dZ’ at the origin, we obtain

2
e 2tdy.

o

o,

(1 —zo'g]a,) f lplPe2tdz< " f ;

By Lemma 3.2.2 this implies

() By using arbitrarily small numbers ¢ we could determine the infimum of the constants C
that can be used in (3.3.1) as we did in a similar context in section 3.2,
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1 _‘201 Z l,S 20,211—,
1

jeJ
that iS, 1<20,(211++ Z}q—).
jeJ jeJ

If this holds for all J with |J|=g, it follows as in the proof of Corollary 3.2.3 that there
are either ¢ +1 negative or n+ 1 — ¢ positive eigenvalues ;.

b) Sufficiency. Again we choose the coordinates so that
n _ n
2 o0Vt =22 4]t
fx=1 1

Let ;<0 for j=1, ..., u and 2,=>0 for j> u. By (3.1.20) we have when f€ (%, o, (Q) and
{ has support in a fixed coordinate patch U with 0€ U< Q

_ 0fr.s
1 2s)z;f 2

7 a| 0®

2 —_—
eV + el + 3 5 [ puhusslomne ¥
ILEfkJQ

<@+ T %+ 1 8l + O 117

In those terms in the first sum where j< g we now use (3.1.22) and obtain

ere (@ f. e aV +e |l Hlizs < (1 + &) (| T*F 1% + 1| Sfllze) + Cell £170 + Cll # o ll 1l

(3.3.4)
where we have used the notation
n JU—
Quz ) =(1~28) 3' 2 ~@ulfrs*+ 2' 2 opfroxfrex. (3.3.5)
I1.7ji=1 1.Kfi, k
If we estimate the last term in (3.3.4) by ||| f|l|% + C% || |2, it follows that
foe(Z, fhe=aV < (1+e) (| Tz + I 87170 + Cell 112 (3.3.6)
Now we have Qe (0.1, )= 2 (Zﬂf + }zjli) Vol
1,7 1 €

which is a positive definite hermitian form since by hypothesis either 4,>0 for some j€ J
or 4;<0 for some j¢ J. Hence Q.(2, /, f} is uniformly positive definite if ¢ is sufficiently
small and z belongs to & sufficiently small neighborhood U of 0. From (3.3.6) it follows
therefore that
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<[l e map <o+ 5712 + 0 11 337)

when the support of f belongs to U and ¢ is fixed. When 1 >2(", the estimate (3.3.1) follows.
At the boundary and for non-linear functions y(¢) of ¢ instead of Ty our results are

not quite complete but still adequate for the applications.

Definition 3.3.2. We shall say that a real valued function ¢ €C? satisfies the condi-
tion A, at a point z, if grade(ze) +0 and

n-1

Mt ot At S uy >0, (3.3.8)
1

wherel; <1, < ... <4, are the eigenvalues of the quadratic form (3.3.2) and 4, <, < ... <y,

are the eigenvalues of the same quadratic form restricted to the plane
n
2.tip;=0.
1
We note that the minimum-maximum principle for the eigenvalues gives
M SL< o Sp, <4,
so the condition (3.3.8) implies

n—-1

Mt Tt %‘u{>0 (3.3.9)

if g<n. Conversely, if (3.3.9) holds, a slight modification of ¢ will yield (3.3.8):
Lremma 3.3.3. Assume that grade(zy) =0 and that (3.3.9) is valid or that g=n. Then
€™ satisfies the condition A, at z, if T is sufficiently large.

Proof. We may assume that ¢(z,) =0. It is then clear that

(€ )i =TPs+ TP;P
at z,. Thus we have to prove that the eigenvalues 4,, ..., 4, of the quadratic form

2

2@utibct T %tj ; (3.3.10)

for large v satisfy (3.3.8), where u; are independent of 7. The case ¢=n is trivial so we
assume that ¢<n. We have to show that the trace of the restriction of the form (3.3.10)
to any g-dimensional subspace of C" is > —>77! u;” +¢ for large 7 and some £>0. Suppose

that this were not true. Since the set of all g-dimensional subspaces form a compact space
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and the form (3.3.10) increases with 7, it follows that for every ¢>0 one can find a fixed
g-dimensional subspace such that the trace of the restriction of the form (3.3.10) to this
space is < —>77! 4 +¢ for every 7. But then the subspace must lie in the plane >¢;p; =0
and we have a contradiction with (3.3.9) if ¢ is small enough.

We recall that (3.3.9) means that at least n —¢q of the eigenvalues u; are > 0 or that
at least ¢ +1 of them are > 0.

Definition 3.3.4. We shall say that a real valued function ¢ €C? satisfies the condi-
tion a, at a point z, if grade(z,) +0 and if ¢<n the form (3.3.2) restricted to the plane
>1t,p;=0 has at least ¢ +1 negative or at least n—q positive eigenvalues.

Note that the condition a, is independent of the choice of hermitian metric in M (which
is not true for A,) and that it only depends on the surface {z; p(2) =p(2,)} and the side
of this surface on which @(z) >@(z,). (Cf. Hormander [12], p. 203.) The condition ¢, may
therefore be considered as a condition on a piece of oriented C? surface. In particular we
shall say that 0 satisfies condition a, if the function g introduced in section 3.1 satisfies

this condition.

THEOREM 3.3.5. Let 2,€ Q and let ¢ satisfy condition A, at z,. If 2,€0Q we also assume
that @ is constant on 9Q and < @(z,) tn Q. Then there is a neighborhood U of z, and a constant
C such that for all convex increasing functions y € CY(R) we have

[z @1 1remar <o Tl + 151+ 111 3:31)

for all f€C%, & (Q) N Dys with support in U N Q.

Proof. We start with the estimate (3.1.20) with @ replaced by X(¢). Noting that

2

3

Zk (XN Fr. 35 Friex = X' (@) 2 pul. whag+1(@) I ;% fr.ix
i ik

where the last term is >0, we obtain if 0<e<}

1.1
ing

(1-2¢) 2" 3

LI j UnQ

2 .
e P4V + &||| f||[Z + > > f X' (@) @t ixfrex e *PAV
LELEJUAQ

£33 [ guhuaeliame a8 (T i+ 57 + Colf e (3322

LEik JUn

We choose the basis w’ for forms of type (1, 0) so that w" is proportional to dg, hence
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@;=0p/8e! =0 if j<n. Since grad ¢ and grad ¢ are proportional on 0Q, this_means that
Proposition 3.1.3 is applicable. By a unitary transformation of the forms o/, j<n, we

can achieve that
n-1

n-1
1‘Pﬂc(zo) bl = ? it P

fik=
Let u;<0 when j=1, ..., ¢ and u;>0 when j>¢. We apply Proposition 3.1.3 to the terms

in the first sum in (3.3.12) where j <g. This gives

L n?6'(<iﬂ) Qulz, [, fe *PdV + L Rt e *PdS + el fllfw

naQ

<+ (171 e+ 157 ) + Col 1+ € ol o (3:3.13)

where we have used the notations

Q:(z,1./)=—(1—2¢8) IZJ'EI ‘Pii| fI.JlZ + IZI; ]Zk ‘ijft.ixf_l.;» (3.3.14)
Bz, {,fy=—(1—2¢) IZ]E 9ii|fl.]l2+ IZI; jZk ijfz,jxfl.:; (3.3.15)

(In the computation it is important that @;=0 when j<n.)
The hermitian form @y(2,,f,f) is positive definite. In fact, if 1, <A,<... <A, are
the eigenvalues of the form (3.3.2), we have

M+ TS T 2 (ijfl.ijI—.k—K
LEk

as is immediately seen if a frame is used where the form (3.3.2) is diagonalized. Hence
it follows from (3.3.8) that Qy(z,, f, /) is positive definite. If U is a sufficiently small
neighborhood of z, and ¢ is given a fixed but sufficiently small value, it follows that |f|2<
CQ.(z, |, ) for some constant C when 2€ U. This implies that R,(z, f, f) >0 when z€U N €2,
for f satisfies the boundary condition f; ;=0 when %€ J, and the fact that ¢ is constant
on the boundary implies that ¢, =cg, for some ¢>0 if j, k<n. Theorem 3.3.5 now follows
from (3.3.13), even with the L2 norm of f over U N 8Q with respect to the density e”*?dS
added on the left-hand side of (3.3.11).

3.4. Existence and approximation theorems

The first existence theorem which we shall prove could also have been obtained
from Theorem 3.2.5 and Proposition 1.2.4 by the arguments of Kohn [14]. However, we

prefer to use the estimates involving weight functions in all the existence proofs.
10 — 652922, Acta mathematica. 113. Imprimé le 12 mars 1965.
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THEOREM 3.4.1. Let Q be relatively compact in M and have a C* boundary 8Q), satisfying
the condition a, Then Ry ts closed and has finite codimension in Ny.

We recall that 7 is the weak maximal operator from L7, ,_1,(Q, @) to L, o,(Q, @)
defined by 8, and that § is the weak maximal 3 operator from L%, ,(Q, @) to LY, 4+1)(2, ¢).
Here ¢ is any function € C(Q).

Proof. The assertion is obviously independent of the choice of the function ¢ €C({}),
since changing ¢ only means introducing equivalent norms in the three Hilbert spaces
concerned. We choose ¢ €C3({2) so that ¢ is near 8Q of the form e’ with 1 so large that
according to Lemma 3.3.3 the condition A, is satisfied by ¢ at every point on Q. It suffices
to prove the assertion of the theorem with @ replaced by some multiple of ¢. From Theorem
3.3.5 it follows that every point on ¢Q has a neighborhood U such that

of iemav <ol + 1871 A

for large v and all f€C%, () N Dy» with support in U N Q. We can cover 0Q by a finite
number of such neighborhoods U, and choose , €C5°(U,) so that Zy,=1 in Q outside a

compact subset K. In view of the obvious estimates
I T*bMllrg < HT*F v + C il

where C is independent of f and of 7 (see also the proof of Proposition 2.1.1) we obtain
with another C

Y

o| Ity <o T + D ST+ U1, F€Ch @ 0 Dre

If we choose 7 so that 7> 20, it follows that
[ ey <zt el sples [ pemay. et o@D @il

Since Proposition 1.2.4 implies that C%, ,,(Q)N Dys is dense in DsN Dps for the graph
norm, the estimate is valid for all € Dy Dys.

To prove the theorem it suffices to show that (3.4.1) implies that the hypotheses of
Theorem 1.1.3 are fulfilled. Thus let f;€ DgN Dyp« (j=1, 2, ...) and let T"f;—0, 8f,—> 0 in
L%, 4+1(Q, 7¢) respectively. If the sequence f; converges in Ly, (K, 7g) we conclude that
f, converges in L%, ,(Q,7p) by applying (3.4.1) to f=f,—f, and letting j, k — co. (Note
that 7 is a fixed number such that (3.4.1) is valid.) Therefore it only remains to prove

the following simple lemma, where we write p instead of 7.
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LEMMA 3.4.2. Let p€C? and set
B={f: 1€ D50 Dw, Il + ISFIG+ 1Ty < 13-

Then B is relatively compact in L, ;,(Q, loc).

Proof. Let U be a coordinate patch < Q and let ¥y €C3(U). Writing g=xf, we have
for some constant C and all f€B

lglls + liSglls + 1 g1l < C-

From (3.1.20) we therefore obtain with another C

2

D evdV <.

1,J j§

%14
8@

With still another C it follows that

2 Jle s

where 2" are the local coordinates, and taking Fourier transforms we obtain

91, 5
oz

2
)dx<0,

IZJ'f(] 1.2 +|grad g, ;|*/4)dz< C.

The set of all such g with support in a fixed compact set is compact in L2 by Rellich’s
lemma (see e.g. Hérmander [12], Theorem 2.2.3).

From every sequence of elements in B we can thus select a subsequence which is
L2 convergent in a neighborhood of any given point in Q. Using the Borel-Lebesgue lemma
and taking a diagonal sequence we can find a subsequence converging in L7, , on any
compact subset of Q. This completes the proof of Lemma 3.4.2 and therefore the proof
of Theorem 3.4.1. '

Definition 3.4.3. If Q is relatively compact in the manifold M and ¢ is continuous
in 0, we denote the quotient space Ng/R; by H , (). (We recall that
NS»Z {f; fe L(zp, 0)(Q> (P)7 5f=0}a

and that Ry is the range of the weak maximal & operator from L%, ,-1)(Q, ) to L%, ,(Q, ¢).
This quotient space is of course independent of ¢.) We also denote by H,, (£2) the
quotient space of {f; f€LE, ,,(Q, loc), 3f =0} with respect to

L(Zp, o(€2, loe) N {5f, 1€ L. o-1y(€, 100)};

here Q2 may be any paracompact complex analytic manifold.
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By the Dolbeault theorem (see the proof of Corollary 2.2.5) there is a natural isomor-
phism between the space H, ,,(Q) and the gth cohomology group of Q with values in the
sheaf of germs of holomorphic p-forms.

When the hypotheses of Theorem 3.4.1 are fulfilled, we know that H, ,,(Q) is a

finite dimensional vector space. For a given @ there is a natural isomorphism
H . o(Q)~ Ns© By =Ns Npe =Ny (Q, 9)

where the last equality is a definition. If Q' > we obtain by taking restrictions a canon-
ical homomorphism H,, o(Q') —H,, (). Our next purpose is to give conditions which
guarantee that this homomorphism is surjective or injective. At the same time we shall
obtain an approximation theorem for solutions of the equation du=0. The proof depends

on the estimates contained in the following two propositions.

ProroSITION 3.4.4. Let Q be relatively compact with Q€ C?, let o € C¥Q) be equal to
0 on 9Q and <0 in Q, and assume that ¢ satisfies condition A, in {z; z€Q, p(2) > ¢} for
some ¢ <0. Then there is a compact subset K of Q. ={z; z€ Q, p(z) <c} and a constant C such
that for all convex increasing functions y € C3(R!)

fcx @) |f[Pe*PdV < (|| T*f ”:2¢(rp) +|| 8¢ ”3@) +if "3@2)), 1€C. 0 ()N Dye. (34.2)

Proof. In virtue of Theorem 3.3.5 we can find a neighborhood U of any point in
Q n GQ, such that (3.4.2) holds when f has support in U N Q. If we use a partition of unity
as in the proof of Theorem 3.4.1, the estimate (3.4.2) follows immediately from the fact
that it holds locally. The details may be left to the reader.

We shall now derive from (3.4.2) a more useful estimate. To do so we choose a se-

quence of convex increasing functions y, € C2 such that
x(t)=yr when 1<e¢, x/(r)/"+oo when k—>ooandv>c. (3.4.3)

Here y is a constant larger than the constant C in (3.4.2). We set ¢, =y:(¢p).

ProrosiTioN 3.4.5. Under the hypotheses of Proposition 3.4.4 and with the notation just
tntroduced, one can find a constant C' such that for large k

I lle < CNT*F oy, + 1| SFlle,)  if  fEDre 01 Ds

and f {yg>e AV =0 forall gEN, (L yp). (3.4.4)
Q.
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Proof. Assume that the assertion is false. For any ¢’ we can then find arbitrarily
large values of k for which (3.4.4) does not hold. Passing if necessary to a subsequence
of the given sequence we may assume that (3.4.4) is not valid with ¢"=k. In view of Pro-
position 1.2.4 we can then choose f,€C%, ,(Q) N D;+ (a space which is independent of k)

such that

[ £ “wk: L [T "wk+ [l St "wk<1/k, fg firgye™dV =0 for all gENg ¢( e, yp)-

(3.4.5)
Since %; >y we obtain from (3.4.2) that
f |felPedV<Cy Y (1+kY),
CK
which implies f |felPedV =1 - Cy (L + k7). (3.4.6)
K

No subsequence of the sequence f, can therefore converge to 0 in L2 norm over K.

From the first part of (3.4.5) and the fact that ¢, =y in Q. it follows that a sub-
sequence of the sequence f, is weakly convergent in L?, ;,(Q,, y¢) to a limit f. Changing
notations if necessary, we may assume that the whole sequence converges. Now take
Y€ECF (L)) so that y=1 on K. From (3.4.5) it follows that for some C,

1 T*(ph e + “S(Wk)"w + [ff e <0y

for all k. Hence the weakly convergent sequence yf;, is strongly compact in Ly, o)(C, y)
by Lemma 3.4.2, so it must in fact converge strongly. In view of (3.4.6) it follows therefore
that f=0, while (3.4.5) implies that Sf=0 in Q.. We shall prove that f€ Dy and that
T*f=0 in Q,, that is, f€EN, (Qe, y9). Since it follows from (3.4.5) that f is orthogonal
to every element in N, ¢(€2, @), this will yield a contradiction and prove the proposition.

Thus introduce fe™ %% =g,. We have

[ laerav =g, -1,

$0 g, converges weakly in L%, ,(Q, —yg) to a limit g which is fe 7 in Q. and 0 outside
Q.. Further, we have e ®¢T*f, =g, where ¢ is the differential operator adjoint to 3, de-
fined by

f(ﬂg, wydV = f g, 3u>dV, (3.4.7)

for all u€C, ,(Q) with compact support. Thus ¢ does not depend on k. Since ¢, > yp
and
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fioatenar—mnlz 0. woee,

it follows that ¥g,— 0 in L%, 4, (Q, —yp). Hence we obtain by applying (3.4.7) to g, and
letting k& — oo

fQ <g’5u>dV=0’ ueo(lp, a) (Qc)’

for every u € CL, ., (Q,) can be extended to an element of CJ, 4, () with compact support.

If we recall that g =/fe "% in Q,, we obtain

fﬂ <f7 5/”l’> e~y¢dV=0, u eo(lp. ) (QC)

and since CL, ,,(Q,) is dense in the domain of 7 in Q, (with respect to the graph norm),
it follows that 7™*f=0. The proof is complete.

THEOREM 3.4.6. Let Q be relatively compact with 3QEC3, let p€C¥Q) be equal to 0
on 0Q and <0 in Q, and assume that @ satisfies condition a, in Q outside Q. = {z; z €Q,p(z) <c}
for some ¢<0. If f€LE, (Q, ) and 5f =0, the equation du=f has a solution w € LY, ;_1,(<2, ¢)
if tn Q, it has a solution € L%, ,_1,(Q., ¢). In other words, the restriction homomorphism
H, Q) —>H, (Q.) is injective.

Proof. If we replace ¢ by ¢**—1 with a sufficiently large 1, we can by Lemma 3.3.3
achieve that @ satisfies 4, outside Q,, and this makes Proposition 3.4.5 applicable. Choose
a fixed k so that (3.4.4) holds. Let F be the set of all f€ L}, ,(Q, ;) such that 5f =0 and
the equation Ju=f has a solution € L%, (., yp) on Q,. Since [qa.{f, g>e™*?dV =0 for
every g€Nq (Q., yp) if fEF, the estimate (3.4.4) shows that we may apply Theorem
1.1.4 with 4 equal to a multiple of the identity. This proves the theorem.

THEorREM 3.4.7. Let the hypotheses of Theorem 3.4.6 be fulfilled. For every
u€ LYy 4-1)(Qe, @) satisfying the equation du=0 in Q. and for every >0 one can find
uy € Ly, o-1(Q, @) satisfying the equation 2u, =0 in Q, so that g |u~u, |2 *dV <e.

Proof. As in the proof of Theorem 3.4.6 we may assume that ¢ satisfies 4, outside
Q,, which makes Proposition 3.4.5 applicable. Let v€ L2, ;_1,(€,, —¢) be orthogonal to the
restrietion to Q, of every u, € L2, ,_1,(Q, ¢) satisfying the equation du, =0 in Q. If we define
v to be 0 in Q outside Q,, this means that

f {uy,v>dV =0
Q
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for all u, such that Tw, =0. Hence ve** belongs to Ry for B4 is closed by Theorem 3.4.1
and Theorem 1.1.1. By Theorem 1.1.4 and the estimate (3.4.4) we can therefore find
fx€Drs so that T*f=ve™ and ||fillg, <C'[[T*fiflp, =C'|v[|-yo- Now set g, =fre”**. With
the notation ¥ used in the proof of Theorem 3.4.5 we have ¢, =v for every k, and the esti-

mate just given for f, implies
f | gi|ZexdV < C'2f |v|>er?d V. (3.4.8)
Q Q¢

Since ¢, > y@, we can choose a weak limit g of the sequence g, in L?, ,(Q, —7¢), and from
(3.4.8) it follows that g =0 outside 2. From the equations 9¢, =v, we obtain 99 =». Hence

f <v,u>dV=f (g,0uydV
Q, Q.

for every u €CY,, ,,(Q,), and therefore for every w in the domain of the maximal differential
operator defined by & in L%Q,, ¢) (Proposition 1.2.3). This proves that [q, (v, uddV =0
for every w€L% ,_1,(Q,, @) satisfying the equation du =0, so Theorem 3.4.7 follows from
the Hahn-Banach theorem.

THEOREM 3.4.8. Let Q be relatively compact with dQEC3, let p €C¥QY) be equal to 0
on 9Q and < 01in Q, and assume that ¢ salisfies the conditions a, and ay,, in Q outside Q=
{2; 2€ Q, p(z) <c} for some ¢<0. Then the restriction homomorphism H, ,(Q)—H, (Qc)

18 an isomorphism.

Proof. By Theorem 3.4.6 the homomorphism is injective. To prove that it is surjective
we shall use Theorem 3.4.7. Choose an orthonormal basis g,, ..., g, for N, (€., ¢). Since
29,=0, we can for every ¢>0 find @,€L%, ,(Q, ) such that 6G,=0 and

<e&.

[ omGigoeray
This follows from Theorem 3.4.7 since @ satisfies a,.;. Writing
ajk = fﬂ <Gj_ gk> efwdv,

we have |a;—0d;| <e, so the matrix (a;) has an inverse (4,) if ¢ is sufficiently small.
If we set G; =XA4,6,, it follows that

(Q (95— Gy), gy e %dV = 8y — %Ailalk:—‘o
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for all j and k. Hence the restriction of @; to Q. has the same image as g, in H, »Q.),
which proves that the homomorphism in the theorem is surjective.

We shall now study H, ,(2). In doing so it is convenient to assume that ¢ =+ oo
at the “boundary” of Q; this can be achieved if the hypotheses of the preceding theorems
are fulfilled, for the validity of condition a, is not affected if @ is replaced by an increasing

function of .

TuEOREM 3.4.9. Let Q be a complex analytic manifold of complex dimension n and let
@ be a C® function in Q such that the open sets Q.={z; z€ Q, p(z) <c} are relatively compact
in Q for every real number c. Further assume that ¢ satisfies condition a, in the complement
of Q, for some c. Then the restriction homomorphism H, o(Q)—H, (Q.) is injective for
the same ¢, which implies that H, .,(Q) has finste dimension. Further, every w € L%, - 1(Qc, @)
such that Gu=0 can be approximated arbitrarily closely in the norm of L?, , 1,(Q., ¢) by the
restrictions to Q, of forms u, €LZ, ,-1)(Q, loc) such that du, =0. If @ satisfies both conditions
a, and a,,, outside Q,, the homomorphism H, o(Q)—>H, (Q.) is an isomorphism.

Proof. As observed in paragraph 3.1, we can introduce a hermitian metric in Q. If
d>¢, the preceding theorems are then applicable with Q replaced by €, Now let
fELE, (Q,loc),assume that 5f =0and that the equation u = f has a solutionw € L%, ;- 1(Q,,¢).
For every integer j >0 we can then find ;€LY ;-1,(Q..,, @) such that du;= finQ, +; and

fg |y — usPe~?dV <270, (34.9)
c+f

In fact, assume that u,, ..., u; have already been chosen. To construct u,,, we first note
that in virtue of Theorem 3.4.6 we can find u€ LY, ¢—1)(Q.4 41, @) such that Su=finQ, ;..
This implies that &(u—wu,)=0 in Q. so by Theorem 3.4.7 there exists a form
v€ LY, 4-1(Qej41, @) such that dv=0 and (3.4.9) is valid for u,,; =u —v. Since du,,, =0u =
in Q,,;,;, this proves the statement. From (3.4.9) it follows that u=lim,, . u; exists in
L%, -1,(Q,10c), and it is obvious that du = f. This proves that the homomorphism H, 4(£2)—>
H, ,(Q,) is injective, and since H .0(8) is finite dimensional by Theorem 3.4.1, we
conclude that H, ,(£2) has finite dimension. The approximation theorem follows im-
mediately by iterated use of Theorem 3.4.7. We leave the details to the reader in order
not to repeat the arguments already used in the proof of Theorem 2.3.5. The final state-

ment now follows by repetition of the proof of Theorem 3.4.8, so we omit these details too.

Remark. The part of condition @, which requires that grade =0, is unnecessarily
restrictive and could be removed by applying the theorem of Morse [21] as in Chapter IT,

provided that ¢ €C?". We can also give another supplementary result:
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THEOREM 3.4.10. Let Q be a complex manifold of complex dimension n, and let ¢ be
a C? function in Q such that the open sets Q.={z; z €Q, p(z) <c} are relatively compact in
Q for every real c. Further assume thai @ satisfies condition a, outside Q, for some c,and
that the form (3.3.2) has either at least q+1 negative or n—q-+1 positive eigenvalues for every
29€ Q. Then it follows that H, ,,()=0.

Proof. We obtain H, ,(Q,)=0 for every ¢>c, by using Theorem 3.3.1 and Theorem
3.3.5. As weight function we then use y(¢) where y is convex on R and linear with a large
slope on (— oo, ¢,). In view of Theorem 3.4.9, this proves the theorem.

3.5. Behavior of the Bergman kernel function at the boundary

Let € be a paracompact open subset of a complex hermitian manifold M of dimen-

sion 7, and let p€0%Q). The set of analytic functions in Q with

Jull= (] Jupenav)’ <o

forms a Hilbert space with this norm. If u,, u,, ... is a complete orthonormal system in
this space, the Bergman kernel function of Q (with respect to the weight function e™%)
is defined by

K(z;Q,tp)=K(z)=i;lu;(z)|2=supl?ajuj(z)lz/ilaflésuplu(z)IZ/IIulli, 2€Q, (3.5.1)

where the supremum is taken over all » 40 in the Hilbert space. The last form of the defi-
nition shows that K is independent of the choice of the orthonormal system.

Bergman [3] has studied the behavior of the function K{(z; Q, ¢) at the boundary of
Q when Q is a bounded domain of holomorphy in C? and ¢ =0. (It is also well known that
the kernel function is regular at a point on the boundary where some eigenvalue of the

Levi form is negative.) We shall here extend the results of Bergman as follows:

THEOREM 3.5.1. Assume that the weak maximal operator 8:L% o(Q, @) —L% 1(Q, @)
has a closed range, and let z, be a point on 62 such that 9Q € C? in a neighborhood of z,. Further
we assume that 0Q is strictly pseudo-convex at z,, that 1s, that the Levi form Zg,(z0) 81, is
positive definite in the plane X o,(2,)t;=0. (g ts the distance to 9Q); for other nolations see
sections 3.1 and 3.2.) Let k(z,) be the product of the n—1 eigenvalues of this form. Then

!
| 0(2) |* " K (2; Q, )~ k(z,) 7 4'%; , 27 (3.5.2)
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The hypothesis that the range of @ be closed is always fulfilled if Q is a domain of
holomorphy in €" and @(z) = |2|2, for example (see Theorem 2.2.1°); or if Q is a bounded
domain of holomorphy in €* and ¢ is any function in C(Q); or if 0Q€C? and the Levi
form of &Q) has everywhere either n —1 positive or 2 negative eigenvalues (Theorem 3.4.1).
Thus Theorem 3.5.1 implies Grauert’s theorem that  is holomorph-convex if the boundary
is strictly pseudo-convex.

The main step in the proof is to show that the statement (3.5.2) can be localized.
First note that if )'<() it is a trivial consequence of (3.5.1) that

KzQ,9)2K(zQ,¢), 2z€Q. (3.5.3)

On the other hand, we shall prove
LEMMA 3.5.2. Let the range of the weak maximal & operator T from L% (Q, @) to
L% 1(Q, @) be closed. Let z,€ 6Q and assume that for some neighborhood U of z, there is an
analytic function wu, in Q' =QNU such that |uy| <1 in Q', |uy(z)]| =1 when z—z,, and

|ug(z)| has an upper bound <1 in Q' NQU, for some neighborhood U, of z, with compact
closure contained in U. Then it follows that

K(z Q, )| K(z; Q, ) —>1, z—>z, (3.5.4)

Proof. Let y €05°(U) be equal to 1 in Uy, and let 0 < y < 1 everywhere. If u’ € L 0(Q',¢)

and «’ is analytic in (', we set with an integer » to be determined later
w=yu'uy—v.

The product yu'up shall be defined as 0 where y =0, and v€ L% 4,(Q, @) shall be chosen so

that su=0 in Q, that is, o
ov = (0X)u'ug.

Since Ry is closed by hypothesis, it follows from Theorem 1.1.1 that this equation, besides

the obvious solution v =yu'uy, has a solution v with
f [v[2e~?dV < CJ‘ |w wg|Pe%av. (3.5.5)
Q QnGUs
If ¢ is any positive number, we obtain

f |u—w'up|Pe ?dV < 2(C + l)f
o

| 'wh |2e“”dV<e2f |u'[Pe~?dV,  (3.5.6)
QngUg Q

provided that v is chosen so large that |u,]|* <e/2(C+1) in Q' N (U, From the defini-
tion of the kernel function in Q' and (3.5.6) it follows that
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|u(z) — w'(2) uy(2) P < 2K (2; ', w)f |u' e ?dV, 2€Q’.
o
Hence |u(z) | =] w'(2) || up(2) [ — & (K(z; Q' <p)f | |? e"‘”dV)*, Z€Q".
o

’

Since the supremum in the definition (3.5.1) of the kernel function is obviously attained,

we can for every z € {)’ choose ' = 0 so that
|2 (2) = K(z; Q, ¢)fg. | % |2e?dV.
For the corresponding function % we then obtain the estimate
lu(z) > K&, ) (| ugla) | ~ o) fg, |u'[2evav, (3.5.7)
when z€Q' and |uy(z) |"> . By the triangle inequality and (3.5.5) we have
JQ |ulPe®dV <1+ 8)2_[9. |w' [2e~?dV.

Combined with (3.5.7) this estimate implies
K(zQ @)= KzQ, o) |y, —e)*(1+e) ™2 if 2€Q, |uyz)] >e.

Hence lim K(zQ,p)/K(zQ, )= (11— (1+&)7%

229

and since ¢ is arbitrary, this proves the lemma if we recall (3.5.3).

Note that the proof is very close to that of Theorem 2.3.8.

Using Lemma 3.5.2 and the monotonicity (3.5.3) we can reduce the proof of Theorem
v3.5.1 to the study of some special domain Q, for which the kernel function is easy to
compute.

LEMMA 3.5.3. Let Q be the ellipsoid in C* defined by
Qo={z2€C", ay|2, |2+ ... +a,|2,]2<ay},

where ay, ay, ..., a, are positive numbers, and let the element of volume in the definition of

the kernel function be the Lebesque measure. Then
K(z; Qp, 0)=nln""ay ... ap(ag—a, |2, [2— ... —a,|2,|)7 "%

Proof. We may assume that a,=1 and, after a linear change of variables, that a, =

.. =a,=1. In view of the unitary invariance of K it is no restriction to let z=(0, ..., 0, ).
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If u is a square integrable function in A();), then a unitary transformation B of the

variables z,, ..., 2,_, leaves Q,, #(0, ..., 0, {) and “ulde invariant. If we form
ul(z) = Iu(BZ’, zn) dB,

where dB is the normalized Haar measure on the unitary group, we therefore obtain a
function u,; € A(€,) such that

ul(O, veey 0, C) =u(0, sy O: C)’

and by Minkowski’s inequality we have

J. lullde<f |u[?dV.
Qe Qo

But u, is invariant for unitary transformations of z,, ..., 2, ; and must therefore be a
function of z, only. In determining the supremum in (3.5.1) we may thus assume that »
is an analytic function of z, when |z,| <1. Put
o0
u(z) = ¢; 2.
0

Since the volume of the unit ball in E2"~2is "~!/(n —1)!, we obtain

f |wlPdV =7""1/(n— 1)!fznfl | u(re’®) |Pr(1 — r*)"'drd
Q o Jo

=n" 1/ (n—1) “% le, P2 f:rw“(l — %" dr
=3 e 1/ G+ ).
By Cauchy-Schwarz’ inequality it follows that
[%(0, ..., 0, C)|2<n'"%|4‘|2"(j+n)!/;i!fn |ul?dV
where equality is attained for some u. Since the sum of the series is n!(1—[Z]|2)™""", the
lemma is proved.

In the proof of Theorem 3.5.1 it is convenient to apply Lemma 3.5.3 in a slightly
different form:
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LeEmMMA 3.54. Let a, (j, k=1, ..., n) be a positive definite hermitian symmetric matriz,

and set
n
Q,= {z; Imz,> 2 ay z,ik}.
j k=1
n -n-1
Then K(z,Q0,0)=xnl4 g~ " (Im a2 Gy z,Zk)
jok=1

where = det (ay)) rm1.

Proof. By a unitary transformation of the variables 2, ..., z,_; we can reduce the
matrix (a,)7 %~ to diagonal form, and the statement of the theorem then remains invariant.
Assuming this reduction already made, we can introduce z;+2,a,,/a;,j=1, ...,n—1, and
z, as new variables. The determinant of this transformation is equal to 1, so again the
statement is invariant. Hence we may assume that the whole matrix (a,) has diagonal
form. If we write Imz, —ay,,|2,|2=1/48,, — 4,2, —1/2a,, ]2, the lemma now follows from
Lemma 3.5.2.

Proof of Theorem 3.5.1. As in Lemma 3.3.3 we can find a real valued function
y €C? which is strictly plurisubharmonic in a neighborhood of z, where Q is defined by the
equation <0, and grad y is the exterior unit normal on 9Q. We choose local coordinates
at z, so that the coordinates of z, are all 0 and the differentials dz, are orthonormal at z,.
This implies that the Riemannian element of integration has density 1 with respect to
the Lebesgue measure in the coordinate space. Further we choose the coordinates so that
p(2) +Imz, = 0(|2|?) at z,. By Taylor’s formula, Q is therefore defined in a neighborhood
of z, by an inequality of the form

i &*p(0)

Imz,>
i k=1 az,- 3zk

2;%.+ Re A(2) +o(|z[?),

where 4 is an analytic, homogeneous, second degree polynomial. If we replace the coor-
dinate 2z, by 2, —~i4(z), the differential at z, is not changed, so we may assume without
restriction that 4 =0 from the beginning. Put a,, = 02p(0)/0z,;0%,, which is a hermitian sym-
metrie, positive definite matrix.

With an arbitrary ¢ >0 we set
n
Q.= {z; Imz,> 3 apz;%+ e[z|2}.
i k=1

Then QR =Q.n{z|z|<8}
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is contained in Q if § is sufficiently small. (We do not distinguish between a point in Q
near z, and the point in C* defined by its coordinates.) For small § the product of ¢” % and
the density of the Riemannian element of volume with respect to the Lebesgue measure is
larger than exp( —@(z,) —¢£) in this set. Using the monotonicity (3.5.3) we therefore obtain

K(z;Q, ) < e K (2; O, 0).

If we let z— 0 so that Imz,/|z| has a positive lower bound, it follows from Lemma 3.5.2
and from Lemma 3.5.4, applied to Q¢ and Q,, that

lim (Im 2,)" K (2; Q, @) < e#@**Iim (Im z,,)" " K (z; 22, 0)
= P+ lim (Imz,)" 1 K(2;Q,,0) =n!4 ™17 " * det (az + e,)] it

Since ¢ is arbitrary, this proves with the notations used in Theorem 3.5.1 that
lim | o(z) | K (2; Q, @) < k(2,) €Ol / (d7), (3.5.9)

if z—~z, while z remains inside a small cone in the coordinate space around the normal of
8Q at z,. But a moment’s reflection shows that this result is valid uniformly in z,, so it
remains true for arbitrary approach to z,.

So far we have not used the hypothesis in Theorem 3.5.1 that the range of the ¢
operator be closed. However, this is of course a vital assumption when we wish to estimate
K from below, for without it we would not even know that there are non-trivial analytic
functions in Q.

Let £ be > 0 but smaller than the smallest eigenvalue of the matrix (a;). For suffi-
ciently small § we have

QW ={z2€Q,|z]<6}<Q_..

Hence Lemma 3.5.2 can be applied with U ={z;|z| <4} and u,(z) =¢'*". From Lemma
3.5.2 and the monotonicity (3.5.3) we then obtain if  is sufficiently small

lim (Im 2,)" "' K (2; Q, @) = lim (Im 2,)" 'K (2; Q’, ) > €70~ *lim (Im 2,)" "' K (2, Q ., 0),

when z—z, and remains in a small cone around the normal of 2€2. Arguing exactly as in
the proof of (3.5.9) we conclude that

lim |o(2) |* " K(z; Q, @) = k(z,) €*“"n!/(40™). (3.5.10)

2=>2y

The repetition of the details of this argument may be left to the reader.
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