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METHODOLOGY

L2MXception: an improved Xception 
network for classi�cation of peach diseases
Na Yao1,2,3, Fuchuan Ni1,2* , Ziyan Wang1, Jun Luo1,2, Wing-Kin Sung1,4,5, Chaoxi Luo6 and Guoliang Li1,2 

Abstract 

Background: Peach diseases can cause severe yield reduction and decreased quality for peach production. Rapid 

and accurate detection and identification of peach diseases is of great importance. Deep learning has been applied to 

detect peach diseases using imaging data. However, peach disease image data is difficult to collect and samples are 

imbalance. The popular deep networks perform poor for this issue.

Results: This paper proposed an improved Xception network named as L2MXception which ensembles regulariza-

tion term of L2-norm and mean. With the peach disease image dataset collected, results on seven mainstream deep 

learning models were compared in details and an improved loss function was integrated with regularization term 

L2-norm and mean (L2M Loss). Experiments showed that the Xception model with L2M Loss outperformed the cur-

rent best method for peach disease prediction. Compared to the original Xception model, the validation accuracy of 

L2MXception was up to 93.85%, increased by 28.48%.

Conclusions: The proposed L2MXception network may have great potential in early identification of peach diseases.
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Introduction

Peach is an important fruit and its production is affected 

by peach diseases. �e major peach diseases are brown 

rot, anthracnose, scab, bacterial shot hole, gummo-

sis, powdery mildew, leaf curl, and so on. �e diseases 

deduce the peach production, and thus it is urgently 

needed to find rapid and accurate methods to identify 

peach diseases in earlier stage.

�ere are several ways for diagnosing plant diseases 

in general and peach diseases in particular. �e first way 

is visual assessment relying on the farmer’s experience; 

however, it is a subjective task, so that it may cause devia-

tions or even errors. �e second way is using spectrom-

eter to diagnose the plant diseases by wavelength [1, 2]; 

however, the spectrometer cannot be popularized due 

to its high price. �e third way is applying polymerase 

chain reaction [3–5] by biological operation; however, 

the experimental procedure is complicated for ordinary 

farmers. With the development of computer vision, 

another way is image-based recognition of plant disease, 

which is proposed and applied widely [6–14]. Ref. [15] 

proposed a shallow artificial neural network model to 

analyse images of cherry and plum shoots. �ese meth-

ods use traditional image processing algorithm, and can 

achieve high performance for a certain type of research 

objects. However, such computer methods are semiau-

tomatic because different images need different opera-

tions, such as the threshold-based segmentation of the 

lesion areas. Recently, deep learning is rapidly developed 

and solves the disadvantages of traditional computer 

vision methods, although it also has its own imperfec-

tions, such as relying on a large number of samples. Deep 

learning has been successfully applied in various fields, 

such as transportation [16], medical image analysis [17], 

signal processing [18]. Furthermore, the deep learning 
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is also used in agriculture, such as weed identification 

[19], plant identification [20], pest identification [21], and 

plant disease detection [22–26]. Nagasubramanian, [27] 

demonstrated that a 3D CNN model can be used effec-

tively to learn from hyperspectral data to identify char-

coal rot disease in soybean stems. Especially, Zhang et al. 

[28] compared deep learning and traditional methods 

in identification of peach leaf disease infected by Xan-

thomonas campestris, drawing a conclusion that convo-

lutional neural network is significantly superior than the 

traditional methods, such as Support Vector Machine, 

Nearest Neighbor and Back Propagation neural network.

In this paper, we focus on the identification of 7 

major peach diseases (brown rot, anthracnose, scab, 

bacterial shot hole, gummosis, powdery mildew, 

leaf curl, as shown in Fig.  1) with deep convolutional 

neural networks (CNN) Models. �e peach disease 

image dataset, was collected from peach orchards by 

Prof. Luo’s team, College of Plant Science and Technol-

ogy, HZAU, which includes 7 categories of peach dis-

ease images. �e 7 categories are 1) Brown rot fungi 

infecting fruits and leaves, 2) Anthracnose fungi infect-

ing fruits and leaves, 3) Scab fungus infecting fruits, 

branches and leaves, 4) Shot hole bacterium infect-

ing fruits, branches and leaves, 5) Gummosis fungi 

infecting branches, 6) Powdery mildew fungus infect-

ing fruits and leaves and 7) Leaf curl fungus infecting 

leaves. �ese diseases bring damages to different parts 

of the peach plant (see Fig. 1). For example, the brown 

rot disease mainly harms the fruit, causing the fruit to 

rot, which also harms the leaves and causes the leaves 

to dry up. Gummosis mainly harms branches, causing 

Fig. 1 Major plant diseases of peach. a Brown rot for fruit. b Brown rot for fruit. c Brown rot for leaf. d Anthrax for fruit. e Anthrax for leaf. f Scab for 

fruit. g Scab for leaf. h Bacterial perforation for fruit. i Powdery mildew for fruit. j Powdery mildew for leaf. k Leaf curl for leaf. l Gummosis for branch
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tree weakness, affecting fruit quality, and even caus-

ing death of branches and trees. �e 7 diseases were 

researched in the laboratory, so laboratory personnel 

were familiar with the characteristics of the diseases. 

For example, a certain disease mainly infects fruits, and 

leaves and branches are also infected a few, so the dis-

ease images were mainly collected by fruit pictures. �e 

project team is a team of experts on fruit disease pre-

vention and control posts in the National Peach Indus-

try Technology System, which can ensure the accuracy 

of its classification. For similar diseases and diseases 

that are easy to be confused, accurate conclusions can 

be drawn through tissue isolation of pathogenic bacte-

ria or direct monospore isolation, pathogen morphol-

ogy observation and molecular biological identification. 

�e collection methods were two ways. �e first way 

was collecting pictures of existing resources in the lab-

oratory or obtaining some pictures from other experts 

through cooperation in the Peach system, and the sec-

ond way was taking a large number of pictures indoors 

or orchards.

Comparing with seven existing deep CNN models, 

the results showed that DenseNet169 had the highest 

validation accuracy (89.32%). In order to improve accu-

racy, by analyzing data distribution of peach disease 

image dataset and the results based on seven existing 

deep learning models, we proposed to apply regulari-

zation to seven existing models. �e Xception model 

with regularization term of L2-norm achieved the 

highest validation accuracy of 92.23%. Furthermore, 

when regularization term was changed to L2-norm and 

mean, the validation accuracy was further improved to 

93.85%.

Result and discussion

�e results presented in Fig.  2 show that the models 

applying regularization with L2-norm achieved better 

performance compared to original CNN models except 

AlexNet, DenseNet and HRNet.

For the original models, DenseNet had the highest vali-

dation accuracy of 89.32% and SENet had the lowest vali-

dation accuracy of 56.63% as shown in Table 1.

When there are many predictors in the dataset and 

not all of predictors have the same predicting power, 

L2-norm regularization can be used to estimate the 

predictor importance and penalize predictors that are 

not important. When the L2-norm regularization is 

added to the loss function, overfitting problem will be 

solved better. For the methods with L2-norm regulari-

zation, validation accuracy increased by 26.86%, 13.41%, 

8.09% and 5.51% for Xception, ResNet, MobileNetV3 

and SENet, respectively. However, the validation accu-

racy decreased by 14.24%, 2.78% and 6.42% for AlexNet, 

HRNet and DenseNet, respectively. �e validation accu-

racy of DenseNet and HRNet were slightly reduced after 

L2-norm regularization. �e highest validation accuracy 

was 92.23% for Xception after applying regularization 

with L2-norm.

Regularization with L2-norm was most effective for 

Xception. On the basis of L2-norm, in order to improve 

the model the regularization term � ‖ w‖2 in Eq. (2) was 

changed to two parts of γ1
1

N

∑
N−1

i=0
wi + γ2�w�2 as shown 

in Expression (3) consequently. After testing different 

Fig. 2 Validation accuracies of seven models and seven improved models



Page 4 of 13Yao et al. Plant Methods           (2021) 17:36 

parameter values of γ1 and γ2 as shown in Table  2, we 

found that when γ1 = 0.7 andγ2 = 0.3 , the valida-

tion accuracy of Xception was up to 93.85% as shown in 

Table  2. �e parameters of γ1, γ2 are chosen to suitable 

value for better performance. �us, it can be seen that 

regularization can make the performance of Xception 

better. �e training accuracy and validation accuracy in 

the original Xception and Xception with different regu-

larization term was shown in Fig.  3. �e training accu-

racy was average accuracy per epoch, and so was the 

validation accuracy. �e results also showed that regular-

ization for Xception can greatly improve training accu-

racy and validation accuracy. �e training accuracy of 

Xception with L2-norm is not much different from that 

of Xception with L2-norm and mean, but the validation 

accuracy of Xception with L2-norm and mean was obvi-

ously higher than that of Xception with L2-norm. Fur-

thermore, training loss and validation loss in the original 

Xception and Xception with different regularization term 

was shown in Fig.  4. Receiver operating characteristic 

(ROC) of the original Xception and Xception with differ-

ent regularization term was shown in Fig. 5, which also 

showed area under curve (AUC) of the original Xception 

and Xception with different regularization term in the 

legend at the bottom right. �e AUC of L2MXception 

model outperformed the other two methods.   

When regularization with L2-norm and mean(L2M) 

was used in seven models, the validation accuracy was 

shown in Table  3. Training parameters (epoch, learning 

rate and batch size) of seven models are same in Table 1 

Table 1 Results and parameters based on seven original models

Network Batch size Epoch Learning rate Training accuracy (%) Validation accuracy (%)

AlexNet 64 60 0.001 72.02 70.55

ResNet50 64 60 0.001 68.28 65.23

Xception 64 60 0.001 67.86 65.37

SENet154 64 60 0.001 53.00 56.63

DenseNet169 32 60 0.001 90.49 89.32

HRNet-w48 64 60 0.001 89.06 80.91

MobileNetV3 64 60 0.001 57.63 57.60

Fig. 3 Training accuracy and validation accuracy in the original Xception and the Xception with different regularization term
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Fig. 4 Training loss and validation loss in the original Xception and the Xception with different regularization term

Fig. 5 ROC of the original Xception and the Xception with different regularization term
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and the value of γ1 and γ2 were γ1 = 0.7, γ2 = 0.3 . �e 

Xception with L2 and L2M both can improved the vali-

dation accuracy, while the Xception with L2M improved 

less compared to Xception with L2. �e regularization 

with L2 and L2M were not suitable for all seven models, 

as shown in Table 3 and Fig. 2, DenseNet169, HRNet-w48 

and AlexNet were not suitable for using regularization 

with L2 and L2M. Maybe using regularization with L2 

and L2M is repeated for DenseNet169, because the net-

work includes actions for preventing overfitting. HRNet-

w48 is more complex than ResNet50. Also AlexNet is 

complex and it’s pre-trained model is lager than other 

four models. Maybe according to the reasons, the regu-

larization with L2 and L2M are not suitable for them.

We also experimented this dataset using Xception with 

regularization of L1-norm and L2-norm, and the vali-

dation accuracy was shown in Table  4. In this case, the 

regularization term � ‖ w‖2 in Eq.  (2) was changed to 

γ3�w�1 + γ4�w�2 , and the loss function is Eq.  (5). �e 

parameters of γ3, γ4 are chosen to suitable value for better 

performance. �e results in Table 3 showed that regulari-

zation with L2-norm and mean was better than regulari-

zation with L1-norm and L2-norm based on Xception.

�e accuracy of DenseNet169 and MobileNetV3 was 

shown in Figs.  6 and 7, while the loss of DenseNet169 

and MobileNetV3 was shown in Figs. 8 and 9.   

Table 2 Different results corresponding to different parameters 

based on Xception(L2 and mean)

Parameters value ( γ1 , γ2) Validation 
accuracy (%)

γ1 = 0, γ2 = 1 92.23

γ1 = 0.5, γ2 = 0.5 92.88

γ1 = 0.6, γ2 = 0.4 91.64

γ1 = 0.7, γ2 = 0.3 93.85

γ1 = 0.8, γ2 = 0.2 92.88

γ1 = 1, γ2 = 0 92.56

γ1 = 0, γ2 = 0 65.37

Table 3 The comparison of Validation accuracy of seven models 

with L2 and L2M

Network Validation 
accuracy(L2) (%)

Validation accuracy 
(L2M) (%)

Change

AlexNet 56.31 57.31 1.00% (+)

ResNet50 78.64 79.34 0.7% (+)

Xception 92.23 93.85 1.62% (+)

SENet154 62.14 62.84 0.7% (+)

DenseNet169 82.90 80.58 2.32% (−)

HRNet-w48 78.13 78.00 0.13% (−)

MobileNetV3 65.69 66.01 0.32% (+)

Fig. 6 Training accuracy and validation accuracy in the original DenseNet169 and the DenseNet169 with different regularization term
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Fig. 7 Training accuracy and validation accuracy in the original MobileNetV3 and the MobileNetV3 with different regularization term

Fig. 8 Training loss and validation loss in the original DenseNet169 and the DenseNet169 with different regularization term
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We used test dataset on Xception, Xception with L2 

and Xception with L2M, and the test accuracy is 64.32%, 

91.67% and 92.16%, respectively.

Conclusions

In this paper, an improved Xception Network ensemble 

with L2M Loss was proposed for classification of peach 

diseases. And seven deep learning models were applied to 

identify peach diseases from images. �e disease image 

dataset has 7 kinds of diseases and 1560 images, includ-

ing infected different parts such as fruits, branches and 

leaves. In the dataset 1251 images are used for train and 

156 images are used for validation and 153 images are 

used for test. �e highest validation accuracy was 89.32% 

based on original DenseNet169 model. By analyzing the 

data distribution and classification results of seven deep 

learning models, the improved methods with regulariza-

tion were proposed to improve accuracy. After experi-

ments, the highest validation accuracy is 93.85% from 

Xception model with regularization term of L2-norm 

and mean. But the regularization with L2 and L2M were 

not effective for all seven models, and regularization with 

L2 and L2M for DenseNet169, HRNet-w48 and AlexNet 

were not effective. Because the DenseNet169 network 

includes actions for preventing overfitting, so regulari-

zation with L2 and L2M is excess. HRNet-w48 is based 

on ResNet50, but it’s more complex than ResNet50. Also 

AlexNet’s pre-trained model is lager than other four 

models. Maybe according to the reasons, the regulariza-

tion with L2 and L2M are not effective for them.

ResNet50, Xception, SENet154 and MobileNetV3 get 

higher validation accuracy by using regularization with 

L2 and L2M. �e experiments show that regulariza-

tion is highly suitable for Xception model. Furthermore, 

when regularization term was changed to L2M loss from 

L2 loss, the validation accuracy was up to 93.85% based 

on Xception. �e proposed method can help to identify 

peach plant diseases in earlier stage, rapidly and accu-

rately. We will tailor the improved Xception network into 

Intelligent embedded system in the future.

Methods

Peach disease image dataset

�e images of peach diseases were formed into the Peach 

Disease Image Dataset (PDID). the numbers of each cat-

egories in PDID are shown in Fig.  10. �e numbers of 

images of brown rot disease, anthracnose disease, scab 

disease, bacterial shot hole disease, gummosis disease, 

powdery mildew disease and leaf curl disease are 94, 157, 

654, 427, 91, 50 and 87, respectively. Figure 10 shows that 

the distribution of the numbers of images of different dis-

ease classes are extremely imbalanced. �e numbers of 

Fig. 9 Training loss and validation loss in the original MobileNetV3 and the MobileNetV3 with different regularization term
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images of training dataset, validating dataset, and testing 

dataset are 1251, 156, and 153, respectively.

Convolutional neural network

Convolutional neural network (CNN) has become one of 

the research hotspots in the field of pattern classification. 

Since the method avoids the complicated pre-processing 

of images, CNN can directly deal with the original 

images, and extract features automatically. Convolutional 

neural networks are very similar to ordinary back-propa-

gation neural networks, and they all consist of neurons 

with learnable weights and constant bias. Each neuron 

receives inputs and make mathematical calculations. 

When xi as inputs, the output of single neural network is: 

output = f (
n∑

i=1

wixi + b) . Where wi is weight and b is 

constant bias. �e convolutional neural network output 

is the score of each classification. �e default input of 

convolutional neural network is an image that allows us 

to encode specific properties into the network structure, 

making the feedforward functions more efficient and 

reducing a large number of parameters.

�e basic structure of CNN is composed of convolu-

tional layer, rectified linear units layer, pooling layer and 

fully connected layer. Each convolutional layer consists of 

several convolutional units, and the parameters of each 

convolutional unit are optimized by a backpropagation 

algorithm. �e convolution operation is to extract differ-

ent features of the input. �e first layer of convolutional 

layer may only extract some low-level features such as 

edges, lines and corners. �e following layers can itera-

tively extract more complex features from low-level fea-

tures. �e Rectified Linear units (ReLU) layers mainly 

perform a nonlinear mapping on the output of the con-

volutional layer. �e excitation function used in this layer 

is generally a ReLU function: ReLU(x) = max(0, x) . �e 

pool layers reduce the dimension of each feature map, 

and the depth of the output remains the same as the 

number of feature maps. �e fully connected layers com-

bine all the local features into global features to calculate 

the score for each class lastly.

CNN was proposed in LeNet network [29] with four 

typical layers. �e AlexNet [30] detonates the application 

boom of convolutional neural networks, which was the 

champion of the Large Scale Visual Recognition Chal-

lenge 2012 (ILSVRC2012). Since then, more deeper con-

volutional neural networks are proposed, such as VGG 

(Simonyan K and Zisserman A, 2014) [31], GoogLeNet 

[32], ResNet [33], Xception [34], SENet [35], DenseNet 

[36], HRNet [37], MobileNetV3 [38] and so on. Goog-

LeNet was the champion of the ILSVRC-2014 competi-

tion. �e VGG describes that the depth of the network 

is the key factor for the performance of the algorithm 

and performs better than GoogLeNet in some Transfer 

Fig. 10 Distribution of sample of each disease
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Fig. 11 Depthwise separable convolution

Fig. 12 The Xception architecture
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Learning tasks. �e ResNet proposes the idea of residual 

learning and many later models are designed on ResNet 

network. �e structure of Xception is based on ResNet, 

but the convolutional layer is replaced by depthwise sep-

arable convolution as shown in Fig. 11. Although separa-

ble convolution can bring about an increase in accuracy 

or a significant drop in theoretical calculations, due to the 

scattered calculation process, the efficiency is not high 

enough. Complete description of the Xception network 

is presented in the Chollet and François’s paper [34] and 

the Xception architecture [34] is shown in Fig. 12. Own-

ing to feature reuse and setting bypassing, the parameter 

amount of DenseNet network is greatly reduced, and the 

problem of the gradient vanishing is alleviated, while the 

network has a certain effect of regularization. HRNet, 

based on residual unit, connects high-to-low resolution 

convolutions in parallel, where there are repeated multi-

scale fusions across parallel convolutions. MobileNetV3 

is a combination of depthwise separable convolutions, 

inverted residual with linear bottleneck and the light 

weight attention model. AlexNet, ResNet, Xception, 

SENet, DenseNet and HRNet were applied for classify-

ing peach diseases in this paper. Transfer learning was 

used to initialize weights for AlexNet, ResNet, Xception, 

SENet and DenseNet, while HRNet and MobileNetV3 

were trained directly by the peach disease image data-

set. �e pretrained models of AlexNet [39], ResNet [40], 

Xception [41], SENet [42] and DenseNet [43]are pro-

vided by pytorch.

Image preprocessing

�e samples in the dataset are RGB images. Gener-

ally, deep learning models have four image preprocess-

ing steps. Images were processed as following stages: 

firstly, all the images were resized to 224 × 224 pixels for 

AlexNet, ResNet50, SEnet, DenseNet, MobileNetV3, 299 

× 299 for Xception, and 256 × 256 for HRNet. Model opti-

mization and prediction were performed on the rescaled 

images. Secondly, all pixel values were divided by 255 to 

[0.0, 1.0]. �irdly, Z-Score normalization was performed, 

which was carried out as follows: for each pixel value x 

as input, mean value mx and standard deviation sx were 

calculated and then input x is turned to x′
= x − mx/sx , 

so that the normalized data was a standard normal distri-

bution with zero mean and unit variance. Finally, several 

augmentations including random rotation (10), cropping, 

and flipping (0.5) were used on the training, validating 

and testing dataset. Rotation, cropping and flipping are 

random. �e parameters of affine transformation for 

training is degree (−10,10), translate (0.15,0.15), scale 

(0.9,1.1) and shear (10). Degree (−10,10) represents the 

range of rotation degree is (−10, 10); Translate(0.15,0.15) 

represents horizontal shift is randomly sampled in the 

range (image_width × 0.15, image_width × 0.15) and 

vertical shift is randomly sampled in the range (image_

height × 0.15, image_height × 0.15); Shear (10) represents 

a shear parallel to the x axis in the range (−10,10) will 

be applied. �e augmentation was helpful for enhancing 

generalization ability of model and preventing overfitting.

Regularization to improve CNN models

�is paper applied seven CNN models (AlexNet, ResNet, 

Xception, SENet, DenseNet, HRNet and MobileNetV3) 

for classifying peach disease images. �e parameters and 

prediction accuracies of all models are shown in Table 1. 

�e best validation accuracy was 89.32% in DenseNet169 

and the lowest validation accuracy was 56.63% in SENet. 

Samples in this dataset were imbalanced, and the number 

of samples was relatively small. So, too simple model may 

not work well for this dataset.

In addition to the loss function of CrossEntropyLoss, 

an additional term is added which varies depending on 

L1-norm, L2-norm or other combination terms. �is 

additional term is called regularization term which helps 

to avoid overfitting (L2) and perform features selection 

(L1). �e total loss function with regularization term:

Here, if �  is zero then we get back CrossEntropyLoss. 

However, if  �  is very large then it will add too much 

weight and it will lead to under-fitting. So, when � is cho-

sen to a suitable value, this technique works well. In 

Eq. (1), if regularization term is L1, L1 is �w�1 =
∑

i=1

|wi| ; 

if regularization term is L2, L2 is �w�2 =

√

∑

i=1

|wi|
2 ; �e 

CrossEntropyLoss(CE) is:

CrossEntropyLoss =
1
N

∑

i

Li =
1
N

∑

i

−

M∑

c=1

yic log(pic) . Where 

N  is the number of samples; M is the number of catego-

ries; If the category is the same as the category of sample 

(1)
loss = CrossEntropyLoss + �(regularization term)

Table 4 Different results corresponding to different parameters 

based on Xception (L1 and L2)

Parameters value ( γ3 , γ4) Validation accuracy 
(%)

γ3 = 0, γ4 = 1 92.23

γ3 = 0.5, γ4 = 0.5 88.35

γ3 = 0.6, γ4 = 0.4 87.06

γ3 = 0.7, γ4 = 0.3 87.70

γ3 = 0.8, γ4 = 0.2 86.41

γ3 = 1, γ4 = 0 86.73

γ3 = 0, γ4 = 0 65.37
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i, yic is 1, otherwise it is 0; pic is the predicted probability 

that the observed sample i belongs to category c.

To avoid overfitting due to imbalanced samples when 

training the models, we devised regularization term with 

L2 to the loss function and the loss has two parts:

where � is a weight decay constant that controls the bal-

ance between better fitting of the training data using 

the term CrossEntropyLoss and minimizing the param-

eter(w ) values using the regularization term � ‖ w‖2 . To 

further improve the model, we add a term of mean in the 

regularization term and replace � ‖ w‖2 by two terms:

where γ1 and γ2 are constant coefficients for the first term 

and the second term, 1
N

∑
N−1

i=0
wi is the mean of w.

In total, our L2M loss function is:

Based on experiments, when γ1 = 0.7 and γ2 = 0.3 , the 

validation accuracy of L2MXception network is up to 

93.85%. (Shown as Table 2.)

We also do some experiments when the regularization 

terms conclude L1 and L2:

When γ3γ4 has the same values with γ1γ2 respectively, 

the validation accuracy of Xception network with loss 

function in Eq.  (5) is lower than the validation accuracy 

of L2MXception network with loss function in Eq. (4).

Implementation

�e experiment of classification was performed on a 

CentOS workstation equipped with two Intel(R) Xeon(R) 

E5-2683 v4 CPU (55G RAM), accelerated by two Tesla 

P100-PCIE GPU (16 GB memory). �e model implemen-

tation in this paper was powered by deep learning frame-

work of PyTorch.

All applied CNN models in this paper were trained 

using parameters shown in Table  1. All CNN models 

used the same training parameters (epoch, learning rate 

and batch size) except DenseNet169 because of using 

more memory. �ese parameters gave the best results 

during training after appropriate experimentation.

Running time per epoch of different network is shown 

in Table  5. �is running time is an average time of 60 

epochs.

(2)loss = CE + ��w�2

(3)γ1

1

N

∑N−1

i=0
wi + γ2�w�2

(4)loss = CE + γ1

1

N

∑N−1

i=0
wi + γ2�w�2

(5)loss = CE + γ3�w�1 + γ4�w�2
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Table 5 Running time per epoch

network Original(Second) Original + L2 
(Second)

Original + L2M(Second)

AlexNet 4.05 5.36 7.23

ResNet50 13.53 14.64 22.26

Xception 18.12 18.59 27.6

SENet154 45.86 54.76 78.59

DenseNet169 19.63 28.14 46.24

HRNet-w48 2.26 2.14 2.26

MobileNetV3 4.24 4.96 7.58
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