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Abstract

A modification of the Roe scheme aimed at low Mach number flows is discussed. It improves
the dissipation of kinetic energy at the highest resolved wave numbers in a low Mach number test
case of decaying isotropic turbulence. This is done by scaling the jumps in all discrete velocity
components within the numerical flux function. An asymptotic analysis is used to show the
correct pressure scaling at low Mach numbers and to identify the reduced numerical dissipation
in that regime, both of the new method L2Roe, as well as a method previously suggested by
other authors. Furthermore, the analysis allows comparisons of these methods with a further
low Mach scheme, LMRoe.

No conflict is observed between the reduced dissipation and the accuracy or stability of the
scheme in any of the investigated test cases ranging from low Mach number potential to hyper-
sonic viscous flow. Furthermore, a comparison with the two other methods shows advantages of
the new approach.

Keywords: Riemann Solvers, Finite Volume Methods, Low Mach, Asymptotic Analysis, Numerical
Dissipation.

1 Introduction

When approximate Riemann solvers were introduced into Godunov type schemes about three
decades ago, an efficient way of simulating gas dynamic flows was found enabling to capture shocks
within a few grid cells. In the following years many different approximate schemes were created
and successfully improved to satisfy the entropy condition and handle the carbuncle phenomenon.
Focusing on the schemes for perfect gas, the development of numerical flux functions was then
dominated for many years by modifications to enable accurate results at low Mach numbers with-
out loosing the stable and accurate resolution of high Mach number flow features. A particular
solution to the accuracy problem at low Mach numbers for unsteady flow computations was found
in the 1990s by Guillard and Viozat [8] using a preconditioning technique, which is based on the
insight that the dissipation term in the numerical flux is of the asymptotically wrong order as the
Mach number tends to zero. However, this scheme was subsequently shown to have stability prob-
lems [2, 4]. Therefore, different approaches have been taken in the last ten years and in particular,
more analysis of the reasons for the wrong scaling has been performed. As it turns out, the problem
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can be attributed to jumps in the discrete normal velocity, as was shown by analyzing Riemann
problems in [7] and creation of entropy in [17]. As was shown in [12], this problem does not in fact
exist on triangular grids.

For the low Mach number problem, Thornber et al. suggest a modification of the MUSCL recon-
struction step [18], which changes the response of the flux function by replacing the reconstructed
left and right velocities with new ones, such that the difference gets reduced with decreasing Mach
number. They then show that this causes an appropriate decrease of the numerical dissipation
for certain limiters, but does not solve the problem for example for van Leers limiter. A different
approach is the low Mach number modification LMRoe of the Roe scheme proposed by Rieper [11].
There, only the difference in the normal velocity components is reduced within the flux function by
multiplying the difference with the local Mach number in subsonic flows situations. Both of these
approaches reduce the numerical dissipation, but not so much as to lead to stability problems.

As a second motivation, we consider the resolution in time of turbulent flow fields, computed via
Large-Eddy Simulations (LES) or Detached Eddy Simulations (DES). This has been made possible
due to the increasing computer power of recent years and exhibits a new challenge for upwind
schemes. Excessive numerical dissipation in the range of higher resolved wave numbers prohibits
the accurate resolution of the turbulent kinetic energy in that regime.

In this article, we therefore consider an additional modification of the LMRoe scheme for the
high wave number regime corresponding to a similar reduction on the differences of tangential
velocity components on top of the normal components. This new method L2Roe is suitable for
computations on unstructured grids with any cell type. An asymptotic analysis shows a correct
scaling of the pressure at low Mach numbers, as well as a specific reduction of the numerical
dissipation. Furthermore, it allows us to compare the properties of Roe, LMRoe, L2Roe and the
scheme of Thornber et al. in these regards. While LMRoe is based on an asymptotic analysis, the
last scheme is based on less rigorous arguments. Thus, we present for the first time an analysis
of that scheme, allowing us to better categorize it compared to existing approaches. The method
of Thornber et al. acchieves the lower numerical dissipation via modifying the velocities, therefore
changing not only the dissipative terms, but the evaluations of the physical fluxes as well. We
do not consider this to be desirable, since it introduces possibly unwanted nonlinear side effects.
Therefore, our method changes the numerical dissipation only.

We now first describe the governing equations and the base method, followed by the different
modifications at low Mach numbers discussed here. The following section presents the asymptotic
analysis. Finally numerical examples on all schemes demonstrate the range of applicability. That
section culminates with the results in the case of decaying isotropic turbulence (DIT). This offers a
view on the numerical dissipation of the scheme with respect to the resolved wave numbers of the
flow and shows the advantage of the new approach.

Regarding notation, vectors in the coordinate space ℜ3 are underlined whereas bold faced
variable names indicate vectors of the equation space.

2



2 Governing Equations and discretization

We first consider the compressible d-dimensional Euler equations

∂tρ+∇ ·m = 0,

∂tmi +
d∑

j=1

∂xj
(miv̂j + pδij) = 0, i = 1, ..., d (1)

∂t(ρE) +∇ · (Hm) = 0,

which model inviscid flows. Here, we have the density ρ, velocity vector u = (u1, ..., ud)
T , pressure

p and total enthalpy H = h+ 0.5u · u. Using the vector of conservative variables w = (ρ, ρu, ρE)T

this can be written in short as wt +∇ · f(w) = 0, where the Euler fluxes are given by

fj(w) =




ρuj
ρuju+ pI
ρuj H


 , j = 1, ..., d,

where I is the identity matrix. This system is employed for the analysis, since all the problems at
low Mach numbers originate in terms present in this system.

Since we are interested eventually in viscous flows, we also consider the compressible Navier-
Stokes equations in the numerical results section. For turbulent flows, either the Reynolds averaged
Navier-Stokes (RANS) equations using the turbulence model of Spalart and Allmaras [14] are
employed or a Large Eddy Simulation (LES) using the same turbulence model as a subgrid scale
model are used, see [1] for more on these approaches.

The space discretization is a finite volume discretization, which can be written for one cell Ωi

as
d

dt
wi(t) +

1

|Ωi|
∑

j∈N(i)

σij(nij)f
LR(w+

i ,w
−

j ;nij) = 0, (2)

where N(i) constitutes the set of indices of cells neighboring cell i, Ωi is the volume of that cell,
σij the area, respectively length, of the face between cells i and j and nij the normal vector of that
face pointing outwards. The numerical flux functions fLR used here are all variants of the Roe-Pike

method as described next. The values w
+/−
k are the left and right values of the numerical solution

at the cell interfaces, respectively. For a first order method, these are just equal to wk, but for a
higher order method, these will be generally different. In case that they are needed, the viscous
terms are discretized using central differences.

2.1 Roe-Pike method

The numerical flux fLR of the Roe-Pike method approximating the solution of the Riemann problem
between the constant states L and R in case of the three dimensional (d = 3) Euler equations can
be summarized as (see e.g. [19]):

f
LR(wL,wR;nLR) =

1

2
(fL + fR)−

1

2

5∑

i=1

αi |λ̃i|ki. (3)
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with fL = f(wL) · nLR and fR analogously. The wave strengths αi, wave speeds or eigenvalues λi

and eigenvectors ki are given by:

k
1=




1
ũ− ã n

H̃ − ã ũn


, k2=




1
ũ

0.5 ũ · ũ


, k3=




0
t1
ũt1


, k4=




0
t2
ũt2


, k5=




1
ũ+ ã n

H̃ + ã ũn


 ,

λ̃1= ũn − ã , λ̃2= ũn , λ̃3= ũn , λ̃4= ũn , λ̃5= ũn + ã ,

α1=
∆p− ρ̃ ã∆un

2ã2
, α2=∆ρ− ∆p

ã2
, α3= ρ̃∆ut1 , α4= ρ̃∆ut2 , α5=

∆p+ ρ̃ ã∆un
2ã2

.

Herein a denotes the speed of sound and t1 and t2 are arbitrary orthogonal unit tangential vectors
spanning the plane with the normal n. The velocity components in the tangential directions
are ut1 = u t1 and ut2 = u t2. ∆ denotes the difference between the right and left states (e.g.
∆p = pR − pL) and (̃ ) denotes the Roe averages given by:

ρ̃ =
√
ρL ρR ; ũ =

√
ρL uL +

√
ρR uR√

ρL +
√
ρR

; H̃ =

√
ρLHL +

√
ρR HR√

ρL +
√
ρR

; ã =

√
(γ − 1)(H̃ − 0.5 ũ · ũ).

The entropy fix of van Leer is applied on the acoustic waves (k = 1 and k = 5):

|λ̃k|∗ =





|λ̃k| , |λ̃k| ≥ 2 ∆̂λk

λ̃2
k

4 ∆̂λk

+ ∆̂λk , |λ̃k| < 2 ∆̂λk

with ∆̂λk = max(λR
k − λL

k , 0).

In order to avoid shock instabilities (carbuncle phenomenon) the shock indicator proposed in [20]
for the AUSMDV switch is used to locally modify the wave speed λ2, as suggested by Liou [10]:

|λ̃2|∗ =
{

|λ̃2| , sswL = sswR = 0
max(ã, |ũ|) , else

with

sswi =





1 , λi
1 > 0 andλj

1 < 0 for any neighbor j of i

1 , λi
5 > 0 andλj

5 < 0 and respective normal nij

0 , else.

(4)

3 Modifications at low Mach numbers

A large number of methods have been suggested to cope with the accuracy problem of classic
schemes at low Mach numbers. Of these, we first present two recent ones that at the same time do
not obtain an additional stability problem, before presenting our new method.
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3.1 Modification according to Thornber et al.

Thornber et al. [18] modify the left and right velocities in order to reach the arithmetic mean of
the velocities at Mach number zero:

u∗L =
(1 + z)uL + (1− z)uR

2
=

uL + uR
2

− z

2
∆u

u∗R =
(1 + z)uR + (1− z)uL

2
=

uL + uR
2

+
z

2
∆u (5)

with
z = min (1,max(ML,MR)) . (6)

Hereby

ML/R =
|uL/R|
aL/R

.

are the local Mach numbers independent of the normal direction in which the flux is evaluated.
An important effect of the modification is that ∆u∗ = z∆u and thus, the jumps in the velocity

components are linearly reduced with decreasing Mach number. Secondary effects due to the
changed velocities per se are within the nonlinear terms in the Euler flux evaluation and the
difference between the arithmetic mean and the Roe averaged velocities.

Thornber et al. show that when using this in conjunction with specific high order limiters on
structured grids, a numerical dissipation that is nonspurious at low Mach numbers is obtained.
However, it is also shown that this is not true for the van Leer limiter.

3.2 LMRoe: Scaling the jump in normal velocities

The LMRoe scheme of Rieper [11] is a modification of the Roe-Pike scheme to achieve a low Mach
number variant. The same linear blending function z as given in equation (6) is applied within the
approximate Riemann solver only on the jump ∆un of the normal velocity un = u ·n which affects
the wave strengths of the acoustic waves α1 and α5:

(∆un)
∗ = z∆un.

The reduction of the numerical dissipation depending on the jump in the normal component of
the velocities is sufficient to improve the behavior of the scheme at low Mach numbers. However,
in the vicinity of shocks small disturbances are observed. To avoid these, we suggest to use the
shock indicator to keep the original scheme unmodified there:

(∆un)
∗ =

{
z∆un , sswL = sswR = 0
∆un , else.

(7)

The indicator sswL/R will be zero at low Mach numbers in the absence of shocks, thus resulting in
the desired form z∆un.

3.3 L
2Roe: Decreasing the dissipation

In the asymptotic analysis performed later and the numerical results on the test case of decaying
isotropic turbulence (DIT) in section 5.5, it becomes clear that the dissipation of LMRoe is still
too high, whereas the method of Thornber et al. has smaller dissipation in a certain sense and
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performes much better. In our view, the important difference is that in LMRoe, only the jumps in
the normal components are scaled, whereas in the other method, the scaling is applied to all jumps.

However, the method of Thornber et al. acchieves this through modifying the velocities, there-
fore changing not only the dissipative terms, but the evaluations of the physical fluxes as well. We
do not consider this to be desirable, since it introduces possibly unwanted nonlinear side effects.
Therefore, we now modify LMRoe further in the spirit of changing the numerical dissipation only
and no other aspects of the numerical flux function. As we will see, this will give slightly better
results than the method of Thornber et al.

Thus, we apply the similar modification to both tangential components t1 and t2 as well, thereby
reducing the numerical dissipation associated with k

3 and k
4 :

(∆ut)
∗ =

{
z∆ut , sswL = sswR = 0
∆ut , else.

(8)

4 Asymptotic Analysis

4.1 Pressure field

We now use an asymptotic analysis of the new scheme to show that it asymptotically obtains
the correct spatial pressure distribution. For reasons of simplicity, we restrict ourselves to the
two dimensional case. The nondimensional Euler equations (1) were obtained using the standard
nondimensionalization which employs a pressure reference of the form p̂ref = ρ̂ref v̂

2
ref . As is useful

for low Mach numbers, we now employ a different nondimensionalization with a fixed pressure
reference pref and introduce the global Mach number

M =
ûref
âref

as the quotient of the reference velocity and the reference speed of sound âref =
√

p̂ref/ρ̂ref . This
nondimensionalization causes the factor M−2 to appear in front of the pressure gradient. As was
shown previously [8], the continuous pressure is of the form

p(x, t) = p(0)(t) +Mp(1)(t) +M2p(2)(x, t), M → 0, (9)

meaning that the spatial variations of the pressure are on the scale of the Mach number squared.
Thus, the discrete pressure should have the same property and at the core of the accuracy problem
of many schemes at low Mach numbers is an asymptotically wrong spatial pressure variation.

To better understand the new method, we now repeat the basic steps of the asymptotic analysis
of the Roe-Pike method for the x-component of the momentum update (the analysis of the y-
component is analogous). Thus, after lengthy computations, we obtain for cell i in terms of the
Mach number (compare [11], appendix 2):

Ωi
d

dt
(ρiu1i) +M−2 1

2

∑
l∈N(i)

plnilxσil +M−1 1

2

∑
l∈N(i)

(
(unnx + u1)il∆ilp

ail
+ ρilailnilx∆ilun

)
σil

+
1

2

∑
l∈N(i)

(
ρlu1lu · nil − ρil|unil

|nily∆ilut + |unil
|
(
∆ilρ−

∆ilp

a2il

)
u1il

)
σil = 0.

Hereby, unless it is a geometric quantity, the notation φil denotes the Roe average of φi and φl.
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We then expand all variables in cell i in an asymptotic expansion

φ(x, t) = φ(0)(x, t) +Mφ(1)(x, t) +M2φ(2)(x, t) +O(M2), M → 0. (10)

Thus we obtain the following equations for the terms in the expansion ordered by powers of the
Mach number:

O(M−2) :
1

2

∑

l∈N(i)

p
(0)
l nilxσil = 0,

O(M−1) :
1

2

∑

l∈N(i)

p
(1)
l nilxσil +

1

2

∑

l∈N(i)

(
(unnx + u1)

(0)
il ∆ilp

(0)

a
(0)
il

+ ρ
(0)
il a

(0)
il nilx∆ilu

(0)
n

)
σil = 0.

From the first equation it follows that p
(0)
i does not vary in space, but with this and the

next equation it follows that p
(1)
i can vary in space, which contradicts the continuous analysis

and explains the bad behavior of this method at low Mach numbers. Since ∆ilp
(0) vanishes, the

problematic term is ρ
(0)
il a

(0)
il nilx∆ilu

(0)
n and this is where the fix of Rieper sets in, which shifts it to

a higher order of the Mach number, resulting in a method where the discrete pressure is in line
with (9).

Regarding the newly proposed modification (8), we can see that firstly, z will be on the order of
M . Secondly, ssw (compare (4)) will always be zero, since the flow is subsonic. Thus the implication
is that when looking at a specific power of the Mach number in an asymptotic expansion of the
form (10) of terms involving ∆ilu, these terms get shifted backwards to higher powers of the Mach
number. Thus, we formally have:

∆ilu
(i) =

{
∆ilu

(i−1), for i > 0

0, for i = 0
. (11)

This implies that we retain the beneficial properties of Riepers modification, since the corresponding
equations of order −1 and −2 in powers of the Mach number are unchanged. Although Thornber
et al. did not prove this, it becomes now clear from looking at (5) that the same is true for that
method.

4.2 Numerical viscosity

The point where we improve upon Riepers method is the numerical viscosity. It is well known that
the original Roe scheme at low Mach numbers suffers from excessive numerical viscosity. Rieper
argues that a model for a numerical viscosity that is not spurious at low Mach numbers would be
the equation

∂

∂t
φ+

∂

∂x
φ =

∂2

∂x2
φ∆x,

which is independent of the Mach number. Thus, we expect only leading order terms in the
asymptotic equation containing the leading order momentum change in time. With the knowledge
that for M → 0 p(0) does not vary in space and assuming that ρ(0) does not vary in space, the
leading order discrete x-momentum equation of Riepers method is

Ωi
d

dt
(ρiu1i)

(0) +
1

2

∑

l∈N(i)

(
ρ
(0)
l u

(0)
1l

u(0) · nil + (ρilailnilx∆ilun)
(0) − ρ

(0)
il |u(0)nil

|nily∆ilu
(0)
t

)
σil = 0. (12)
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In the new scheme with the additional tangential weighting (8), the last term including ∆ilu
(0)
t

gets shifted to a higher order and thus the resulting leading order viscosity is

φ = (ρilailnilx∆ilun)
(0) (13)

meaning that we have reduced the numerical viscosity.
Modifying the numerical viscosity can influence stability, as was shown for the scheme of Guillard

and Viozat by Birken and Meister [2]. However, in the following numerical tests no problems
appeared.

Regarding the method of Thornber et al., we can apply the same argument to see that the last
germ gets shifter to a higher order. However, while the remaining term (13) is formally identical,
the Roe averages have been modified in their method and thus the numerical diffusion differs.

5 Numerical Results

All numerical results have been produced with the DLR-TAU code, which is based on a finite
volume method formulated on the dual grid of a conformal mesh consisting of tetrahedra, prisms,
pyramids and hexahedra [6]. Hereby, a linear reconstruction of the primitive variables is employed.
A total variation diminishing (TVD) limiter is applied where needed. In particular, we employ
the van Leer limiter in structured regions and a formulation based on Barth and Jesperson in
unstructured parts. For turbulent flows, the Spalart-Allmaras turbulence model is employed [14].

Several tests have been conducted to demonstrate a wide range of applications. First, a super-
sonic, a transonic and a subsonic flow are considered to see if the modification leads to a difference
in numerical results, in particular compared to the original Roe-Pike method. Then, two low Mach
number cases, namely a potential flow and finally the DIT illustrate the behaviour in that regime.

5.1 Supersonic cylinder
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Roe Thornber
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Figure 1: Mach 5 cylinder flow with radiative equilibrium at the wall; grid and Mach number
isolines, ∆M = 0.2 (left); wall temperature profile (middle) and close up of the stagnation region
(right) over the vertical coordinate z.

In the first test case, a cylinder faces a Mach five flow of air (γ = 1.4, R = 287 J/(kg K)) in
higher atmosphere (p∞ = 10000Pa, T∞ = 250K), resulting in a laminar flow field. The related

8



Reynolds number with respect to the radius of 0.01m is about 138000. Hereby, the temperature
dependence of the viscosity is modeled via the Sutherland formula for air:

µ(T ) = 17.2 · 10−6 Pa s

(
T

T∞

) 3

2 T∞ + 110.33K

T + 110.33K
.

The heat flux q̇ to the wall is assumed to be equal to the heat flux radiated from the wall with an
emissivity ǫ = 0.8 according to the Stefan-Maxwell law:

q̇ = ǫ σ T 4
wall with σ = 56.7032 · 10−9 W

m2K4
.

In Figure 1, the stable shock capturing of the new scheme and the good agreement of the wall
temperatures are depicted. Similar to the other modified schemes a small drop of the profiles can
be seen near the stagnation point, but all results are within 0.1%.

5.2 Transonic airfoil

0 0,2 0,4 0,6 0,8
chord length

-1

0

1

c p

Roe Pike
Roe Thornber
LMRoe
L2Roe

0 0,2 0,4 0,6 0,8
chord length

-0,005

0

0,005

c F

Roe Pike
Roe Thornber
LMRoe
L2Roe

Figure 2: RAE 2822 airfoil; Mach number isolines with increments of 0.1 (left), Roe-Pike (solid
line) and L2Roe (dashed); pressure coefficient cp (middle) and skin friction cf (right) over the chord
length, only a quarter of all surface points is depicted by a symbol.

To obtain a transonic test case, the free stream Mach number around an RAE-2822 airfoil is
set at 0.75 at an angle of attack of 2.8 degree. Hereby, the Reynolds number is 6.2 million with
respect to the chord length and the RANS equations are used to model the flow. The laminar to
turbulent transition is set at 0.03 chord length at the upper and lower side of the airfoil’s adiabatic
surface. A vortex correction is applied due to the small computational domain.

The Mach number isolines are shown in Figure 2. As can be seen, the superimposed solutions
of the original and modified Roe schemes are hardly distinguishable and only a small difference is
present near the sharp trailing edge. The pressure coefficient as well as the skin friction do not
show any significant difference.
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5.3 Subsonic high lift airfoil

The free stream condition of the high lift configuration is a Mach number of 0.2 at an angle of attack
of 20 degree and the Reynolds number is 9 million with respect to the chord length. Again, the
RANS equations are used to model the flow. Slat and flap are separated from the main wing and
all trailing edges have a final thickness. No vortex correction is applied due to a farfield distance
of about 100 chord lengths. The wing surfaces are assumed to be adiabatic.

Figure 3: High lift configuration; hybrid grid with isolines of the eddy viscosity (left); pressure
isolines increment of 2500 Pa (middle), Roe-Pike (red) and L2Roe (green); pressure coefficient cp
(right) over the chord length, only one tenth of all surface points is depicted by a symbol.

A close up of the hybrid grid around the wing is given in Figure 3 on the left. The superimposed
isolines of the eddy viscosity show the predicted turbulence in the coves of the slat and the main
wing as well as on the leeward side of the configuration. As expected, the wake of the slat interacts
with the boundary layer on the suction side of the main wing. The pressure isolines depicted
in the middle result from calculations with the Roe-Pike method (red) and L2Roe (green). The
qualitatively good agreement of the different formulations is quantified as pressure coefficient cp on
the right. The lowest values at the suction peak on the slat are not shown in order to achieve a
better scaling for the comparison along the rest of the configuration. All four solutions are close to
each other even at this scale.

In the pressure distribution on the suction side all modified Roe schemes differ from the original
Roe-Pike scheme, as can be seen in Figure 4 on the left and in the middle. On the right hand
side of Figure 4 an enlarged view of the cp distribution at the beginning of the slat cove shows the
smoother distributions of the modified schemes. The original Roe scheme has difficulties with such
a low Mach number region.

5.4 Potential flow

In a test case with a truly low Mach number, the Euler equations are solved to simulate the inviscid
flow field around a cylinder at a Mach number of M∞ = 0.001. At such low Mach numbers the
unmodified Roe scheme does not provide a physical solution. In the computation, the farfield
boundaries are taken about 1000 cylinder diameters away from the surface. The solutions shown
in Figure 5 highlight the low Mach number capability of the L2Roe scheme. The other modified
schemes provide similar good solutions for this case.

Notice that the benefit of the modifications is restricted to the accuracy of the converged solution
and do not improve the convergence behavior of the scheme on the way to a steady state solution.
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Figure 4: High lift configuration; close up views of the pressure coefficient cp over the chord length;
only one tenth of all surface points is depicted by a symbol (left and middle); suction side on slat
and first part of main wing (left), suction side rear part of main wing and flap (middle), first part
of slat cove (right).

However, we do not observe an additional time step restriction beyond the CFL number, showing
that the new scheme does not have the stability problems of for example the preconditioned Roe
solver of Guillard and Viozat [2].

5.5 Decay of isotropic turbulence

As a last test case, decaying isotropic turbulence (DIT) is investigated on an equidistant cartesian
grid. The boundary conditions are chosen to be periodic in one coordinate direction and symmet-
ric in the other directions. Earlier tests conducted during the DESider project [9] suggest that
the evolution of second order statistical moments and spectra are not influenced significantly by
this choice of boundary condition as opposed to periodic boundaries on all computational domain
boundaries. A second order reconstruction of the primitive variables is used without limiters due
to the continuous flow field at the low Mach numbers (Mmax < 0.016). The initial velocity field is
constructed to be divergence-free and to replicate the experimental kinetic energy spectra from the
Comte-Bellot and Corrsin experiment [3] over all resolvable wave numbers.

The spectra measured in the experiment, as shown in Figure 6 on the left, are used as a
measure to evaluate the flow solutions obtained using various numerical schemes. Note that a
typical energy spectrum can be characterized by a power-law form E(k) = C kp where p ≈ 2− 4 in
the energy-containing range, p ≈ −5/3 in the inertial subrange and with a final range of decaying
turbulence [5]. The numerical simulation should return a resolved inertial range so that the transfer
of energy from large scales to smaller scales is adequately modeled within the context of LES and
hybrid RANS/LES simulations. The energy transfer process is strongly dependent on the total
dissipation of the numerical scheme, which can be argued to consist of three major contributions:

1. sub-grid scale (SGS) stresses,

2. molecular viscosity, and

3. the numerical dissipation of the scheme.

For the work discussed here contributions due to transport of molecular viscosity are small and
the SGS model coefficient calibration has been undertaken using a central scheme with matrix

11



Figure 5: Inviscid flow field around a cylinder in a M∞ = 0.001 flow coming from the left; grid
detail and Mach number isolines (upper left); pressure isolines (upper right); horizontal velocity
component (lower left); vertical velocity component (lower right).

dissipation. The Spalart-Allmaras turbulence model [14] provides our SGS model within the context
of Detached Eddy Simulation [15, 16, 13]. Note that the focus of the current work is in determining
the characteristics of the modified Roe scheme, so that both SGS model and molecular viscosity are
kept constant throughout the investigation. The numerical dissipation of the unmodifed schemes in
the high wave number regimes discussed in the paper is sufficiently strong to dominate over viscous
and SGS effects.

In Figure 6 on the right, the results on a 643 hexahedral grid at t = 0.87 s are shown for various
flux functions. Thereby, we show the numerical wave numbers for the first 31 modes, since these
can be resolved on that grid. The significantly dissipative result of the original Roe scheme is
representative for standard approximate Riemann solvers, whereas the improved performance of
the LMRoe scheme is typical for low Mach number enhanced versions like the AUSM+up. On the
contrary, the original scheme of Thornber et al. and L2Roe are both resolving the energy cascade
over all wave numbers on this grid. This is in line with the results of the asymptotic analysis on
the numerical dissipation from section 4.2 and shows that it is worthwhile to reduce the numerical
dissipation in this way. Furthermore, L2Roe is slightly better on the high wave numbers than the
method of Thornber et al.

We thus now concentrate on L2Roe and the method of Thornber et al. The results at time
t = 2 s are given in Figure 7. Both show a good agreement with the experimental data with L2Roe
being slightly better.

The results of the present scheme on a finer mesh 1283 are shown in Figure 7 on the right.
The improved resolution at higher wave numbers confirms the promising numerical dissipation
properties of the scheme within the framework of LES or DES. In addition results achieved with
the Thornber modification together with a Roe scheme underline the general applicability of the
modification given in equation 5. Again the modified Roe scheme shows less dissipative results at
the highest resolved wave numbers.

The same 1283 nodes as before are now reconnected with tetrahedral instead of hexahedral
elements. Since we use a dual grid method, this leads to a polygonal grid. As can be seen, the
change in the grid causes the numerical dissipation in the higher resolved wave number range to
grow again as can be seen in Figure 8. The relation between the different numerical schemes is
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Figure 6: Turbulent kinetic energy spectra (left) at t = 0 s, t = 0.87 s and t = 2 s in the case of de-
caying isotropic turbulence; experimental data taken from Comte-Bellot and Corrsin [3]; numerical
spectra at t = 0.87 s on a 643 hexahedral grid (right).

again the same: The original scheme does not give a correct solution, LMRoe a much better one
and L2Roe and the scheme of Thornber et al. are close with L2Roe performing best. However, the
value of p returned in the inertial interval is significantly less than −5/3, implying a nonphysical
high dissipation of energy.

The rotational and translational symmetry of the two grids are different. The translational
offset for example is twice as large in the tetrahedral mesh compared to the hexahedral mesh. But
this symmetry aspect should not deteriorate the numerical dissipation of the scheme in the higher
resolved wave number range.

6 Summary and Conclusions

We developed a low dissipation version of the low Mach modification LMRoe [11] of Roe’s ap-
proximate Riemann solver. This new method L2Roe is applicable without user defined parameters
for a large Mach number regime. An asymptotic analysis shows that the method complies with
the results of a continuous asymptotic analysis of the Euler equations and that one term in the
numerical dissipation is removed at low Mach numbers. The same analysis is applied for the first
time to a method suggested by Thornber et al. [18] and allows to better explain the behavior of
that method. The main difference between these two methods is that L2Roe modifies only the
dissipation term in the numerical flux functions, whereas the other method modifies the evaluation
of the physical fluxes as well, to no visible benefit.

Numerical results then show that the modification does not destroy the good properties of the
original methods over a wide range of test cases. No stability problems are observed. For the case
of decaying isotropic turbulence on hexahedral meshes, L2Roe and the method of Thornber et al.
perform dramatically better than LMRoe and Roe with L2Roe performing best, confirming the
results of the asymptotic analysis.

The additional dissipation observed over the higher wave number range on the tetrahedral mesh
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Figure 7: Turbulent kinetic energy spectra at t = 0.87 s and t = 2 s in the case of decaying isotropic
turbulence on a 643 (left) and 1283 (right) hexahedral grid; experimental data taken from Comte-
Bellot and Corrsin [3].

is not fully understood and is a subject for further investigation.

Acknowledgement

Financial support has been provided by the German Research Foundation (Deutsche Forschungs-
gemeinschaft – DFG) in the framework of the Sonderforschungsbereich Transregio 30, project C2,
as well as in the framework of the Sonderforschungsbereich Transregio 40, project B5.

References

[1] P. Birken, Numerical Methods for the Unsteady Compressible Navier-Stokes Equations, Ha-
bilitation Thesis, University of Kassel, 2012.

[2] P. Birken and A. Meister, Stability of Preconditioned Finite Volume Schemes at Low Mach
Numbers, BIT, 45(3) (2005).

[3] G. Comte-Bellot and S. Corrsin, Simple Eulerian time correlation of full- and narrow-
band velocity signals in grid generated, isotropic turbulence, Journal of Fluid Mechanics, 48
(1971), pp. 273–337.

[4] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system
at low Mach number, J. Comp. Phys., 229 (2010), pp. 978–1016.

[5] W. George, The decay of homogeneous isotropic turbulence, Phys. Fluids A, 4(7) (1992),
pp. 1492–1509.

[6] T. Gerhold, O. Friedrich, J. Evans, and M. Galle, Calculation of Complex Three-
Dimensional Configurations Employing the DLR-TAU-Code, AIAA Paper, 97-0167 (1997).

[7] H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number
limit: II. Godunov type schemes, Computers & Fluids, 33 (2004), pp. 655–675.

14



κ

K
E

10
0

10
1

10
2

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

Experiment

Roe

LMRoe

Roe + Thornber modification

L
2
Roe

Figure 8: Turbulent kinetic energy spectra at t = 0.87 s in the case of decaying isotropic turbulence
on a 643 tetrahedral grid; experimental data taken from Comte-Bellot and Corrsin [3];

[8] H. Guillard and C. Viozat, On the Behaviour of Upwind Schemes in the Low Mach Number
Limit, Computers & Fluids, 28 (1999), pp. 63–86.

[9] W. Haase, M. Braza, and A. R. (Eds., DESider - A European Effort on Hybrid RANS-
LES Modelling, Results of the European-Union Funded Project, 2004-2007. Series: Notes on
Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 103, 2009.

[10] M.-S. Liou, Mass Flux Schemes and Connection to Shock Instability, Journal of Computa-
tional Physics, 160 (2000), pp. 623–648.

[11] F. Rieper, A low-Mach number fix for Roe’s approximate Riemann solver, Journal of Com-
putational Physics, 230 (2011), pp. 5263–5287.

[12] F. Rieper and G. Bader, Influence of cell geometry on the accuracy of upwind schemes in
the low Mach number regime, J. Comp. Phys., 228 (2009), pp. 2918–2933.

[13] M. Shur, P. Spalart, M. Strelets, and A. Travin, A hybrid RANS-LES approach with
delayed-DES and wall-modelled LES capabilities, International Journal of Heat and Fluid Flow,
29 (2008), pp. 1638–1649.

[14] P. Spalart and S. Allmaras, A one-equation turbulence model for aerodynamic flows.
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