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Abstract

The research focus of designing local patch descriptors

has gradually shifted from handcrafted ones (e.g., SIFT) to

learned ones. In this paper, we propose to learn high per-

formance descriptor in Euclidean space via the Convolu-

tional Neural Network (CNN). Our method is distinctive in

four aspects: (i) We propose a progressive sampling strat-

egy which enables the network to access billions of train-

ing samples in a few epochs. (ii) Derived from the ba-

sic concept of local patch matching problem, we empha-

size the relative distance between descriptors. (iii) Extra

supervision is imposed on the intermediate feature maps.

(iv) Compactness of the descriptor is taken into account.

The proposed network is named as L2-Net since the out-

put descriptor can be matched in Euclidean space by L2

distance. L2-Net achieves state-of-the-art performance on

the Brown datasets [16], Oxford dataset [18] and the new-

ly proposed Hpatches dataset [11]. The good generaliza-

tion ability shown by experiments indicates that L2-Net can

serve as a direct substitution of the existing handcrafted de-

scriptors. The pre-trained L2-Net is publicly available1.

1. Introduction

Comparing local patches across images is at the base of

various computer vision problems, such as wide-baseline

matching [17], image retrieval [19] and object recognition

[8]. Ever since the advent of the famous SIFT [15] de-

scriptor, encoding local image patches into representative

vectors, i.e., descriptors, has been the dominating method.

Desired descriptors should be invariant (e.g., robust to view

point change, illumination change, or other photometric and

geometric changes) for matching patches and distinctive for

non-matching patches.

Along with the booming of handcrafted descriptors in

the past decade, more and more learning based descriptors

1https://github.com/yuruntian/L2-Net

appear [12, 24, 20, 16, 21, 7]. Different from handcraft-

ed descriptors which are mostly driven by intuition or re-

searcher’s expertise, learning based methods are driven by

data. Deep learning has revolutionized many research areas

[6, 14], and the public available of large scale dataset with

ground truth correspondences [16, 18] makes deep learning

possible for local patch matching. The application of Con-

volutional Neural Network (CNN) for local patch match-

ing can be divided into two categories by whether there are

metric learning layers. CNNs with metric learning layers

[10, 25, 9] typically treat the matching of local patch pairs

as binary classification, so there does not exist the concept

of descriptor. An obvious drawback of these models is that

they can not perform nearest neighbor search (NNS). On the

other hand, CNNs without metric learning layers [2, 5, 9]

(i.e., the output descriptors can be matched by L2 distance)

can be used as a direct replacement to previous handcrafted

descriptors in many applications, such as the fast approx-

imate nearest neighbor matching (e.g., KD-tree) for large

scale structure from motion and the bag of visual words re-

lated applications. On the widely used Brown dataset [16],

however, models with metric learning generally perform

better, and the gap is non-ignorable. Moreover, the general-

ization of the CNN based descriptors to other datasets(e.g.,

Oxford dataset [18]) does not show overwhelming superior-

ity to handcrafted descriptors.

As most matching tasks require NNS, we aim at learning

high performance descriptor that can be matched by L2 dis-

tance. The proposed L2-Net is a CNN based model without

metric learning layers, and it outputs 128 dimensional de-

scriptors, which can be directly matched by L2 distance.

In this paper, we draw inspiration from the basic concept

of matching: for a certain local patch, to find its matching

counterpart is to do NNS in the descriptor space. Thus, all

we need to do is to make sure that the descriptors of match-

ing pairs to be the nearest neighbor (under specific metric

like L2 distance in this paper) of each other, while the mag-

nitude of distance does not really matters. The essence be-

hind this inspiration is relative distance. Although the con-

1661



cept of relative distance is not new, its potentiality in de-

scriptor matching and other related applications is far from

being fully explored. Following this idea, we train L2-Net

by optimizing the relative distance among descriptors in a

batch. Specifically, L2-Net transforms a batch of patches

into a batch of descriptors, for each descriptor, our training

strategy aims at making its nearest neighbor in a batch to

be its correct matching descriptor. In this way, it is actu-

ally a one-vs-many operation which considers distances a-

mong many patch pairs, going beyond the widely used pair-

wise or triplet-wise operation [10, 25, 2, 5]. The training of

L2-Net is built on a progressive sampling strategy (section

3.3) and a loss function (section 3.4) consists of three error

terms. The proposed progressive sampling strategy can be

implemented by just one matrix multiplication, which en-

ables fast access to billions of patch pairs in a few dozens

of training epochs. As far as we know, the only method-

s that may share some common concept with ours are [9]

and [27]. However, [9] works on the distribution of match-

ing and non-matching pairs while we emphasis on specific

pairs, which is more sensitive. The sampling strategy of

[27] leads to a non-convex loss function that can not be op-

timized directly. By comparison, our sampling strategy is

fast, efficient and easy to implement. Besides, we integrate

three error terms in the loss function: one term accounts for

the relative distance among descriptors, one term controls

descriptor compactness as well as overfitting, and one term

is an extra supervision imposed on the intermediate feature

maps, which is named as Discriminative Intermediate Fea-

ture maps (DIF). The proposed network is very powerful

although not very deep, it achieves state-of-the-art perfor-

mance on several standard benchmark datasets, receiving

significant improvement over previous descriptors and even

surpassing those CNN models with metric learning layers.

The L2-Net descriptor can be used as a direct substitution

of existing handcrafted descriptors since it also uses L2 dis-

tance.

2. Related work

The research of designing local descriptor has gradually

moved from handcrafted ones to learning based ones. Since

the purpose of this paper is descriptor learning, below we

give a brief review of descriptor learning methods in the

literatures, ranging from traditional methods to the recently

proposed CNN based methods. For handcrafted descriptors,

please refer to [18] for an overview of classical methods and

[13] for recent advances.

Traditional descriptor learning. Early efforts in learn-

ing descriptors are not restricted to any specific machine

learning method, thus leading to a lot of unique works.

PCA-SIFT [12] applies Principal Components Analysis (P-

CA) to the normalized gradient patch instead of directly

using smoothed weighted histograms like SIFT. ASD [24]

assumes that local patches under various affine transforma-

tions lie in a subspace and PCA is used to extract the base of

the subspace as descriptor. [20, 16] emphasizes the learning

of pooling region and dimensionality reduction, achieving

remarkable performance. Besides float descriptors, there

are also learned binary descriptors. BOLD [3] presents a

method for adaptive online selection of binary intensity tests

so that each bit ensures low variance for intra-class and high

variance for inter-class. In Binboost [21], each bit of the

descriptor is computed by a boosted binary hash function.

RFD [7] proposes to do binary test on the most discrim-

inative receptive fields based on the labeled training data.

RMGD [26] introduces a kind of spatial ring-region based

pooling method for binary intensity tests, together with an

extended Adaboost bit selection. [29] presents a formula-

tion for patch description based on sparse quantization. All

the descriptors mentioned above start learning from low lev-

el features like gradient or pure binary intensity test, thus,

inevitably suffering from information loss. With the help of

CNN, we can learn descriptor directly from the raw image

patches.

CNN based descriptor learning. Recently, Siamese

and triplet networks are the main stream architectures in C-

NN based descriptor learning. To improve performance, a

fully connected layer acting as a metric network is favored

by many researchers. MatchNet [10], a typical Siamese

network, consists of a feature network for extracting fea-

ture representation, a bottleneck layer for reducing feature

dimension, and a metric network for measuring similarity

of features pairs. It significantly improves previous results,

showing a great potential of CNN in descriptor learning. Al-

so based on Siamese network, [25] gose further than Match-

Net. It explores different kinds of network architectures and

proposes to use a kind of central-surround structure to im-

prove performance. [9] uses triplet network and proposes a

global loss function to separate the distribution of matching

and non-matching pairs. Together with the metric learn-

ing layer and the central surround structure, [9] achieves

the currently best performance on the Brown [16] dataset.

Despite metric learning improves matching ability, it also

limits the versatility of the network. To solve this problem,

networks trained without metric learning layers have been

proposed. DeepDesc [5] trains the network using L2 dis-

tance by adopting a mining strategy to select hard patches.

However, it essentially requires huge amounts of training

data to ensure performance. PN-Net [2] uses triplet CNN

with a softPN loss that optimizes the distances among patch

triplets. Our work also aims to get rid of the metric network

and learn high performance descriptor that can be matched

by L2 distance.
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Figure 1. Network Architecture. 3×3 Conv = Convolution +Batch

Normalization + Relu. 8×8 Conv = Convolution +Batch Normal-

ization.

3. L2-Net

In this section, we describe in detail of the architecture,

training data, sampling strategy, loss function and training

of the proposed L2-Net.

3.1. Network architecture

The architecture of L2-Net is depicted in Fig. 1-(a). It

takes an all convolution structure, and down sampling is

achieved by stride 2 convolution. Batch normalization (B-

N) [28] is used after each convolutional layer, but with mi-

nor modifications, i.e., we do not update the weighting and

bias parameters of the BN layers and fix them to be 1 and

0 respectively. Since normalization is an important step in

designing descriptors, we use a Local Response Normal-

ization layer (LRN) as the output layer to produce unit de-

scriptors. L2-Net converts 32 × 32 input patches to 128

dimensional descriptors . As in [25, 9], we also implement

a central-surround (CS) L2-Net. It is the concatenation of

two separate L2-Nets with a two tower structure as shown

in Fig. 1-(b). The input of the tower on the left is the same

with a solo L2-Net, while the input of the tower on the right

is generated by cropping and resizing the central part of the

original patches.

3.2. Training data and preprocessing

For network training, we use the Brown dataset [16]

and the newly proposed HPatches dataset [11]. These two

datasets are composed of local patches extracted from dif-

ferent scenes. Although diverse in properties, they organize

patches in the same way: (i) Each patch in the dataset has

a unique 3D point index, patches with identical 3D point

index are matching ones. (ii) For each 3D point, there are

at least 2 matching patches. Brown dataset consists of three

subsets, namely, Yosemite, Notredame, and Liberty. Usu-

ally, one of the subsets is picked as training set and the

other two subsets are used for testing. The training data

of HPatches dataset is composed of four subsets, namely,

train-hard (easy) -viewpoint, and train-hard (easy) -illum,

indicating that the patches exhibit viewpoint and illumina-

tion changes with different degrees. Since the label of its

test data is not published at the time we finish this paper,

we just use HPatches as training set. There are approxi-

mately 500K (1.5M) and 190K (1.2M) 3D points (patch-

es) in Brown dataset and HPatches dataset respectively. All

patches are down sampled to the size of 32 × 32 for train-

ing. Based on our experiments, we did not notice any per-

formance degeneration caused by shrinking the patch size.

For each patch, we remove the pixel mean calculated across

all the training patches, and then contrast normalization is

applied, i.e., subtracted by the mean and divided by the s-

tandard deviation.

3.3. Progressive sampling of training data

In local patch matching problem, the number of poten-

tial non-matching (negative) patches is orders of magni-

tude larger than the number of matching (positive) patch-

es. Due to the so large amount of negative pairs, it is im-

possible to traverse all of them, therefore a good sampling

strategy is very crucial. Existing methods typically sam-

ple equal numbers of positive and negative pairs in train-

ing, while the proposed progressive sampling strategy is to

break the balance by sampling more negative pairs. Sup-

pose there are P 3D points in the training set. In each it-

eration, we take p1 points from the whole set sequentially

to traverse all the P points, and then we take an extra of

p2 points form the rest P − p1 points randomly. The ran-

domness brought by the extra p2 points gives the network

a chance to go over what it has learned and be prepared for

what it will learn. To form a training batch, we randomly

pick a pair of matching patches for each of the p (equals

to p1 + p2) points (thus there are 2p patches in a batch).

Let X =
{

x11, x21, · · ·, x1i , x2i , · · · , x1
p, x2p

}

32×32×2p
be the

2D patches in a batch, where the subscript is the 3D point

index and the superscript is the 2D patch index (e.g., x1i
and x2i represents a matching pair from 3D point i). Given

X as input to L2-Net, the output descriptors is denoted as

Y =
[

y1
1, y21, · · ·, y1

i , y2i , · · · , y1p, y2
p

]

q×2p
, where q is the

dimension of the descriptor (128 in this paper). Note that

Y is a batch of unit vectors as the output layer of L2-Net

is LRN. Thus, we define the distance matrix D = [dij ]p×p,

where dij =
∥

∥y2i − y1j
∥

∥

2
(∥∥2 is L2 norm), and D can be

computed by one simple matrix multiplication as

D =
√

2
(

1−YT

1
Y2

)

(1)
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where Ys =
[

ys1, · · ·, ys
i , · · · , ysp

]

q×p
, (s = 1, 2). As a re-

sult, D contains distances of p2 pairs, namely p positive

pairs as the diagonal elements and p2 − p negative pairs as

the off-diagonal elements. For a typical training set with

160K 3D points, with p set to be 128, it means that each

training epoch consists of 2500 batches. In each epoch,

over 40M (1282 × 2500) pairs are fed to the network. In

our experiments, L2-Net typically needs about 40 training

epochs. This indicates that about 1.6 billions pairs (despite

the inevitable repetition as a result of randomness, it is still a

huge number) are used for training, with the overwhelming

majority to be negative pairs and positive pairs only takes

up 12.8M (128× 2500× 40).

A possible question would be why we use YT

1 Y2 instead

of YT
Y to compute D. It is because that if YT

Y is used,

the diagonal elements of D will be all zeros (distances be-

tween identical patches), and all positive and negative pairs

would be distributed on the off-diagonal elements, making

the calculation of the gradient troublesome. In fact, our ear-

ly work used Y
T
Y, however, it does not show superiority

in performance than using Y
T

1
Y2.

3.4. Loss function

Built upon the progressive sampling strategy, our loss

function integrates three objectives. First, we use relative

distance to separate matching and non-matching pairs. Sec-

ond, we emphasize compactness of the output descriptor,

which means that all dimensions of the descriptor should be

less correlated. Finally, instead of just concentrating on the

final output, we also impose constraints on the intermedi-

ate feature maps to achieve better performance. According

to these objectives, we design three error terms in the loss

function.

1) Error term for descriptor similarity. This error ter-

m is based on relative distance, i.e., the nearest neighbor of

each descriptor in the batch should be its matching counter-

part. In D, it would be ideal if

min
(i,j)∈[1,p]

{dik, dkj} = dkk (2)

Equation (2) means that the diagonal element dkk should

be the smallest among the kth row and kth coloum. It is

equivalent to






min
i∈[1,p]

{dik} = dkk

min
j∈[1,p]

{dkj} = dkk
(3)

For easy implementation, we operate on columns and

rows separately. Define the column similarity matrix

S
c = [scij ]p×p and the row similarity matrix S

r = [srij ]p×p

as
scij = exp(2− dij)/

∑

m

exp(2− dmj)

srij = exp(2− dij)/
∑

n

exp(2− djn)
(4)

where 2 is the maximum L2 distance between two unit vec-

tors. In equation (4), scij can be interpreted as the probabili-

ty that y2i is matched to y1j , and srij is the probability that y1i
is matched to y2j . By applying softmax function to each col-

umn and each row of D, we can get Sc and S
r respectively.

The error term for descriptor similarity is defined as

E1 = −
1

2

(

∑

i

log scii +
∑

i

log srii

)

(5)

E1 encourages the descriptors to be closer to their matching

counterparts in Euclidean space, while ignoring the specific

magnitude of distances, which is the essence of NNS.

2) Error term for descriptor compactness. As the pro-

gressive sampling strategy gives L2-Net the access to mas-

sive training samples, overfitting becomes inevitable in our

initial experiments. An interesting finding is that the degree

of overfitting is directly related to the degree of correlation

among descriptor dimensions. Thus we introduce an error

term that accounts for compactness of the descriptor. By

compactness we mean that there should be less redundancy

among different dimensions and each dimension should car-

ry as much information as possible so that fewer dimension-

s could be used to achieve the same performance. In fact,

compactness is commonly used in the learning of binary de-

scriptors (such as BOLD [7], RFD [3]), which is typically

achieved by greedy selection of bits with high variation. To

make it differentiable, we adopt the correlation matrix. A-

gain, we use Ys instead of Y to guarantee that the descrip-

tors for the computation of correlation matrix come from d-

ifferent 3D points. We denote Y
T

s
as
[

bs
1, · · ·, bs

i , · · ·, bs
q

]

,

where bs
i is the row vector.

The correlation matrix Rs = [rsij ]q×q is defined as

rsij =
(bs

i − b̄si )
T
(bs

j − b̄sj)
√

(bs
i − b̄si )

T
(bs

i − b̄si )
√

(bs
j − b̄sj)

T
(bj − b̄sj)

(6)

where b̄si refers to the mean of the ith row of Ys. The off-

diagonal elements of Rs is expected to be 0, thus we simply

minimize the sum of the squared off-diagonal elements.

E2 =
1

2





∑

i ̸=j

(

r1ij
)2

+
∑

i ̸=j

(

r2ij
)2



 (7)

We find it is more efficient to put E2 before the LRN

layer, i.e., after the last BN layer. This is because that BN

will normalize each channel by subtracting the mean and

dividing the standard deviation (note that the weighing and

bias are fixed to be 1 and 0). As a result, the computation of

correlation matrix can be simplified as

Rs = YsY
T

s /q (8)
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3) Error term for intermediate feature maps. Existing

CNN based methods only focus on the final output descrip-

tors, ignoring the importance of intermediate feature maps.

In this paper, we find that it is possible to further increase

the performance of L2-Net with extra supervision informa-

tion provided by the intermediate feature maps. The design

of this error term is driven by the same motivation of E1,

i.e., the intermediate feature maps of a patch should also be

similar for matching pairs, while distinct for non-matching

pairs. Denote the batch of feature maps of the kth layer as

F =
[

f11, f21, · · ·, f1i , f2i , · · · , f1p, f2p
]

(wh)×2p
, where fsi is the

vectorized feature map with width w and height h, and in-

dex k is omitted for concision. The inner product matrix

G = [gij ]p×p for intermediate feature maps is computed as

G = (F1)
T
F2 (9)

where Fs =
[

fs1, · · ·, fsi , , · · · , fsp
]

(wh)×p
(s = 1, 2). Like

in equation (3), it would be ideal if






min
i∈[1,p]

{gik} = gkk

min
j∈[1,p]

{gkj} = gkk
(10)

Similarly, relative distance (here measured by inner prod-

uct) is used to build an error term on G. Same to the

definition of E1, we define the column similarity ma-

trix V
c = [vcij ]p×p as well as the row similarity matrix

V
r = [vrij ]p×p on G, where

vcij = exp(gij)/
∑

m

exp(gmj)

vrij = exp(gij)/
∑

n

exp(gjn)
(11)

Thus, the error term for intermediate feature maps is de-

fined as

E3 = −
1

2

(

∑

i

log vcii +
∑

i

log vrii

)

(12)

We name this method as Discriminative Intermediate Fea-

ture maps (DIF). Experiments show that it is better to use

DIF on normalized feature maps, so we put DIF on the fea-

ture maps after BN layers, specifically, only after the first

and the last BN layers. This is because that before the first

and after the last convolutional layers there are no other

convolutional layers, so the order of feature maps is fixed,

i.e., the first convolution is directly applied to the input data

(each channel of the input data has fixed mathematical or

physical meaning) and the output of the last convolutional

layer corresponds to the final descriptor. Except for these

two, we do not restrict the flexibility of all other feature

maps.

To sum up, E1 is computed on the final output, E2

is computed after the last BN layer, and E3 is comput-

ed after the first and the last BN layers. The total loss is

E1 + E2 + E3.

3.5. Training

We train the network from scratch using SGD with a s-

tarting learning rate of 0.01, momentum of 0.9 and weight

decay of 0.0001. The learning rate is divided by 10 every

20 epochs, and the training is done with no more than 50

epochs. For the training of CS L2-Net, we initialize the t-

wo towers using the well trained L2-Net. The parameters of

the left tower in Fig. 1-(b) is fixed and we fine tune the right

tower until convergence. We let p1 = p2 = q/2 = 64, Da-

ta augmentation (optional) is achieved online by randomly

rotating (90, 180, 270 degree) and flipping.

4. Experiments

In this section, we provide comparison of the proposed

model to the state-of-the-arts. Meanwhile, a series of exper-

iments are conducted to analyze the proposed model.

4.1. Brown dataset

We follow the evaluation protocol of [16] by using the

100K pairs provided by the authors and report the false pos-

itive rate at 95% recall. L2-Net is compared with other CN-

N based models with SIFT(results provided by [10]) as the

baseline. Accompany with the float L2-Net descriptor, we

further obtain a binary descriptor by simply taking the sign

of the float descriptor (±1). The resulting binary descrip-

tors are denoted as Binary L2-Net and Binary CS L2-Net.

To testify the generalization ability of L2-Net, we also train

it on HPatches dataset [11]. Results are listed in Table 1 and

Table 2.

As can be clearly seen from Table 1, L2-Net performs

the best across all the training/testing splits, with remark-

able improvement. Besides CS L2-Net, L2-Net already sur-

passes all models. For the other methods, CS SNet-GLoss

clearly outperforms the remaining ones. However, applying

CS structure to the models with metric learning will intro-

duce extra parameters to the fully connected layers, thus

increasing the time of feature extraction and matching. On

the contrary, for CS L2-Net, we use simple concatenation

without introducing any extra parameter and the two tow-

ers can be used independently. At the same time, binary

L2-Net descriptor significantly outperforms those specially

designed binary descriptors, and even surpass all float de-

scriptors. Note that the performance of the proposed bina-

ry descriptor can be further increased by a better threshold

rather than 0 or a better hashing method. Although trained

on a totally different dataset (Table 2), L2-Net still achieves

state-of-the-art performance, showing its great generaliza-

tion ability.

4.2. Oxford dataset

In order to further validate the generalization ability of

the proposed network, we test it on another totally different
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Training Feature Notredame Yosemite Liberty Yosemite Liberty Notredame

Test Dim Liberty Notredame Yosemite Mean

Metric Learning

SIFT [15] 128 29.84 22.53 27.29 26.55

MatchNet [10] 4096 6.9 10.77 3.87 5.67 10.88 8.39 7.74

DeepCompare 2ch-2stream [25] + 256 4.85 7.20 1.90 2.11 5.00 4.10 4.19

DeepCompare 2ch-deep [25] + 256 4.55 7.40 2.01 2.52 4.75 4.38 4.26

SNet-GLoss [9] + 256 6.39 8.43 1.84 2.83 6.61 5.57 5.27

CS SNet-GLoss [9] + 384 3.69 4.91 0.77 1.14 3.09 2.67 2.71

Float Descriptors

TNet-TGLoss [9] + 256 9.91 13.45 3.91 5.43 10.65 9.47 8.8

TNet-TLoss [9] + 256 10.77 13.90 4.47 5.58 11.82 10.96 9.58

PN-Net [2] 256 8.13 9.65 3.71 4.23 8.99 7.21 6.98

DeepDesc [5] 128 10.9 4.40 5.69 6.99

L2-Net 128 3.64 5.29 1.15 1.62 4.43 3.30 3.23

L2-Net + 128 2.36 4.7 0.72 1.29 2.57 1.71 2.22

CS L2-Net 256 2.55 4.24 0.87 1.39 3.81 2.84 2.61

CS L2-Net + 256 1.71 3.87 0.56 1.09 2.07 1.3 1.76

Binary Descriptors

RFDR [7] 293-598 19.35 19.40 13.23 11.68 16.99 14.50 15.85

RFDG [7] 406-563 17.77 19.03 12.49 11.37 17.62 14.14 15.4

BinBoost [21] 64 20.49 21.67 16.90 14.54 22.88 18.97 19.24

RMGD [26] 1376-1600 15.09 17.42 10.15 10.86 14.46 13.82 13.63

Boixet al [29] 1360 15.6 15.52 - 8.52 - 8.87 12.12

Binary L2-Net 128 10.3 11.71 6.37 6.76 13.5 11.57 10.03

Binary L2-Net + 128 7.44 10.29 3.81 4.31 8.81 7.45 7.01

Binary CS L2-Net 256 5.25 7.83 3.07 3.52 8.49 6.92 5.84

Binary CS L2-Net + 256 4.01 6.65 1.9 2.51 5.61 4.04 4.12

Table 1. Performance on the Brown dataset. The numbers are false positive rate at 95% recall. + indicates data augmentation.

Test Liberty Notredame Yosemite Mean

L2-Net 4.16 1.54 4.41 3.37

L2-Net+ 3.2 1.3 3.6 2.7

CS L2-Net 2.43 0.92 2.58 1.97

CS L2-Net+ 1.9 0.73 1.85 1.49

Binary L2-Net 12.4 6.4 13.16 10.65

Binary L2-Net+ 10.74 5.44 11.07 9.08

Binary CS L2-Net 6.43 2.88 6.91 5.4

Binary CS L2-Net+ 5.4 2.44 5.88 4.57

Table 2. Performance of networks on the Brown dataset when they

are trained on HPatches dataset .

dataset, i.e., the Oxford dataset [18]. We evaluate L2-Net on

six image sequences, namely, graf (viewpoint), bikes(blur),

ubc(JPEG compression), leuven(light), boat(zoom and ro-

tation), and wall(viewpoint). In each image sequence, there

are six images sorted in an order of increasing degree of

distortions with respect to the first image. Keypoints are de-

tected by Harris-Affine detector and local patches are nor-

malized to the size of 32 × 32 (64 × 64 for DeepDesc [5]

and TNet-TGLoss [9] ) with a scaling factor of 3. We fol-

low strictly the evaluation protocol of [18]. The results of

other methods such as [10, 25] on the same dataset can be

found in [2], where no improvement over PN-Net is ob-

served. One should note that CNN models with specific

learned metric are not suitable for evaluation on the Oxford

dataset, as the nearest neighbor search can not be well per-

formed using similarity score. For a fair comparison and

without lose of generality, all models are trained on Liberty

(DeepDesc [5] is trained on Liberty and Notredame). Be-

sides learned descriptors, we use LIOP [23] as the baseline

of handcrafted descriptors, since it was reported to surpass

most of the handcrafted descriptors on this dataset. Mean-

while, Binary L2-Net and Binary CS L2-Net are compared

to other state-of-the-art binary descriptors. Moreover, we

report results with different training data. Experimental re-

sults are shown in Fig 2 with mean average precision (mAP)

as performance indicator.

As can be clearly seen from Fig 2, L2-Net outperforms

all the other descriptors on average and even the binary L2-

Net descriptor surpasses all other float descriptors. More-

over, there are some other interesting observations: i) The
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Figure 2. Performance comparison on Oxford dataset in terms of mAP. Performance with respect to different training set is shown in the

right part of the figure (the average mAP over six image sequence).

CS structure does not guarantee performance improvement

on all datasets and all types of descriptors (float and bina-

ry). Since CS structure needs to crop the central part of the

patch, how to choose the scale of the patch becomes a prob-

lem. Patches in Brown dataset and Hpatches dataset are of

similar scale, thus CS structure works fine. However, with

different detector and scale, arbitrarily cropping the central

50% of the patch (can be less textured) may not be a good

choice. ii) In accordance with [4], we also find that CNN

based methods is very sensitive to image blur. iii) Hpatches

dataset shows better generalization ability.

4.3. Hpatches dataset

Results of the prototype L2-Net (casia-yt) on the test da-

ta of Hpatches dataset can be found at the webpage of EC-

CV 2016 workshop “Local Features: state of the art, open

problems and performance evaluation” 2, where our method

ranked No.1 in all the three tasks.

4.4. Discussion and analysis

In this section, we discuss how each of the proposed er-

ror terms contributes to the final performance and give some

qualitative analysis for the binarized descriptor.

Importance of compactness. We try to train L2-Net

without E2, however, the network does not converge. Due

to the large amount of training samples fed to the network, it

is easier for the network to memorize the training data rather

than learn to generalize. Without E2, strong overfitting hap-

pens and the dimensions of the output descriptor are highly

correlated. Therefore, compactness is of crucial importance

to the progressive sampling strategy. By restricting com-

pactness, the network actually tends to extract uncorrelated

features containing more information.

Advantage of relative distance. E1 is quite different

from the widely used hinge loss. Typically, hinge loss for

2http://www.iis.ee.ic.ac.uk/ComputerVision/DescrWorkshop/index.html

patch pair and triplet can be written as

Epair = δij max
(

0,
∥

∥yi − yj
∥

∥

2
− tp

)

+(1− δij)max
(

0, tn −
∥

∥yi − yj
∥

∥

2

)

Etriplet = max

(

0, 1−
∥y

i
−y

−

i ∥2

∥y
i
−y

+

i ∥2
+t

)

(13)

where δij equals to 1 if yi and yj are matching, otherwise

δij equals to 0. t, tp, tn are thresholds, whose optimal val-

ues are difficult or even impossible to find, so they are most-

ly decided by experience. A major drawback of hinge loss

is the unstable gradient caused by thresholding. As training

proceeds, it is not sure how many samples in a batch are

contributing to the overall gradient, and unstable gradien-

t may lead to a bad local minima. To tackle this problem,

many researchers resort to hard sample mining, however,

the nature of mining is still thresholding (more strict). By

utilizing relative distance, the absolute value of distances

becomes useless, thus there is no need to use thresholds.

Effectiveness of DIF. First, we simply remove E3 from

the error function to prove the effectiveness of DIF, and then

we impose DIF after every BN layer to test its performance.

Comparing curve A with curve B and D in Fig. 3-(b), it

can be found that since DIF can provide more supervision

in training, L2-Net with DIF works consistently better than

that without it. However, DIF can not be over used as it will

limit the solution space of the network.

Batch normalization. The weighting α and bias β are

fixed to be 1 and 0 in our BN layers, as we find learn-

ing them makes the output feature maps (and descriptors)

in poor distribution. In this experiment, the weighing and

bias parameters of all BN layers is learned except the two

BN layers before DIF (as DIF depends on the normalized

features). The training procedure is shown by curve C in

Fig. 3-(a). Comparing curve A with C, we can find that up-

dating α and bias β leads to minor performance decline. As

an illustration to this phenomenon, suppose a ∼ N (µ1, σ1)
and b ∼ N (µ2, σ2) are two random variables obeying gaus-
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Figure 3. Model analysis. L2-Net is trained on Hpatches dataset and tested on Brown dataset. (a): Effect of DIF and BN. Area under the

ROC curve (AUC) of different training epoch (averaged over three subsets of Brown dataset) is served as an indicator. Curve A: default

setting. Curve B: default - DIF. Curve C: default + learned BN parameters. Curve D: default + extra DIF. (b): Distribution of the float

L2-Net descriptor. (c): Mean of each bit of the binary L2-Net descriptor.

sian distribution. It is not difficult to understand that the

easiest way to separate them is to increase |µ1 − µ2| while

decrease |σ1| and |σ2|. As a result, learning α and β may

cause the extracted feature to be sharp and non-zero dis-

tributed, which damages the performance. Fixing them is

based on the principal that we want the feature maps (and

descriptors) of different patches to be independent identical-

ly distributed. In this way, the network is forced to extract

features that are highly discriminative rather than biased.

Property of the binarized descriptor. We aim to pro-

vide an insightful explanation for the good performance of

the binarized descriptor, despite the fact that it is just a by-

product of the proposed float descriptor. Thus, we randomly

select 100K patches from different 3D points to investigate

the value distribution of the proposed descriptor. Fig. 3-(b)

shows that the output values of the L2-Net approximately

obey the Gaussion distribution with zero mean. In Fig. 3-

(c), each bit of the binarized descriptor has a mean near

0, which is highly desirable for a good binary descriptor.

Moreover, we know that hamming distance can be comput-

ed by inner product (for vectors consist of +1 and -1) and

DIF is just built on inner product, which means there could

be strong connections between DIF and the performance of

the binary descriptor. We will leave the in depth analysis in

the future work.

4.5. Trianing and extraction speed

We use a GTX 970 GPU in MatConvNet [22]. L2-Net

reaches maximum performance in 20 to 50 epochs. With-

out online data augmentation, it takes only 2 to 4 hours (4

to 6 hours with online data augmentation). Note that with

a more powerful GPU, the training time will undoubtedly

reduce. L2-Net can extract descriptors at the speed of ap-

proximately 21.3K patch/sec.

5. Conclsion

In this paper, we propose a new data-driven descriptor

that can be matched in Euclidean space and significant-

ly outperforms state-of-the-arts. Its good performance is

mainly attributed to a new progressive sampling strategy

and a dedicated loss function containing three terms. By

progressive sampling, we manage to visit billions of train-

ing samples. By going back to the basic concept of match-

ing (NNS), we thoroughly explore the information in each

batch. By requiring compactness, we successfully handle

overfitting. By utilizing intermediate feature maps, we fur-

ther boost the performance. Moreover, a powerful bina-

ry descriptor is obtained by directly taking the sign of the

learned float descriptor, which gives the best performance

among existing binary descriptors and even outperforms

most float descriptors. Finally, L2-Net should be further

extended to more applications such as image classification

and retrieval. We will leave these problems as the future

work.
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