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In this paper we introduce L2C, a hybrid lossy/lossless compression scheme applicable both to the memory
subsystem and I/O traffic of a processor chip. L2C employs general-purpose lossless compression and combines
it with state of the art lossy compression to achieve compression ratios up to 16:1 and improve the utilization of
chip’s bandwidth resources. Compressing memory traffic yields lower memory access time, improving system
performance and energy efficiency. Compressing I/O traffic offers several benefits for resource-constrained
systems, including more efficient storage and networking. We evaluate L2C as a memory compressor in
simulation with a set of approximation-tolerant applications. L2C improves baseline execution time by an
average of 50%, and total system energy consumption by 16%. Compared to the lossy and lossless current
state of the art memory compression approaches, L2C improves execution time by 9% and 26% respectively,
and reduces system energy costs by 3% and 5%, respectively. I/O compression efficacy is evaluated using a set
of real-life datasets. L2C achieves compression ratios of up to 10.4:1 for a single dataset and on average about
4:1, while introducing no more than 0.4% error.

CCS Concepts: • Computer systems organization→Architectures; Processors and memory architec-
tures.
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1 INTRODUCTION
The rapid increase of connected devices and data produced globally [1] drive numerous applications
to become more data-intensive, overwhelming existing computing systems in various domains
[2–4]. In high performance computing, server machines in data centers and supercomputers need
to handle massive volumes of data supporting Big Data, Cloud Computing, streaming services and
many other emerging applications. In the embedded domain, edge and Internet-of-Things (IoT)
devices are expected to store, process and communicate data at high data rates under a tight power
budget. In turn, the huge sizes and overwhelming rates of data put pressure on the memory and
I/O bandwidth resources of systems and often become the bottleneck, limiting performance and
wasting energy [5].

One way to alleviate the bandwidth pressure is to improve its utilization with compression.
Compressing data towards bandwidth improvement has different requirements depending on the
target subsystem. On one hand, in a memory subsystem, compression needs to have low latency,
especially during decompression triggered by read accesses, and be effective on small block sizes,
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i.e., a few cache lines. Then, it can reduce memory access latency offering faster processing and
higher energy efficiency. Commercially available memory compression techniques are mostly
application-specific, i.e., GPUs [6, 7]. Other more generic memory compression approaches use a
single, lossless or lossy algorithm for compression [8–10]. However, current lossless compression
algorithms offer limited compression ratios (on average, between 2x and 4x) [8, 11–15], while a
lossy one is only suitable for datasets that tolerate approximations [16, 17]. The trade-off is that
lossy compression is able to offer compression ratios as high as 16x [10], making it attractive where
supported. On the other hand, compression of data transferred through I/O ports has different
design objectives as it strives for high throughput rather than low latency and handles data in larger
blocks or in streams. In turn, the combination of latency tolerance and larger block sizes enables
higher compression ratios. I/O compression offers better storage utilization and more efficient
data transmission improving systems efficiency. I/O compression in embedded systems is often
supported by custom hardware, hence is more expensive and with limited applicability, i.e., targeting
wireless communications [18]. In the HPC domain, IBM Power9 and Z15 offer user-controlled
lossless-only compression acceleration [19], while software-based, hence slower, compression is
used for check-pointing traffic [20].

This work describes L2C , a new holistic compression scheme aiming to utilize more efficiently
the bandwidth resources of a processor chip. The main advantage of L2C is that it combines lossless
and lossy compression to best fit the characteristics of different parts of a dataset and improve
the impact of compression. In particular, L2C offers high, lossy compression for data that can
be approximated and lower, but lossless compression for data that cannot. Thereby, it is better
than previous approaches that offer only lossy or only lossless compression. Combining lossless
and lossy compression in the memory system is challenging as they exhibit radically different
characteristics, which call for different design requirements. The compression ratio of a lossless
method is 4-8× lower than that of a lossy one, as a consequence, using the same memory block size
for both would either introduce excessive traffic overheads for the lossless or limit the effectiveness
of the lossy method. On the other hand, supporting two different block sizes introduces challenges
in the design of the memory system. L2C addresses these challenges to preserve the benefits of both
compression alternatives. Another property of L2C is that it handles both memory and I/O traffic
improving systems efficiency and simplifying integration in the uncore of a chip. However, reusing
the same mechanism for memory and I/O compression introduces the challenge of supporting both
low latency as well as high throughput compression, while remaining effective in handling small
blocks.

In a nutshell, the contributions of this paper are the following:

• The first approach that combines Lossy and Lossless compression algorithms in a memory
system. L2C achieves this supporting:
– two granularities of memory blocks, tailored to each compression method in order to
increase its effectiveness and reduce overheads;

– a cache structure and main memory layout that can store blocks of both granularities;
– a mechanism to dynamically select the most suitable compression method;
– a hybrid metadata format that supports the two methods and in addition is partially
embedded with the data to reduce costs.

• Reusing the same compression mechanism for I/O traffic, too, to improve the efficiency of
storage and networking functions, which is enabled by compressor designs that offer both
high throughput and low latency.
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• A thorough evaluation and comparison with state of the art compression techniques showing
the benefits of combining lossy and lossless compression as well as the gains of reusing it for
compressing I/O traffic.

The remainder of this paper is organized as follows. Sections 2 and 3 discuss related work and
background. Section 4 describes the proposed L2C architecture. Section 5 presents our evaluation
results and Section 6 draws our conclusions.

2 RELATEDWORK
Prior work on related topics is discussed next. First, existing designs for memory compression are
presented and subsequently a summary of I/O compression techniques applied in data collection
systems is given. Finally, in relation with lossless compression methods, an overview is provided
on approximate computing techniques that improve the performance of memory systems.

2.1 Memory Compression
A wide variety of memory compression techniques have been proposed for improving memory
capacity and bandwidth utilization. They employ low latency algorithms and suggest different
adjustments in the memory system to increase compression efficiency and minimize overheads.
Most existing designs use lossless compression algorithms to avoid introducing changes to

the data. Some example of lossless algorithms applied to memory systems use dictionary-based
compression [21], exploit frequent patterns and zero-value blocks [22], use similarities of words at
the same bit position [8] or offer a hybrid scheme of different lossless algorithms applied to different
data [23]. In spite of these varying approaches, lossless solutions have limited compression ratio
between 2:1 and 4:1. Leveraging the fact that some applications can tolerate inaccuracies in parts of
their data [16, 24], lossy algorithms, such as downsampling [9] and Squeeze [10], were introduced
for memory compression to improve compression ratio up to 16:1. However, lossy approaches can
be applied only to data that tolerate approximations and limits their applicability.

Besides the algorithm choice, another aspect is the data placement in memory. Some approaches
compact compressed data in memory to improve capacity [25]. Others avoid the overheads of data
compaction, allocating the worst case storage required for the uncompressed data and focus only
on memory bandwidth improvements [9, 10, 26, 27].

Another important design choice is the granularity of thememory block size used for compression,
especially when random access in the compressed form of the data is limited or not supported at
all. Then, the block size defines a trade-off between the maximum supported compression ratio and
the traffic overheads of fetching more data than requested. To exemplify, considering that a cache
line (e.g. 64B) is the standard memory access granularity, selecting a block size of eight cache lines
defines the maximum compression ratio to be 8:1. However if the average achieved compression
ratio is 2:1 then that means that on average a memory access will bring four cache lines on-chip,
at the risk of overhead in case of lacking locality. As a consequence, previous lossless memory
compression solutions use small blocks of 2-4 cache lines and lossy ones use blocks of about 16
cache lines [9, 10]. Another overhead of larger block sizes is the fact that evicting a cache line from
the chip requires the entire block to be present in order to get updated; this adds traffic overheads
in case the block misses. In the past, the following two techniques have been used to reduce these
overheads: the first one stores recently compressed blocks in the Last Level Cache of the processor
and the second uses unoccupied memory space to evict dirty cache lines in their uncompressed
form, postponing the recompression of the block [9, 10].
Finally, managing the metadata needed for locating and handling the compressed data is also

challenging as it may add considerable memory bandwidth overheads [28, 29]. One approach is to
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employ a metadata table and a cache of it, as in [9, 10, 25], which is updated with the TLB and adds
a few bytes of bandwidth overhead at every TLB miss. Techniques like Attache [28] aim to further
reduce the metadata cost by embedding the metadata directly in the compressed block.

L2C strives to improve bandwidth utilization while avoiding compaction in main memory. Note
that on the contrary, compaction in storage and networking I/O devices is one of L2C objectives.
L2C is the first memory compression solution that addresses the challenge of combining lossy
and lossless. It does so by adapting the memory system to support two block granularities; one
for lossless and one for lossy compressed data. In addition, L2C employs a mix between the two
metadata approaches mentioned above, with essential metadata kept in a table along-side the TLB
while non-essential metadata are embedded in the compressed block.

2.2 Link Compression
Compression has been a key technique for reducing I/O traffic in embedded as well as in HPC
systems. The main design objective is high throughput and in the case of embedded systems low
power is an additional requirement.
In distributed embedded data collection systems and IoT devices, compression fills a critical

role due to tight constraints on power, communications and computational resources. Lossless
compression has been applied to reduce the volume of off-device traffic [30], by exploiting appli-
cation specific data properties [31], deduplication [32], prediction [33], and similarities between
concurrent data streams [34]. General-purpose compression algorithms such as LZW have proved
prohibitively expensive for such low-power devices [35] due to their excessive energy costs. A
number of compression schemes have been proposed for embedded applications, utilizing data
transformations [36], correlating multiple data sources [37], identifying particularly interesting (i.e.
irregular) measurements [38], automatically adapting compression parameters to data features [39].
Moreover, a hybrid lossy and lossless scheme [18], the combination of which in I/O compression
does not entail the challenges discussed for the memory compression counterpart.
In HPC applications, software-implemented lossy stream compression has been applied to

high-volume I/O traffic without latency constraints [20] to alleviate the performance, energy and
storage costs of saving checkpointed data. Moreover, IBM Power9 and z15 provide a user-controlled
compressor accelerator in their DMA engine [19] to reduce data volume of DMA transfers.

In summary, embedded I/O compression techniques are mostly custom hardware designs, which
increases the cost of the system and often limits their applicability to the particular targeted class
of I/O devices. In the HPC domain, compression solutions are in some cases software-based, hence
slower and less energy efficient, and in all cases controlled in the user space therefore cannot be
exploited at regular memory and I/O operations.
L2C exposes its proposed memory compression technique to compress I/O traffic, too, in order

to alleviate I/O bandwidth pressure and improve the efficiency of storage and networking systems
functions. L2C compression is generic, hardware accelerated and handled in a transparent way
without user explicit control. Finally, reusing the same compression mechanism for memory and
I/O saves systems energy and area.

2.3 Approximate Computing
The aforementioned lossy compression approaches can be considered part of the broader topic
of Approximate computing as they introduce approximations to the data they handle. As such,
they share in common some aspects such as the mechanisms for handling errors and identifying
opportunities for approximation. Below, approximate computing techniques for improving the
memory system are discussed.
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Large classes of applications are inherently tolerant to approximations [16]. This enables a trade-
off between the quality of their results and their performance and energy efficiency. This trade-off
is exploited by various approximate computing techniques, such as computation acceleration [40],
memoization [41], limited fault recovery [42], and data storage [43, 44].
Several approximate computing techniques target memory system bottlenecks. Approximate

load value prediction reduces memory latency by predicting rather than fetching a value from
memory [45–47]. Reducing the precision of floating point [48–51] and fixed point [52, 53] numbers
has been used to alleviate the memory bandwidth bottleneck in deep neural networks [52], GPU
workloads [49–51, 54] and other approximation tolerant applications [48] improving performance
and energy efficiency. However, the compression ratio is still limited between 2:1 and 4:1 despite
the loss of precision as these approaches do not exploit inter-value similarities to compress data.
Furthermore, Doppelgänger proposed to deduplicate similar cache lines to compress data [55].
A combined approach has been proposed to increase the compression ratio offering the option

to reduce precision of individual values by truncating bits and then apply lossless compression on
top [49]. The compression ratio remains at roughly 2:1, due to the limited impact of single-value
precision reduction and is similar to existing lossless compression schemes, offering little benefit to
outweigh quality loss of approximation. Precision reduction is distinct from full lossy compression,
in that it only trivially reduces storage size for each individual value rather than identifying inter-
value redundancy. Furthermore, the proposed design is implemented in a GPU architecture. While
GPGPU techniques extend application support beyond graphics, it is nonetheless limited. L2C takes
a different approach, supporting lossless compression along-side more aggressive lossy compression
in a general-purpose processor, as well as dynamically switching between the two. This is a more
complex problem, due to the differing properties of the two compression methods.
In the past, applications [16] and (parts of) datasets [24] that tolerate approximations have

been identified. Past lossy memory compression techniques used error thresholds for maintaining
the introduced approximation error in check [9, 10] and evaluated the final error caused to the
application output. They also kept track of the accumulated average error per block to limit the
effect of repeated approximations on the same data [10]. L2C follows the same approach for handling
the error introduced by lossless compression.

3 BACKGROUND
L2C takes its basis in two existing compression systems: the lossy MemSZ [10] and the lossless
SC2 [14]. Lossless compression is safe to apply to all application data, but generally offers limited
compression ratio. Lossy compression is only applicable to select portions of data, but provides
significantly higher compression potential. By combining these two approaches, L2C is able to reap
the benefits of both. In this section, the two existing systems are described.

3.1 MemSZ
Memory Squeeze (MemSZ) applies lossy compression to parts of the application data, which can
tolerate approximation [10]. Thereby, it reduces the volume of data transferred between main
memory and processor chip, improving memory bandwidth utilization. The main component of
MemSZ is a compressor and decompressor between the last level cache (LLC) and the memory
controller of a processor.
Similar to most techniques that focus on data approximations [9, 48, 55, 56], data regions are

annotated approximable by the programmer, using a specialized system call. Allocated pages are
marked as approximable using one extra bit for every entry in the page table and translation looka-
side buffer (TLB). The programmer also specifies two acceptable error thresholds for approximable
data. One threshold limits the allowable error introduced in any single compression event, the
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Fig. 1. MemSZ’s Decoupled Sectored Cache and main memory block layout.

other limits the total accumulated error across the full application lifetime. Like other memory
compression works [9, 25, 57], metadata information for compressible memory blocks is stored in a
Metadata Table (MT) in main memory and cached on-chip (CMT). CMT is accessed in parallel with
the LLC and updated together with the TLB. Application data which are not marked as approximable
are not compressed. MemSZ does not aim to improve memory capacity. Consequently, each block
is allocated enough space to remain uncompressed, and therefore memory allocation is not affected.
Compressed blocks leave empty memory space between them, which remains uncompacted.

In order to achieve compression ratios of up to 16×, MemSZ applies compression at the granularity
of a 1kB (16 cache lines). However, this introduces a number of challenges. The compression prevents
random access to single cache lines embedded in compressed blocks, so a memory access triggers
accessing the entire block. In addition, LLC evictions are burdened with the overhead of fetching and
recompressing blocks. MemSZ addresses these challenges by (i) co-locating compressed memory
blocks and uncompressed cache lines in the Last Level Cache (LLC), (ii) handling LLC eviction in a
lazy manner, and (iii) keeping track of badly compressing memory blocks. These three points are
explained next.

In order to store compressed memory blocks alongside regular uncompressed cache lines, MemSZ
employs a Decoupled Sectored Cache [58], as illustrated in Figure 1. A layer of indirection (back-
pointers) allows a single tag to represent a block of multiple consecutive cache lines. MemSZ extends
this design to store any combination of compressed memory subblocks (CMS) and uncompressed
cache lines (UCL) under a shared tag.

A request to the LLC may hit in three distinct ways, with increasing latency: (i) in the buffer of
the compressor, which stores the most recently decompressed block; (ii) in the LLC as an UCL, (iii)
in the LLC as part of a compressed block. In the latter case, the block must be read out of the cache
and decompressed, introducing additional latency compared to a regular cache hit. Otherwise,
when the cache line misses, a memory request is issued. The metadata for the block indicates
whether the memory location is compressed in main memory or not. If not, the requested UCL can
be fetched from memory directly. If the data in the memory location are compressed, the entire
compressed block is fetched and decompressed. The compressed block is inserted in LLC, as is the
requested UCL. Writebacks to LLC are inserted as in a regular, non-compressing cache. When a
dirty line is evicted from LLC, the corresponding compressed block is updated if available on-chip.
If the block is only available in memory, it may be brought on-chip in order to be updated. To
reduce the overhead of such full-block fetches, MemSZ employs lazy evictions. The single dirty UCL
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is written back to memory, utilizing the space left empty after the end of the compressed block.
Figure 1 illustrates three lazily evicted cache lines in the empty space of block C. These lines were
dirty in the LLC in the past, and at eviction time the compressed block C was no longer on-chip.
As a result, lazy evictions wrote the dirty cache-lines back to memory. Lazy eviction allows MemSZ
to postpone the costly recompression and mitigate its traffic overhead.

The overhead of unsuccessful compression attempts is minimized by keeping a history of previous
compression attempts per block. This history is maintained in the metadata of each memory block.
It is used to delay recompression until a sufficient number of updates have been carried out, with
an exponential back-off. The metadata of a block also includes its compressed size, number of lazy
evicted cache lines, and the total accumulated error of each block.

The compression algorithm used by MemSZ is chosen for its high compression ratio and designed
for fast decompression. Compression is based on SZ [20], modified for a fixed block size and
increased parallelism. Individual values which exceed a set error threshold are embedded in the
compressed block, ensuring that each recompression meets the set threshold. This allows a variable
compression ratio ranging from 2× to 16×.

MemSZ reduced memory traffic up to 81% improving system performance and energy efficiency
up to 62% and 25%, respectively, introducing less than 2% application output error.

3.2 Statistical Cache Compression
Statistical Cache Compression (SC2) is a lossless cache-compression scheme, rather than main
memory, which is based on type-agnostic huffman-encoding [14]. A global Value Frequency Table
(VFT) is populated during a sampling phase at the start of execution, forming the basis for an
encoding tree. This encoding tree is then used to compress cache lines before they are written to
LLC, increasing its capacity.

During the sampling phase, the VFT is populated by observing the last-level cache. The VFT is a
set-associative cache structure, indexed by data values. It stores occurrence counters for the set of
most frequently seen values. When a line is updated in LLC, each individual value in the cache line
is added to VFT, i.e., its counter is incremented. When a cache line is evicted from LLC, each value
in the line is subtracted from VFT, i.e. its counter is decremented.

Since the VFT is of finite capacity, not all possible values can be present at the same time. Newly
observed values are inserted in the VFT, replacing the least-frequent value in its set. A special
counter labeled OTHER is maintained with the sum of all replaced counts. This is used as the
frequency of any data value not explicitly present in the VFT.

When the sampling phase ends, the frequencies collected in VFT are used to build a huffman tree,
assigning variable-length codes to each of the observed data values. This process assigns shorter
codes to the most frequently seen values, based on the assumption that common values during
sampling will remain common during the rest of execution.

During execution, any line to be inserted in the LLC is compressed using the generated encoding.
Known values are replaced with their variable-length code. Values not assigned an explicit encoding
are stored as-is, prefixed by the code assigned to OTHER. The global state (VFT) being shared
between all compressed blocks removes the need to embed the huffman dictionary in the compressed
block. This allows SC2 to be applied to blocks of arbitrary size, with no reduction in compression
efficiency.

4 SYSTEM ARCHITECTURE
L2C is a hybrid compression scheme which combines lossless compression with more aggressive,
lossy compression. Lossy compression has the potential for higher compression ratios, but is limited
to data annotated by the developer as approximable. Lossless compression offers more modest
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Fig. 2. Top-level view of the L2C memory compression architecture. The compressor module is placed next to
the DMA controller, with access to the on-chip interconnect.

benefits, but is safe to apply to all data, even as a fallback for approximable data. The hybrid nature
of L2C offers benefits over either approach. Lossless compression is available for all data. For data
which is marked approximable, lossy compression is employed as a primary technique. If lossy
compression fails due to quality constraints, L2C falls back to lossless compression. This approach
makes L2C applicable and beneficial to any application able to tolerate lossy memory compression.

L2C adds a hardware compressor in the uncore of a processor chip as depicted in Figure 2. It uses
the MemSZ [10] and SC2 [14] compression methods for lossy and lossless compression, respectively.
The L2C compressor module includes a buffer that stores the most recently decompressed data
(DBUF) and a cache of the metadata table (CMT) to handle the compression/decompression process.
Similar to MemSZ the LLC is designed as a decoupled sectored cache able to store compressed
blocks alongside the normal uncompressed data. Moreover, the L2C LLC and memory support two
block type of different granularity to fit the requirements of the two compression modes.
The compressor is located next to a Direct Memory Access (DMA) controller and connected

to the on-chip interconnect allowing it to interact with data transfers between the Last Level
Cache (LLC), Memory controller and system I/O ports. This placement allows both memory and
I/O compression. In turn, this enables L2C to use the same compressor for both memory and I/O
compression, the latter case controlled by the DMA.

Briefly, a memory access in the L2C system, is handled as follows. L2C extends the page table to
include metadata information about the allocated pages, including the annotation of approximable
pages, in other words pages that can be compressed in a lossy manner. A memory access is marked
as approximable or not after the TLB access. Metadata is read out in parallel with the LLC being
accessed. At the LLC, an access may hit either compressed or uncompressed data; otherwise (LLC
miss), an access to the main memory is triggered. The metadata indicates the size and compression
state of the fetched data. Moreover, LLC evictions are handled lazily by first attempting to update
the block if it resides in the LLC; if not, an uncompressed write-back is attempted, if compression
has left any unused space, otherwise, the block is fetched from memory to be recompressed.

In general, data in memory are grouped into larger blocks of multiple cache lines. These blocks
are kept in memory in compressed form. When a dirty cache line is evicted from the LLC, the
compressed block it belongs to is eventually updated to include the fresh data. At maximum
compression ratio, a block of 1kB (16 cache lines) fits in 64B (one cache line). Moreover, L2C can
automatically downgrade blocks from lossy to lossless compression in cases where insufficient
precision can be preserved. This allows the benefits of compression to be retained, at a reduced
level, rather than leaving the data uncompressed. Finally, blocks which are not explicitly marked as
approximable are only compressed losslessly.
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Each value in a sequence is encoded as a function of the preceding values.

In the remaining of the section, we describe the system design in more detail. First, the design of
the compressor is presented. Subsequently, the L2C memory block format and memory layout are
discussed. After that, it is explained how transition between block types are handled, and metadata
information is organized. Then, the design of the last level cache (LLC) is described. Finally, the
L2C I/O compression support is explained.

4.1 Compression Methods
The main feature of L2C is the application of two separate compressors, unified in a hybrid design.
In this article, we present and evaluate using the MemSZ lossy compressor [10] and the SC2 lossless
compressor [14]. MemSZ represents the state of the art in lossy memory compression, offering
compression ratios of up to 16×. SC2 is designed for cache compression, which requires low latency
and hardware complexity. These features also make it suitable for memory compression. Both parts
of the L2C compressor are pipelined allowing high throughput. Without loss of generality, L2C
can be implemented using any combination of block compressors. It is also trivial to extend L2C
to support multiple lossy or lossless compressors and choose the most successful method for any
given block.

4.1.1 Lossy compression. The lossy part of the L2C compressor is based on the SZ lossy compression
algorithm [20], which compresses sequences of values by describing each consecutive value as a
function of the preceding values. This is done by computing three different fixed functions (constant,
linear or polynomial), comparing their respective error and selecting and storing the best option
(two bits) in place of the value (32 bits). MemSZ introduces several performance improvements
to SZ and applies it to 1kB blocks for memory compression [10]. Data blocks are processed in a
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Fig. 4. Lossless SC2 compression scheme employed by L2C.

square arrangement, allowing for greater parallelism both during compression and decompression
as illustrated by Figure 3. The maximum achievable compression ratio for a 1kB block is 16 : 1.
The process of lossy compression of a 16 cache line block, outlined in Figure 3a, is designed to

maximize parallelism. The 16 cache lines are arranged as rows in a square block. Four seed values
are taken from the center of the block. The block is divided into 32 parallel sequences, starting
vertically from the seeds in both directions and then spreading out toward the sides. Within each
sequence, the compressor attempts to describe each value 𝑉 strictly as a function of the preceding
three values. If one of the available functions (constant, linear, or polynomial) successfully describes
the value, a two-bit symbol identifying that function is enough to represent the value. If none of
the functions is successful, the value is an outlier, and is marked by a special symbol. The outlier
value itself is stored at reduced precision (16 bits) in the compressed block. After this process, the
completed compressed block consists of the seed values, the set of two-bit symbols and a collection
of all identified outlier values. Compression of 1kB is completed in 16 cycles.

Decompression is illustrated in Figure 3b. It is optimized for minimal latency, and carried out in
two parallel processes: Distribution of outlier values and decompression of symbols. Distribution
of outliers is performed by decoding the sequence of symbols, identifying the location of outlier
values, as well as their order. The outlier values are first assigned to their proper column. Each
column is then populated, starting with the most critical center and progressing outward. The
decompression of the two-bit symbols is performed in the same order as they were compressed;
seed values are placed in the center of the block and 32 parallel sequences spread out vertically.
Outliers may be placed throughout the block out of synchronization with these sequences, and the
three decompression functions introduce differing dependencies and latencies. To exploit these
irregularities, a dataflow-enabled pipeline design is used. Any one value to be decompressed is
processed as soon as all its dependencies are in place. The variable decompression latency of a
block, which is critical for memory reads and thus for performance, is at most 16 cycles.

4.1.2 Lossless compression. The lossless L2C compressor is based on the Statistical Cache Com-
pressor (SC2) [14], which employs huffman-encoding. SC2 is an inter-block compression scheme
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Fig. 5. L2C Memory Block formats. Large blocks (L-blocks) are lossily compressed, Small blocks (S-blocks) are
losslessly compressed.

that uses a single, global, symbol table to establish the encoding, as described in Section 3.2. Hence,
it does not need to add any other overhead per block and is therefore well suited to compressing
blocks of arbitrary size. Figure 4 illustrates an example SC2 compression operation, where each
value of the uncompressed block (4 bits in Figure 4a) is looked up in the Code Table and replaced
by the associated code. If the value is not found, it is maintained in uncompressed form preceded
by the code for OTHER. The compression outcome is a compressed block of variable width. L2C
applies SC2 compression using 16-bit value symbols and offers compression ratios of up to 4 : 1. SC2

compression employs canonical Huffman codes: the codes follow the numerical sequence property,
i.e., codes of the same length are numerically sequential. This is important during decompression.
The lossless L2C decompressor is also based on the SC2 decompressor [14] and is depicted in

Figure 4b. Decompressing Huffman-encoded streams is inherently sequential because coded values
are of variable length, thus it is not known where the next coded value starts in the encoded stream.
Importantly, Huffman codes follow the prefix property, i.e., a code cannot be prefix of another code.
Hence, when a bit sub-sequence matches a code, the next bit in the encoded stream determines the
beginning of the next code.
The SC2 decompressor works as follows: Part of the compressed block is inserted to a shifter.

The 16 most significant bits of the bit-sequence within the shifter are inserted to the Comparator
and Encoding Match engine. For each code length (1b, 2b, 3b, ..., and 16b), this engine performs
numerical comparisons of the inserted bit sequence and the base value of the respective code length
(i.e., the first assigned code for this length). A code of length x is matched within the bit sequence,
when the comparison of x bits yields true result and the comparison of x+1 bits yields false. The
matched code length determines the shift amount in the shifter and decoding can proceed with the
next coded value in the stream. In parallel, the matched code is looked up in the Decode Table and
the associated value is output and attached to the decompressed block. This process is repeated
until all values are decompressed in the block. The decompression latency is 14 cycles per cache
line at 1GHz, parallelizable for larger blocks.

4.2 Block Types
The two compression schemes employed by L2C differ in their utility and application. The lossy
compressor is geared toward high compression ratios, necessitating large blocks. This is in part due
to a fixed per-block data overhead, in the form of seed values which must be included uncompressed
in the compressed block. The lossless compressor, by contrast, has no such fixed overheads. Its
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Fig. 6. Main memory with a mixture of block types. Each 1kB space is one L-block or four S-blocks.

compressed blocks consist only of re-encoded values from the original data. This allows it to be
applied to blocks of any size.
The optimal block size for any memory compression scheme depends on two factors: the

maximum achievable compression ratio and the minimal transfer unit of the memory bus. An
undersized block may compress to a size smaller than the minimal transfer unit, leading to transfers
larger than necessary. Conversely, an oversized block may compress below expectation, leading to
extraneous data transferred. For these reasons, the optimal block size is such that the maximum
expected compression ratio results in a compressed size equal to the minimum compression size.

The minimum transfer unit of a typical system is one cache line. The lossy compression employed
by L2C is designed for a maximum compression ratio of 16 : 1, and is thus applied to blocks of 16
cache lines. We refer to these large blocks as L-blocks. The lossless compression using 16-bit values
has a theoretical maximum compression ratio of 16 : 1 (compressing each 16-bit value to a single-bit
encoding), but typically achieves compression ratios between 2 : 1 and 4 : 1 on non-constant data.
For this reason, L2C applies lossless compressed data to blocks of 4 cache lines. We label these
small blocks S-blocks. An S-block is a quarter of an L-block, which is convenient for their alignment
and management. As L2C combines these block types, a 1kB region of memory can either be one
L-block or four S-blocks. Figure 5 illustrates the format of each block type. Both types contain a
small amount of embedded block metadata, which is further described in Section 4.5.
The L-block is specifically organized to allow decompression to begin as soon as the first line

is available. A single bit E indicates that the rest of the line has been losslessly encoded to save
space. This is followed by a set of seed values, from which all SZ sequences begin. The first line
also contains an initial set of two-bit symbols representing compressed values, as well as a number
of outliers sufficient to start decompressing the center columns of the block. The remaining lines of
the compressed block contains the rest of the symbols and any remaining outliers. The S-block
format is simpler, consisting only of the compressed cache lines.
Both types of blocks leave unused space at the end of their allocation in physical memory,

which is used for lazy evictions. When a compressed block is only available off-chip, any dirty
uncompressed cache line evicted from LLC will be stored in this space. In order to reconstruct
a block with lazily evicted cache lines, the location of each dirty line must be maintained. For
approximable data, data precision is reduced by a few bits to encode the proper location of the cache
line. In non-approximable data, the evicted cache line is compressed and the location information
is appended to the end of the cache line.

4.3 Memory Layout
The use of multiple compression schemes with differing block sizes necessitates a flexible memory
layout for compressed data. A memory location may be in one of three different states:
(1) Compressed lossily as part of a 1kB L-block
(2) Compressed losslessly as part of a 256B S-block
(3) Uncompressed as part of an uncompressed 256B S-block
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L-blocks are aligned to 1kB boundaries while S-blocks always appear in groups of four, each
aligned to 256B. Figure 6 illustrates L- and S-blocks coexisting in physical memory. This alignment
serves dual purposes. First, the address of a cache line can be trivially translated into the physical
address of the corresponding compressed block. Second, it allows an L-block to transition into four
S-blocks if lossy compression fails, without affecting neighboring blocks outside the 1kB allocation.
This type of transition is central to L2C, enabling a fallback to less aggressive compression rather
than leaving data uncompressed.

4.4 Block Type Transition
During the execution of a program, the same memory region may be dynamically selected to be
compressed in a lossy or lossless manner as long as it is indicated to be approximable. The transition
between lossy L-blocks and lossless S-blocks is described below.
When lossy compression of an L-block is attempted and fails, MemSZ leaves the full block

uncompressed. This leads to wasted compression potential, since the data may still exhibit some
amount of redundancy. L2C leverages this potential by transitioning the L-block into four S-blocks
and applying lossless compression. In effect, data compressibility determines a block’s place within
a hierarchy of compression states, from lossy L-block via lossy S-block and down to completely
uncompressed S-block. Figure 7 illustrates the logic governing transitions between these states.

Uncompressed data may, with updates, become compressible again. SC2 compression is applicable
to blocks of any size, and L2C uses this property to determine the compressibility of individual
cache lines. A back-off counter 1 associated with uncompressed S-blocks keeps track of the number
of individual and compressible cache lines written back to the block. When the counter reaches its
maximum, the S-block is expected to be compressible and a transition 2 is attempted.

Analogously, after some number of updates to a compressed S-block, it is possible that compress-
ibility changes and lossy compression becomes viable. L2C uses the lossless compressibility of the
S-blocks as an indicator for this (Figure 7). Every group of four S-blocks shares a transition count
3 , which is incremented when a compressed S-block is written back to memory. If any S-block
fails compression, the transition count is cleared. Once a sufficient number of consecutive lossless
compression attempts have been successful, a transition 4 to a single L-block is attempted.
Transition to a lower compression state (i.e. L-block to S-Block or S-block to uncompressed

data) is straight-forward. Such a transition occurs only when compression fails, and thus all data is
already available on-chip. Conversely, any transition toward a higher compression state involves
reading multiple cache lines frommemory, in order to compress a larger block. In the worst case, this
consists of three compressed S-blocks totalling nine cache lines. To reduce this traffic overhead, L2C
postpones the transition attempt until the next cache miss for this block. Because miss resolution
requires one uncompressed cache line or one compressed S-block from memory, this reduces the
total overhead of the transition. In addition, any compressed blocks which are already on-chip in
the LLC do not need to be transferred.

4.5 Block Metadata
One hurdle faced by memory compression systems is the overhead of metadata. Certain information
about a compressed block may be necessary in order to manipulate the block in memory or bring
it on-chip for processing. This additional information is too large to keep on-chip in its entirety,
and must therefore be stored in main memory.

To reduce the traffic overhead of such metadata, L2C divides the compression metadata into two
categories. Essential metadata are necessary even when the corresponding block is not on-chip, in
order to fetch or update it. Non-essential metadata are only needed once the block is on-chip, and
are embedded in the compressed block as illustrated in Figure 5.
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Non-essential metadata are only needed when the full compressed block is also available for
processing. This information consists of the size of the compressed block excluding lazily evicted
cache lines, which is necessary in order to decompress the block. In addition, L-blocks encode the
compression method used, to be able to differentiate between data types and potentially support
other compression schemes.
L2C uses a Compression Metadata Table (CMT) as an on-chip cache for essential compression

metadata. CMT has a structure corresponding to the existing Translation Lookaside Buffer, and is
updated in tandem with it on TLB misses. Each quarter-page is described either as one L-block or
four S-blocks. Four unused bits (labeled F) in the regular Page Table Entry (PTE) are used to encode
this state. An additional TLB bit is used to mark approximable pages. A CMT entry comprises 64
bits for one page, and is organized as illustrated in Figure 8.
S-blocks are afforded four bits of CMT space. These four bits are used to encode three fields: a

two-bit size field, a 1-bit transition counter (described below), and a 3-bit back-off counter used to
delay compression for uncompressed blocks. Since the size and transition fields are only needed
for compressed blocks and the counter is only needed for uncompressed blocks, these two sets are
overlapped. A single bit C is used to distinguish between the two states.
L-blocks have 16 bits of essential metadata, divided into two fields: a four-bit size field and a

twelve-bit counter of accumulated error. The twelve-bit counter is a floating-point (4-bit exponent
and 8-bit mantissa) representation of the accumulated error introduced by lossy compression.

4.5.1 Metadata during transitions between block types. Metadata encoding is complicated by the
multiple compression states a single block may have. One cause of transition is a failure to compress.
L-blocks which fail lossy compression transition into four S-blocks. S-blocks which fail lossless
compression transition into uncompressed data. The opposite transitions are carried out when
compression is retried successfully. These retries are controlled using back-off counters.
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Fig. 9. Conceptual view of the L2C decoupled sectored cache and its three data indexing functions. S-blocks
are placed at 4-set intervals.

Transition from uncompressed to compressed S-block is tracked using the metadata for S-blocks,
as discussed above. When an uncompressed eviction occurs, the compressibility of the cache line is
tested. The back-off counter of the corresponding S-block is incremented if the evicted line has an
individual compressibility at or above 2 : 1.
Transition from S-block to L-block (for pages annotated as approximable, i.e. allowing L-block

lossy compression) is controlled by four transition bits spread out across the metadata of the
S-blocks. These bits encode a counter of consecutive successful S-block compression attempts,
indicating that the data is compressible. Overlapping the metadata bits this way works, since the
transition counter is only valid if all four S-blocks have been successfully compressed.
The Accumulated Error counter associated with an approximable L-block must be maintained

even when the block temporarily transitions to S-blocks or is left uncompressed due to failed
compression. This is done by including three bits of the counter in the non-essential metadata
embedded in each S-block, if that block is compressed. If an S-block is uncompressed, the three bits
are instead embedded as the least significant bit of each of the first three data words.

4.6 Last-Level Cache
Support for two separate memory block sizes also raises the need for similar support in the last-
level cache. Resolving LLC misses by fetching compressed blocks from memory introduces traffic
overhead because blocks may be larger than one cache line. In order to benefit from the extra
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fetched data, it must be kept on-chip for as long as possible. If the data exhibits spatial locality, the
fetched block acts as a form of prefetching, at reduced traffic cost.
L2C uses a Decoupled Sectored Last-level Cache [58] to store compressed and uncompressed

data on-chip simultaneously. Tags are decoupled from data entries as illustrated in Figure 9 and
associated using a special back-pointer array. This allows multiple data entries representing the
same 1kB address space to share the same tag. For example, a 1kB region of physical memory may be
present in the LLC as one compressed L-block and three uncompressed cache lines, simultaneously.
Three separate indexing functions are used for data placement: One for compressed L-blocks
(𝐼𝑛𝑑𝑒𝑥𝐿), one for compressed S-blocks (𝐼𝑛𝑑𝑒𝑥𝑆 ) and one for uncompressed data (𝐼𝑛𝑑𝑒𝑥𝑈 ).

L- and S-blocks all consist of one or more cache line sized CMSs. All CMSs belonging to a single
compressed block are placed in consecutive LLC sets. Since a tag never represents both L- and
S-blocks simultaneously, the two use similar indexing functions. If the L-block indexing function
𝐼𝑛𝑑𝑒𝑥𝐿 (𝐴) indicates that the compressed data for a tag 𝐴 should start in set 𝑋 , then 𝐼𝑛𝑑𝑒𝑥𝑆 (𝐴)
would also place the first S-block for that same tag starting at 𝑋 . The second S-block is placed at
𝑋 + 4, the third at 𝑋 + 8 and the last at 𝑋 + 12. This way, L-compressed blocks and S-compressed
blocks have similar behavior in the LLC. The indexing functions 𝐼𝑛𝑑𝑒𝑥𝐿 (𝐴) and 𝐼𝑛𝑑𝑒𝑥𝑆 (𝐴) are
chosen to minimize interference between compressed and uncompressed data belonging to the
same block, i.e. the uncompressed indexing function 𝐼𝑛𝑑𝑒𝑥𝑈 (𝐴) is unlikely to return the same
index as 𝐼𝑛𝑑𝑒𝑥𝐿 (𝐴) or 𝐼𝑛𝑑𝑒𝑥𝑆 (𝐴).
Figure 9 illustrates a slice of the LLC with data from three 1kB memory blocks (A, B and C)

present. A is uncompressed, B is compressed as four S-blocks and C is compressed as a single L-block.
Their respective physical addresses are such that the indexing functions 𝐼𝑛𝑑𝑒𝑥𝑈 (𝐴) = 𝐼𝑛𝑑𝑒𝑥𝑆 (𝐵) =
𝐼𝑛𝑑𝑒𝑥𝐿 (𝐶) = 0𝑥𝐷40, and they thus contend for the same 16 sets in LLC. The uncompressed cache
lines from A are placed based on their individual addresses. The four S-blocks 𝐵0 − 𝐵3 start at
four-set intervals, while the compressed L-block is placed in five consecutive sets starting at 0𝑥𝐷40.
Any compressed data for A or uncompressed data for B and C are placed in other sets..

The LLC supports three types of lookups (Uncompressed, S-Block, or L-Block). Lookups work
similarly to a standard Decoupled Sectored Cache. The tag index is computed from the sought
physical address. Based on the type of lookup (Uncompressed, S-Block, or L-Block), the correspond-
ing indexing function (𝐼𝑛𝑑𝑒𝑥𝑈 , 𝐼𝑛𝑑𝑒𝑥𝑆 , 𝐼𝑛𝑑𝑒𝑥𝐿 , respectively) is used to identify the proper set in
the back-pointer/data arrays. Tag and BP lookups are then performed in parallel. If a Tag entry and
a BP entry are both located, a tag match is confirmed using the tag way stored in each BP entry as
well as the block tag from the physical address. If these comparisons all match, both tag and data
have been successfully located.
L2C uses a single tag to represent each contiguous 1kB region of physical memory, in both

compressed and uncompressed forms. The tag entry is extended with additional fields to support
the two block sizes. A four-bit mask indicates which S-blocks are present in the LLC. An 8-bit
counter field is used to indicate the number of data entries present for each compressed block (four
2-bit counters for S-blocks or a single 3-bit counter for an L-block).
Compressed data has the potential to offer greater utility compared to their size. To exploit

this, replacements are performed with a modified Least-Recently-Used (LRU) mechanism. When
an uncompressed cache line is updated (via write-back from the L2 cache), its LRU is normally
updated to record that it has been used recently. If the tag entry indicates that a compressed copy
of the same block is present in the cache, the LRU counter of the compressed block is updated in
stead of that of the UCL. This way, compressed blocks are prioritized over their uncompressed (and
redundant) counterparts during cache replacements.

The decoupled sectored cache organization allows L2C to store any combination of compressed
and uncompressed data on-chip. The accompanying metadata enables lookups of compressed data,
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Fig. 10. Execution flow of a data collection application which benefits from compressed I/O.

increasing the effective capacity of the cache. As an additional benefit, this enables the reuse of
compressed blocks, thus amortizing their memory traffic overhead.

4.7 I/O Compression
The placement of the L2C compressor, attached to the on-chip interconnect and next to the Direct
Memory Access (DMA) controller, also enables the compression of I/O traffic. L2C can direct through
the compressor any data transfer between two memory-mapped regions. In DMA-capable systems,
the on-chip DMA controller is programmed to initiate the data movement, while in systems without
DMA, a processor core performs this task. This covers both data input (e.g sensor devices) and
bidirectional devices (e.g. local storage, network interfaces). L2C enables transparent compression
at high bandwidth.
I/O-heavy applications which can benefit from compression include data aggregation services

and remote sensor networks. These networks typically consist of low-power devices with limited
performance and communication resources. Nodes of this type are strongly power constrained,
and may rely on a small battery and unreliable power harvesting techniques (e.g. solar cells, RF
energy harvesting). For this reason, energy efficiency is a high priority. The device typically spends
as much time as possible in a low-power state, periodically waking up to collect and transmit data.

Figure 10 illustrates the execution flow of a simple embedded application. Data is collected and
buffered in an off-chip sensor, while the processor itself is in a low-power sleep state. An interrupt
wakes the processor when the buffer is full. The processor triggers a data transfer (via DMA or
software mechanisms) to bring the sensor data on-chip. The data is stored in persistent storage,
and the processor returns to its sleep state. When local storage is full, a batch of data is transmitted
via radio for central aggregation. The benefits of data compression in such a system are fourfold:

1 Execution time is reduced, allowing longer sleep periods.
2 Longer periods of data can be logged in local storage, reducing the frequency of transmission.
3 Radio transmission and relay energy is reduced, due to smaller payloads.
4 Radio bandwidth is saved.

The data transfer from sensor to processor, be it via DMA or software mechanism, is uncompressed
at the source, but passes through the compressor after arriving on-chip. As a result, the data is
compressed before being written to storage, saving both time 1 and storage space 2 . In addition,
this allows the collection period to be extended before local storage space is exhausted. Once it
is, energy 3 and bandwidth 4 savings are compounded; less frequent radio transmissions, each
containing more sensor data.

In addition to these benefits, digital sensors for natural phenomena (e.g. air pressure, temperature,
pollutants, radiation) have finite precision, introducing some amount of quantization during data
acquisition. Lossy compression can be used to exploit this approximation tolerance.
By placing the L2C compressor appropriately, compression can be applied to memory-mapped

peripherals such as built-in sensors. Attaching the compressor to the on-chip interconnect as
illustrated in Figure 2 also allows compression to be applied to external peripherals.
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Table 1. Simulation parameters.

(a) System parameters.

Parameter Configuration

CPU 4 core, o-o-O, 4-way issue @ 3.2GHz
L1 cache 64kB per core, 4-way, 1 cycle latency
L2 cache 256kB per core, 8-way, 8 cycle latency
L3 cache 4MB shared, 16-way, 15 cycle latency
Main Memory 4GB DDR4, 1 channels, 800MHz
VFT 7kB, 8-way, 16-bit values

(b) Compressor properties.

Parameter Compressor Decompressor

SC2 latency 18 cycles 42 cycles
SC2 leakage power 33.6mW 0.4mW
SC2 dyn. energy 0.576nJ 0.592nJ
MemSZ latency 16 cycles 8-16 cycles
MemSZ leakage power 28.8mW 144.5mW
MemSZ dyn. energy 3.94nJ 17.5nJ

I/O compression differs from memory compression by the property that data is compressed
exactly once. As a result, block type transitions will never occur. For this reason, the I/O compressor
does not need to prioritize L-blocks over S-blocks. Instead, both lossy and lossless compression are
attempted, choosing whichever achieves a better compression ratio.

5 EVALUATION
In this section we evaluate the efficiency of L2C . We first describe our experimental setup, detailing
the system configuration of our experiments and the benchmarks used. Two separate evaluations
are described: one applying L2C for memory compression and one for I/O compression. Then,
experimental results from each evaluation are presented.

5.1 Experimental Setup
Our evaluation of L2C is twofold. First, we evaluate its use as a Memory Compression scheme,
using a processor and memory simulator. Separately, we evaluate the potential of L2C as a I/O
Compression scheme by applying it to a selection of real-world datasets.

5.1.1 Memory Compression. We evaluated L2C for memory compression in an in-house simulator,
implemented on top of Pin [59]. The simulator employs an interval-based processor model, as
proposed by Genbrugge et al. [60]. The memory hierarchy was modelled at cycle granularity,
using DRAMSim2 for main memory [61]. McPAT [62] and CACTI [63] were used to model power
and latency of the system considering 32nm technology. The MemSZ compression hardware
modules were implemented in RTL, synthesized using Synopsys Design Compiler to determine
their operating frequency, latency and power consumption; the same parameters for SC2 are
taken from [14] which were measured with the same technology node. These factors are used as
configuration information for the simulations. The general properties of the simulated system are
listed in Table 1a. The power and latency of each compressor are outlined in Table 1b.
As explained in Section 4, the developer is responsible for the annotation of approximable

data structures. For this evaluation, we manually add annotations to the source code of each
benchmark based on experimentation to find safe approximations. Table 2a summarizes the type of
approximated data for each application.

In order to emulate the impact of the approximations on the overall application error, we emulate
not only the memory accesses but also update the values of the memory contents accordingly. This
is done by applying a software implementation of the compression and reconstruction methods
to the data. Lossless compression is applied to all non-code pages mapped into the process. This
includes heap, stack, and data segments of the application itself, as well as those of shared libraries.

Besides the baseline system, L2C is further compared with (i) the lossy-only MemSZ [10] and (ii)
a variation using only lossless SC2 compression (Lossless). As all three compressing systems use
the same decoupled sectored cache design, they are configured identically apart from the employed

ACM Trans. Embedd. Comput. Syst., Vol. 21, No. 1, Article 12. Publication date: January 2022.



L2C 12:19

Table 2. Workloads used to evaluate L2C .

(a) Benchmark Applications.

Application Approx. Output Footprint / core Checkp. Description

heat [64] Temps Temps 8.3MB ✓ Heat propagation through a 2D field of uniform material
lattice [65] P and M Vel.+Press. 5MB ✓ 2D Lattice-Boltzmann simulation of air flow
lbm [66] Velocities Velocities 325MB 3D Lattice-Boltzmann simulation of fluid flow
orbit [67] Phys. data Phys. data 10MB ✓ 3D simulation of the two-particle orbit problem
cdelta [67] Phys. data Phys. data 22MB ✓ Delta-function heat conduction model
sedov [67] Phys. data Phys. data 12MB ✓ Sedov explosion model
windt [67] Phys. data Phys. data 23MB ✓ Windtunnel with a step
kmeans [68] Topol. [69] Clusters 5.5MB ✓ Iterative clustering algorithm
wrf [66] Geo data Temp. 90MB Weather forecasting model

(b) Datasets used to evaluate L2C for Link Compression.

Dataset Domain Type Size Description

height [69] Geo survey 2D spatial 1024 × 1024 samples Geographical height map
aquarius [70] Geo survey 2D spatial 8 × 512 × 1024 samples Sea surface properties
gb6 [71] Astronomical survey 2D spatial 2048 × 2048 samples Radiotelescope imagery
strang [72] Geo survey Time series 187176 samples Solar radiation measurement at 60◦𝑁 15◦𝐸
hand [73] HCI Time series 80 × 400000 samples Hand positions for gesture detection
mitbih [74] Medical Time Series 9 × 2 × 650000 samples Two-channel ECG recordings
ampds [75] Energy distribution Time series 12 × 1051200 samples Energy consumption data from a residential building
air [76] Meteorological Time series 13 × 121641 samples Air quality measurements
gas [77] Scientific Time series 19 × 786432 samples Carbon monoxide sensor in physics experiment
hydra [78] Mechanical Time series 18 × 1048576 samples Condition monitoring of hydraulic system

compression mechanism. This similarity allows the isolation of lossy compression, to study its
impact compared to a system with only lossless compression capability.
Each simulation is executed in the following steps: i) A warmup period of 50M instructions

is carried out to warm up the cache hierarchy; ii) at the end of this warmup period, 10% of the
compressible system memory is randomly sampled to train the SC2 and populate the VFT. This
emulates a longer sampling period. Furthermore, all compressible data in memory is compressed
at the end of the warmup period, simulating an application with compressed input data; iii) the
application is executed until it has finished generating output data.

One common source of memory traffic in scientific workloads is checkpointing. Checkpoints are
occasional snapshots of the application’s state, for the purpose of resuming execution after errors or
outages. Such snapshots generate large bursts of data transfers to non-volatile storage, and contain
approximable data from the application’s working set. To reflect the effect of compression on these
data, iterative benchmarks with checkpointing support have it enabled as indicated in Table 2a.

The input data sets used for our experiments are the standard input data sets provided with the
benchmarks with the exception of (i) lattice for which we used a silhouette of a car as the input
data set, and (ii) k-means where the input is topological data [69].
Compression metadata has been identified as a significant source of memory traffic [28]. To

evaluate this factor, our simulations include both the traffic of regular page table information (via
TLB misses) and the additional transfer of essential compression metadata.

Benchmarks for approximate computing (AxBench) considers 10% relative output error [79]. Due
to its strongly application-dependent nature, it is solely up to the application provider to define
what is an acceptable error level. We evaluate and present output error using the mean relative
error across the output dataset. The only exception to this is k-means, whose output is discrete and
strongly bounded. For this application we normalize each individual error to the maximum possible
error for that value, such that the maximum possible error is 100%. Similar to previous works, L2C
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provides tunable knobs to control the data approximation error and constrain application output
error. These knobs allow an application provider to adjust the trade-off between output error and
performance/energy improvement. Specifically, two quality thresholds are configurable. One is
local to each compression attempt, controlling which values are outliers. The second is maintained
over the entire execution time, limiting accumulated approximation error.

5.1.2 I/O Compression. The benefits of I/O compression (reduced execution time, reduced commu-
nication duration, reduced communication bandwidth, improved storage efficiency) are directly
proportional to the achieved compression ratio. For this reason, we evaluate the use of L2C as a I/O
compression scheme by applying it to a selection of real-world datasets as outlined in Table 2b.
The datasets can be generally divided into two categories: Spatial and Time series. Spatial data

represent a snapshot of samples from different locations, such as a topological survey. This type
of data is typically seen at centralized collection points, such as coordinating nodes or database
servers, where data are collated from multiple distributed sources. Time series represent multiple
samples from the same sensor, such as a continuous energy consumption measurement. This type
of data is typically seen in the individual sensor node, such as an implanted medical device.

To evaluate the efficiency of L2C for I/O compression, each dataset is compressed using the three
evaluated compression schemes: Lossless, MemSZ and L2C. We present the achieved compression
ratio of each system as well as the resulting approximation error.

5.2 Results
In the following section we present the results of both evaluations. First, we show detailed statistics
acquired from simulations of memory compression. Subsequently, we show the compressibility of
the datasets used to evaluate L2C for I/O Compression.

5.2.1 Memory Compression. The primary characteristic differentiating the various compression
schemes is the achieved compression ratio for any given dataset. Table 3a shows the compression
ratio of each application’s footprint at the end of execution. While neither lossy nor lossless alone
show a clear advantage, it is clear that a hybrid approach is able to reap the benefits of each.
L2C consistently achieves a higher compression ratio than either of the two competing designs.
Table 3b shows the compression ratio for the approximable subset of the footprint. We observe
that lossy compression is up to 7 𝑡𝑖𝑚𝑒𝑠 more effective than lossless compression for the annotated
data. MemSZ does, however, leave blocks uncompressed if they fail to meet quality requirements
under lossy compression. L2C falls back to lossless compression for these blocks, achieving a higher
overall compression ratio. This effect is most pronounced in lattice, where L2C achieves a 49%
higher compression ratio compared to lossy compression alone.
The main benefit of memory compression lies in reduced traffic on the main memory bus.

Figure 11c shows the total memory traffic for each design, normalized to the traffic of the baseline
system. Traffic is broken down by data type: non-approximable data, approximable data, page table
traffic, and metadata traffic. We find that metadata traffic comprises at most 3.9% of total traffic,
twice as much as the regular page table traffic. On average, L2C reduces the total traffic volume by
73%. This is an improvement of 18% compared to MemSZ and 56% over Lossless.

One potential cause of traffic overhead is the transition from multiple S-blocks to a single L-block.
To attempt such a transition, multiple S-blocks must be read from main memory. Table 3d shows
the fraction of total memory traffic caused by such reads. The maximum 2.2% is found in lattice,
while the remaining benchmarks see at most a fraction of a percent of overhead.

The reduced traffic on the main memory bus yields lowered latency for memory accesses, which
is particularly important for memory reads. Figure 11d shows the Average Memory Access Time

ACM Trans. Embedd. Comput. Syst., Vol. 21, No. 1, Article 12. Publication date: January 2022.



L2C 12:21

Table 3. Compression efficacy of the three memory compression systems.

(a) Compression ratio, all data.

heat lattice lbm orbit cdelta sedov windt kmeans wrf GM
Lossless 2.5× 2.5× 2.2× 3.1× 2.9× 3.4× 2.7× 1.9× 1.5× 2.4×
MemSZ 1.5× 1.1× 4.8× 1.8× 1.1× 1.3× 1.0× 1.3× 1.2× 1.5×
L2C 3.2× 2.6× 7.2× 4.1× 3.1× 4.3× 2.8× 2.5× 1.6× 3.2×

(b) Compression ratio, approximable data.

heat lattice lbm orbit cdelta sedov windt kmeans wrf GM
Lossless 2.8× 1.9× 2.2× 3.7× 2.6× 3.7× 2.1× 2.3× 3.0× 2.6×
MemSZ 15.9× 5.1× 15.9× 14.9× 9.2× 15.8× 15.9× 3.6× 4.4× 9.6×
L2C 16.0× 7.6× 15.9× 14.9× 9.2× 15.8× 15.9× 3.9× 5.3× 10.4×

(c) Mean relative application output error.

heat lattice lbm orbit cdelta sedov windt kmeans wrf
Lossless 0% 0% 0% 0% 0% 0% 0% 0% 0%
MemSZ 0.12% 0.24% 0.05% 0% 0.01% 0% 0% 0.05% <0.01%
L2C 0.13% 0.25% 0.06% 0% <0.01% 0% <0.01% 0.05% <0.01%

(d) Fraction of memory traffic caused by L2C block transitions.

heat lattice lbm orbit cdelta sedov windt kmeans wrf
L2C 0.000% 2.207% 0.000% 0.000% 0.006% 0.000% 0.000% 0.001% 0.064%

(AMAT) for instructions with memory input operands, normalized against the baseline AMAT. On
average, L2C reduces baseline AMAT by 36%, improving on MemSZ by 5% and Lossless by 17%.
Another benefit of the three compressing designs is that they are able to maintain compressed

data in the LLC, increasing its apparent capacity. Figure 11e shows the LLC Misses per Kilo-
Instruction (MPKI) normalized to the baseline system. L2C reduces average MPKI by 69%. This is a
16% improvement over MemSZ and 49% over Lossless.

Execution time is affected both by the reduced memory latency and the improved LLC miss rate.
Figure 11a shows the execution time achieved by each system, normalized to that of the baseline
system. We observe that L2C equals or surpasses both competing designs in all tested applications.
L2C reduces execution time by an average 50%, improving on MemSZ by 9% and Lossless by 26%.
The reduced execution time coupled with reduced DRAM activity translate into a reduction of

total system energy. Figure 11b shows the total energy consumption of each design, broken down
by system component. The energy consumption follows the same trend as memory traffic, with
L2C achieving an average reduction of 16%. This is 3% and 5% better than MemSZ and Lossless,
respectively. Notably, Lossless is closer in energy consumption than the other metrics, owing to
the less complex compressor/decompressor.

Finally, each application’s output error is presented in Table 3c. We find that for the majority of
the benchmarks, approximation introduces less than 0.05% relative error compared to the baseline
output. L2C differs from MemSZ by at most 0.01%. This is due to cache interference effects causing
slight differences in eviction timing, leading to small variations in lossy compression outcome.
Across the tested applications, we see clear indications that the improvements gained by lossy

and lossless compression have significant overlap. A hybrid approach is able to achieve the benefits
of both methods, where each is most suitable. L2C surpasses MemSZ by also compressing the
non-approximable traffic, and outperforms Lossless by applying more aggressive compression to
the subset of data which tolerate it.
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(a) Execution time.
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(b) System Energy Consumption.
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(c) Memory Traffic.
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(d) Average Memory Access Time (AMAT).
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(e) LLC misses per kilo-instruction (MPKI).

Fig. 11. Evaluation of the L2C memory compression design and comparison with competing designs.
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Table 4. I/O compression efficacy.

(a) Achieved compression ratio.

height aquarius gb6 strang hand mitbih ampds air gas hydra GM
Lossless 2.34× 1.54× 1.03× 2.67× 2.25× 1.61× 1.51× 1.44× 1.05× 1.52× 1.62×
MemSZ 3.59× 6.38× 2.48× 1.95× 2.17× 2.03× 7.44× 1.03× 10.35× 8.20× 3.55×
L2C 3.93× 6.39× 2.48× 2.87× 2.36× 2.31× 7.55× 1.45× 10.35× 8.58× 3.96×

(b) Relative approximation error.

height aquarius gb6 strang hand mitbih ampds air gas hydra
Lossless 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
MemSZ 0.33% 0.44% 0.33% 0.07% 0.35% 0.32% 0.25% <0.01% 0.40% 0.36%
L2C 0.33% 0.44% 0.33% 0.04% 0.09% 0.32% 0.25% <0.01% 0.40% 0.36%

We observe that the traffic reduction achieved by L2C equals or surpasses MemSZ and Lossless
in all the tested benchmarks. Of note is that two of the tested benchmarks benefit more from the
modest Lossless compression across all data than from more aggressive MemSZ compression on
only the approximable subset. This illustrates that the memory footprint of each subset is of lesser
importance than the memory activity induced by each. Compression is most beneficial on blocks
which normally bounce between main memory and LLC, and this is highly application-dependent.

Wrf and orbit illustrate a data pattern which defeats the heuristic used by L2C to determine
compressibility of S-blocks. A subset of non-approximable data has interspersed cache lines show-
ing at least 2:1 compressibility, but four-line blocks alternate between being compressible and
incompressible. Each time a compressible line is written back to an uncompressed S-block, the
block’s back-off counter is incremented, bringing the block closer to a retry. The result is a large
number of failed block writebacks which ultimately lead to new retry fetches.
Heat, lattice and lbm make up another interesting subset of applications, those with only or

almost only approximable memory traffic. For such applications, the only room for L2C to improve
upon MemSZ is in approximable blocks which have failed lossy compression. As shown in Table 3b,
only lattice has any significant opportunity like this, and L2C successfully exploits it. Kmeans and
wrf also show MemSZ leaving blocks uncompressed, which are successfully compressed by L2C.
Sedov and windt both benefit more from lossless compression than lossy, in terms of memory

traffic. This is a by-product of approximation tolerance. While these applications both process a
large data footprint of regular data, not all of it is safe to approximate. As a result, a large portion
of their memory traffic is compressible but only using lossless compression. In these applications,
Lossless performs better than MemSZ, while L2C capitalizes on the strengths of both.

5.2.2 I/O Compression. As explained in Section 4.7, the primary metric of interest for I/O com-
pression is the achieved compression ratio. Table 4a shows the results for the three evaluated
compression schemes, Lossless, L2C , and MemSZ. Due to its hybrid nature, L2C equals or surpasses
MemSZ in all cases. This is because any block which MemSZ can compress successfully will be
compressed identically in L2C . The remaining blocks are guaranteed equal or better compression,
since MemSZ leaves them uncompressed while L2C applies additional compression. The same
holds true against Lossless. Notably, strang and hand exhibit better compressibility with lossless
than lossy in some blocks. Since L2C chooses the most effective compressor, it yields a higher total
compression ratio than MemSZ. On average, L2C achieves a compression ratio of 3.96:1. MemSZ
manages 3.55:1 and Lossless reaches 1.62:1.
A similar trend is observed in the introduced approximation error. Table 4b shows the mean

relative error caused by compressing each dataset. In spite of its higher compression ratio, L2C
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introduces no extra error compared to MemSZ. This is because all lossily compressed blocks are
compressed identically between the two, introducing the exact same error. In strang and hand, a
by-product of selecting lossless compression when beneficial is that error is also reduced. No tested
dataset suffers more than 0.4% error.

6 CONCLUSIONS
L2C is a hybrid lossy/lossless memory and I/O compression scheme, the first of its kind. It applies
general-purpose lossless compression alongisde state-of-the-art lossy compression to improve
the bandwidth efficiency of both the system memory bus and processor I/O traffic. In memory
compression experiments, L2C achieves average memory-footprint compression of 3.2:1 across
all benchmarks (up to 7.2:1 on a single one), improving by 33% over a pure-lossless solution. On
approximable data, L2C achieves an average compression ratio of 10.4:1 (up to 16:1), which is an 8%
improvement over the current state-of-the-art lossy memory compression. Furthermore, compared
to the best previous work, L2C reduces off-chip memory traffic at least by 18%, execution time by 9%
and total system energy by 3%. When applied to a set of real-life datasets for I/O compression, L2C
achieves an average of 4:1 compression, surpassing lossy and lossless single-method compressors
by 10% and 241%, respectively.
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