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Abstract 

Clinical laboratory (lab) tests are used in clinical practice to diagnose, treat, and monitor disease 

conditions. Test results are typically stored in electronic health records (EHRs), and a growing 

number of EHRs are linked to patient DNA, offering unprecedented opportunities to query 

relationships between clinical lab tests and genetics. Clinical lab data, however, are of uneven 

quality, and previous studies have focused on a small number of lab traits. We present two 

methods, QualityLab and LabWAS, to clean and analyze EHR labs at scale in a Lab-Wide 

Association Scan. In a proof of concept analysis focused on blood lipids and coronary artery 

disease, we found that heritability estimates of QualityLab lipid values were comparable to 

previous reports; polygenic scores for lipids were strongly associated with the referent lipid in a 

LabWAS; and a LabWAS of a polygenic score for coronary artery disease recapitulated known 

heart disease biomarker profiles and identified novel associations. Our methods extend previous 

EHR-based analysis tools and increase the amount of EHR data usable for discovery. 
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Introduction 

The overarching goal of this study was to determine whether laboratory (lab) test results 

collected in a hospital and outpatient setting could be mined against polygenic scores (PGS) to 

identify known and novel biomarker associations for complex disease. Lab test results are 

essential to routine clinical care. These targeted biochemical measurements facilitate disease 

diagnosis and influence health care delivery. Clinical lab values are also monitored as mediators 

of disease risk, and are targeted by interventions to reduce disease incidence (e.g., cholesterol-

lowering medication to reduce the risk of heart disease). Lab test results in the electronic health 

record (EHR) are a vast and growing resource for novel biomarker discovery, especially as 

EHRs are increasingly linked to patient DNA samples (e.g., the eMERGE consortium 

(https://emerge.mc.vanderbilt.edu)), the All of Us Program (https://allofus.nih.gov), and the 

Million Veteran’s Program (https://www.research.va.gov/mvp/)). Genetic studies of EHR-based 

labs could reveal novel biomarker-disease or biomarker-gene associations, which in turn could 

lead to better understanding of biological processes in disease, improved diagnostic algorithms 

and new therapeutic targets.  

Despite their potential, however, EHR-based labs have been used in only a handful of 

prior genetic studies1-5, and none have systematically interrogated an extended collection of 

EHR-based lab values. Barriers to studying EHR-based labs include uneven data quality, and 

challenges inherent to analyzing and interpreting high-dimensional health care data. Data entry 

errors exist, resulting in implausible recorded values6, some labs have different units and 

reference ranges over time, and many individuals have multiple observations of different lab 

tests, each measured at varying times relative to diagnoses and treatment7. Moreover, previous 

studies demonstrate that while 99% of lab results are accurately transmitted from the testing 

laboratory to the EHR, only 70% of test results contain all required reporting elements, and only 
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91% of results are appropriately formatted8. Thus, while these data represent real clinical care 

and may accelerate translational research, there is little precedent for their analysis and 

interpretation in genetic studies. 

To address these challenges, we present a high-throughput framework for genetic analysis 

of EHR-derived lab data. We have developed two methods: the QualityLab pipeline to clean, 

standardize, and visualize lab data; and the Lab-Wide Association Scan (LabWAS) pipeline to 

scan for associations between any variable of interest (genetic or otherwise) and the cleaned 

EHR labs. The LabWAS method is similar to the Phenome-Wide Association Scan (PheWAS) 

which scans for association between an exposure variable (typically, a genetic risk factor) and 

many phenotypes9. The PheWAS method has replicated many known gene-disease associations10 

and has identified novel pleiotropic genetic effects11, opportunities for drug repurposing, and 

unintended drug consequences12. 

We hypothesized that EHR-based lab values could be used to identify known and novel 

relationships between genetics, biomarkers, and disease. We deployed our framework in the 

Vanderbilt University Medical Center (VUMC) EHR and linked biobank, BioVU, and focused 

on genetic analysis of blood values of high-density lipoprotein cholesterol (HDL), low-density 

lipoprotein cholesterol (LDL), and triglycerides (TG), and on coronary artery disease (CAD) as 

proof-of-principle examples to test the association between PGS for CAD and known biomarkers 

of disease (LDL, HDL, and TG) using the QualityLab and LabWAS methods. We show that 

EHR-derived lipids values are genetically similar to those in population-based studies, and that 

PGS for lipids robustly associate with their respective lab in a LabWAS. Additionally, our 

LabWAS revealed that PGS for CAD associated with known lipid biomarkers and with 

potentially novel immune biomarkers. 

Methods 
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Study Sample 

VUMC is a tertiary care center that provides inpatient and outpatient care in Nashville, 

TN. The VUMC EHR was established in 1990 and includes data on billing codes from the 

International Classification of Diseases, 9th and 10th editions (ICD-9 and ICD-10), Current 

Procedural Terminology (CPT) codes, laboratory values, reports, and clinical documentation. 

The de-identified mirror of the EHR, known as the Synthetic Derivative, includes patient records 

on more than 2.8 million individuals. In 2007, VUMC launched a biobank, BioVU, and the 

BioVU Consent form is provided to patients in the outpatient clinic environments at VUMC.  

The form states policies on data sharing and privacy, and upon consent, makes any blood 

leftover from clinical care eligible for BioVU banking13. The VUMC Institutional Review Board 

oversees BioVU and approved this project. 

 

Genotyping and Quality Control  

We obtained genotype information on 94,474 BioVU individuals genotyped on the 

Illumina MEGAEX array. Using PLINK v1.914 genotypes were filtered for SNP and individual 

call rates, sex discrepancies, and excessive heterozygosity (Supplementary Material). We 

selected individuals of European ancestry using principal component analysis implemented in 

Eigenstrat15,16 and confirmed the absence of genotyping batch effects through logistic regression 

with ‘batch’ as the phenotype. Imputation was completed using the Michigan Imputation 

Server17 using the Haplotype Reference Consortium (HRC) reference panel. SNPs were then 

filtered for SNP imputation quality (R2>0.3) and converted to hard calls. We restricted to 

autosomal SNPs, filtered SNPs with minor allele frequency >0.01, or with allele frequencies that 

differed by more than 10% from the 1000 Genomes Project phase 3 CEU set18, and Hardy-
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Weinberg Equilibrium (p>1x10-10). The resulting dataset contained 9,386,383 SNPs on 72,828 

individuals of European genetic ancestry. 

 

QualityLab Pipeline 

In parallel with the BioVU genotyping project, we extracted data on all lab tests collected 

in the routine clinical care of 70,704 BioVU patients, amounting to 59,463,045 observations 

across 6,407 lab tests (Figure 1a). Of these lab tests, 2,865 were reported in non-numeric values 

and 467 had only been administered to one patient, leaving 3,075 quantitative lab tests for further 

cleaning. Some lab tests had observations recorded in different units (e.g., Selenium reported in 

both mcg/L and ug/L), thus we restricted to lab tests for which at least 70% of the observations 

were measured in the same unit and required that each lab have at least 100 patients and at least 

1,000 numeric observations, for a total of 481 labs retained for further analysis.  

For each of these 481 labs, we applied lab-specific quality control filters (Figure 1b).   

First, we filtered infinite and non-numeric values, as well as observations outside of 4 standard 

deviations from the overall sample mean, indicative of biologically implausible values due to 

technical or recording errors, monogenic disorders, or extreme environmental influence. We 

calculated the median lab value for each patient and extracted the patient’s age at median lab 

value. In patients with an even number of observations, we defined the age at median lab value 

as the mid-point of the patient’s ages at the two lab values on either side of the median lab value.  

The analyses presented in this manuscript use the QualityLab dataset constructed from 

pediatric and adult observations, in both sexes, in patients of all races (Figure 1b). In downstream 

genetic analyses, however, we restrict to participants of European genetic ancestry to match the 

ancestry of the participants in the GWAS used for the construction of PGS. 
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The QualityLab pipeline also provides user with the option to stratify data (Figure 1b), by 

age at observation, sex, and EHR-recorded race, for a total of 72 different data subsets. The 

QualityLab pipeline generates summary statistics and plots for each strata (e.g., mean, 

maximum, and minimum of the median lab value; Supplementary Table 1; Supplementary 

Figure 1), and returns two versions of the data for downstream analyses. The first is a table of 

median lab values and age at median lab value for each individual. The second is an inverse 

normal quantile transformation (INT) of the median lab value data, to account for skewness and 

non-normality19,20. Importantly, the choice of quality control thresholds is completely in the 

control of the user. The choices made here reflect the goals of this study which focus on the 

central tendencies of large populations. However, the outlier thresholds and normalization 

methods employed here would not be appropriate in a study of rare, potentially pathogenic, 

variation where large genetic effects and extreme phenotypes may be expected. 

 

Heritability and GWAS Analyses 

  Prior to SNP-based heritability (h2
SNP), we first calculated pairwise relatedness in the 

BioVU genotyped sample and randomly removed one related individual from pairs with pi-hat 

greater than 0.05, leaving 45,010 individuals of European genetic ancestry (Figure 1a). We then 

used the Genome-wide Complex Trait Analysis (GCTA) package (version 1.92.4)21 to create a 

genetic relationship matrix for all pairwise individuals, and heritabilities were calculated using 

restricted maximum likelihood (REML) methods. We used the median, INT-transformed lab 

values from the QualityLab pipeline, and of the 481 analyzed labs, 278 had non-zero heritability. 

For GWAS analyses, we randomly removed one related individual from pairs with pi-hat greater 

than 0.2 (n=66,914). Next, we subset to the heritable labs with at least 1,000 individuals (n=173), 

and ran a GWAS using fastGWA22 (Figure 1a). All h2
SNP and GWAS analyses included 
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covariates for sex, cubic splines (knots=4) of median age across the medical record (to control 

for non-linear effects of age), and the top 10 principal components of ancestry.  

 

Heritability and GWAS Analyses of Lipids 

We benchmarked our h2
SNP estimates against those from an external dataset, the Global 

Lipids Genetics Consortium (GLGC)23. GLGC estimates of h2
SNP for HDL, LDL, and TG were 

calculated from GWAS summary statistics using LDSC24. We computed h2
SNP in BioVU using 

Linkage Disequilibrium Score regression (LDSC) applied to our fastGWA summary statistics for 

HDL, LDL, and TG (Supplementary Figure 2). However, because LDSC can underestimate 

h2
SNP

25, we also calculated h2
SNP using GCTA. In addition to these h2

SNP comparisons, we 

calculated the genetic correlations (rg) between the BioVU lipid GWASs and the GLGC lipid 

GWAS using LDSC and the pre-computed European LD scores from 1000 Genomes Phase 3 

European data26. In sensitivity analyses, we repeated genetic correlations of LDL after 

controlling the BioVU GWASs for coronary atherosclerosis or diabetes diagnoses, defined as 

phecodes 411, “Ischemic heart disease” and 249, “Secondary diabetes mellitus” (Supplementary 

Material). 

To validate EHR-based lipid values, we tested the robustness of HDL, LDL, and TG 

h2
SNP estimates to different lab value and patient filters. First, we excluded lipid measurements 

that occurred after the first mention of lipid-altering mediation in the EHR (Supplementary 

Material), and re-calculated each patient’s pre-medication median values of HDL, LDL, and TG. 

Second, we excluded patients with a diagnosis of CAD, defined by the phecode 411 

(Supplementary Material). 

 

LabWAS Pipeline 
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LabWAS uses the median, INT-transformed lab values from the QualityLab pipeline in a 

linear regression to determine the association with an input variable, adjusting for covariates. In 

these analyses, a primary goal of the LabWAS was to test common population genetic variation 

(e.g., PGS) for association with common population variation in lab values. We therefore only 

included the 278 labs with non-zero h2
SNP. 

 

Polygenic Scoring 

Prior to polygenic scoring, we randomly removed one related individual from pairs with 

pi-hat greater than 0.2, leaving 66,914 individuals of European genetic ancestry (Figure 1a). We 

generated PGS for these individuals using PRS-CS 27. PRS-CS is a recently developed Bayesian 

polygenic prediction method that imposes continuous shrinkage priors on SNP effect sizes 

(Polygenic Risk Score – Continuous Shrinkage)27. These priors can be represented as global-

local scale mixtures of normals which allows the model to flexibly adapt to differing genetic 

architectures and provides substantial computational advantages. The shrinkage parameter was 

automatically learnt from the data (i.e., using PRS-CS-auto). SNP effect estimates were obtained 

from GWAS summary statistics and the score was calculated using a linkage disequilibrium 

reference panel from 503 European samples in the 1000 Genomes Project phase 318. Although 

PRS-CS outperformed other polygenic scoring methods across a range of traits in previous 

experiments, its superiority may not hold across all genetic architectures 27. We therefore also 

generated polygenic scores using LDPred 28 and PRSice-2 29 (Supplementary Material), and have 

automated a pipeline to generate scores across all three methods. PGS were scaled to have a 

mean of zero and SD of one before testing for association with any outcome variables. We 

validated each score by testing the proportion of trait variability explained by the PGS, 
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controlling for sex, cubic splines of median age (4 knots) across the medical record, and the top 

10 principal components to adjust for genetic ancestry (Supplementary Figure 5). 

 

LabWAS of Polygenic Scores 

PGS for LDL (PGSLDL), HDL (PGSHDL), and TG (PGSTG), were calculated in BioVU 

participants using PRS-CS and applying SNP weights from the GLGC GWAS summary 

statistics. We then ran LabWAS of PGSLDL, PGSHDL, and PGSTG to test whether lipid labs were 

robustly associated with the genetic scores to which they corresponded. Next, a PGS for CAD 

(CADPGS) was calculated using SNP weights from CARDIoGRAMplusC4D GWAS summary 

statistics30 and a LabWAS of PGSCAD to test whether the score could identify lab traits associated 

with genetic risk for CAD, before and after controlling for a CAD diagnosis (Supplementary 

Material). Each LabWAS was controlled for sex, cubic splines of median age across the medical 

record, and the top 10 principal components of ancestry. Results are reported as effect estimates 

and their 95% confidence intervals per SD increase in the polygenic score. The Bonferroni-

corrected threshold for statistical significance across all tested labs was 1.80×10-4 (0.05/278). 

 

Results  

 

QualityLab Pipeline 

The QualityLab pipeline identified 70,639 BioVU patients with clean lab data, of whom 

31,292 were also of European genetic ancestry and were included in the polygenic score 

LabWAS analyses (Figure 1a). These 31,292 patients had data on 278 labs with non-zero h2
SNP, 

containing 18,144,061 observations. The median number of unique lab tests per patient was 55, 

and the median number of lab observations per patient was 292. Slightly more than half of the 
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BioVU patients in the sample were women (53.5%), and the average median age across the EHR 

was 53.7 years. These BioVU participants included 6,514 CAD cases and 15,886 CAD controls 

(Supplementary Material; Supplementary Table 3).  

 

Heritability and GWAS Analyses 

Across all 481 clean lab traits, h2
SNP was non-zero in 278 labs and the p-value ranged 

from 2 x 10-6 to 0.94. (Supplementary Table 4, Supplementary Figure 2?). The GWAS summary 

statistics for the labs with calculable heritability and at least 1,000 individuals (n=173) are 

available here: 

https://www.dropbox.com/sh/w1pbe0jq1bjkpc5/AAAUIdtBgUybE6iHraE8jvp8a?dl=0 .  

 

Heritability and GWAS Analyses of Lipids 

 The h2
SNP estimates in BioVU were robust to removing post-medication observations, and 

to removing CAD cases. The number of participants included in these analyses, however, was 

smaller, and so the standard errors of these h2
SNP estimates were larger (Figure 2a; 

Supplementary Table 5).  Both GCTA and LDSC gave similar estimates of h2
SNP in BioVU 

(Figure 2b), and the LDSC estimates in BioVU were comparable to those in the GLGC for LDL, 

but less so for HDL and TG. Genetic correlation between BioVU and GLGC summary statistics 

was strong for HDL (rg=0.86, SE=0.12, p-value=5.42 x 10-13) and TG (rg=0.89, SE=0.06, p-

value=2.16 x 10-43). However, genetic correlation for LDL was non-significant (rg=-0.01, 

SE=0.73, p-value=0.99). The genetic correlation increased when we restricted to pre-medication 

values of LDL in BioVU (rg=0.51, SE=0.48, p-value=0.29) (Figure 2c), and increased further 

when we controlled for coronary atherosclerosis and diabetes diagnoses (rg=0.81, SE=1.18, p-
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value=0.49). The power, however, remained low and the standard error remained large 

(Supplementary Figure 4).  

    

LabWAS of Polygenic Scores for Lipids  

A LabWAS of HDLPGS was associated with levels of several metabolic markers (Figure 

3a, Supplementary Table 6), including increased HDL, decreased TG, increased total blood 

cholesterol, and increased blood glucose. HDLPGS was also associated with five other lab values, 

including two blood composition labs (carbon dioxide and platelet count), two kidney related 

measurements, and one liver lab.   

The LabWAS of LDLPGS showed associations with four lipid labs (Figure 3b, 

Supplementary Table 7). The most significant association was increased calculated LDL, 

followed by increased total blood cholesterol, increased TG and decreased HDL. 

The LabWAS of TGPGS was associated with five lipids measurements (Figure 3c, 

Supplementary Table 8), including increased TG, followed by decreased HDL, increased very 

low-density lipoprotein cholesterol, lipemia index, and total blood cholesterol. Additionally, 

TGPGS showed associations with three immune labs, two blood protein labs, and two blood 

composition measurements. 

 

LabWAS of a Polygenic Score for Coronary Artery Disease 

We next sought to recapitulate the risk biomarker profile for CAD through a LabWAS of 

a CADPGS. The CADPGS reproduced associations, in the direction of risk, with canonical risk 

factors for CAD (Figure 4a, Supplementary Table 9), including decreased HDL, increased TG, 

and increases in two blood glucose measurements, hemoglobin, and glycated hemoglobin 

(HgbA1C). The CADPGS also associated with other known biomarkers of cardiovascular health 
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such as increased troponin-I and brain natriuretic peptide (BNP), and lower blood sodium. 

Finally, the CADPGS associated with two immune markers and four blood composition 

measurements. 

Notably, the CADPGS was not initially associated with LDL values (p-value=0.78, 

beta=0.002). The lack of association, however, was attributable to lipid altering medication use 

and a significant association between the CADPGS and LDL levels was detected when we 

restricted to pre-medication values (p = 2.73 x 10-11, beta = 0.06).  

To determine which biomarkers were explained by the clinical presence of CAD as 

opposed to just the genetic risk for CAD, we adjusted the LabWAS of CADPGS for the coronary 

atherosclerosis phecode (411) (Figure 4b, Supplementary Table 10). Four canonical biomarkers 

of CAD risk remained associated with CADPGS including pre-medication LDL, TG, blood 

glucose, and HDL. Interestingly, the CADPGS also remained associated with one immune marker 

(white blood cell count measured in blood). 

 We also ran a LabWAS of CAD diagnosis (i.e., using CAD cases/control status 

(Supplementary Material) as the predictor variable after adjusting for sex and median age across 

the EHR), which revealed the medical comorbidity pattern of CAD. CAD diagnosis was 

significantly associated with 81 out of 278 labs in our sample (Supplementary Figure 6, 

Supplementary Table 11), including 24 blood, 19 metabolic, 17 immune, 5 urinary, 6 

cardiovascular, 3 liver, 2 endocrine, and 3 kidney measurements).  

 

Discussion 

 The results of our study add to a growing body of evidence indicating that lab values 

from EHRs with linked genetic data can be mined at scale to identify biomarkers for complex 

disease 1-5. Our proof-of-principle analyses focused on lipids and CAD in 66,914 genotyped 
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BioVU patients and revealed that EHR lipid values cleaned using our QualityLab pipeline were 

genetically comparable to those measured in samples ascertained for research. An exception to 

this was the weak genetic correlation between LDL measurements in BioVU versus the GLGC, 

which improved when we considered only pre-medication LDL measurements controlled for 

CAD or diabetes diagnosis in BioVU. This improvement suggests that information on lipid-

lowering medications may be missing in the EHR of some patients, that acute and chronic illness 

also affect LDL measurements, and the weak genetic correlation could be due to comorbidities 

present in the BioVU hospital population. In a LabWAS framework, we showed that PGS for 

lipids associated robustly to the referent lipid, and that the CADPGS recapitulated associations 

with known biomarkers, even after adjusting for the disease diagnosis. Future studies could 

leverage our pipeline not only for studies of existing biomarkers, but also for analysis of rare or 

understudied complex traits with no known biomarker associations (e.g., psychiatric disorders). 

Furthermore, we show that treatments (in this example, lipid-altering medications) can 

influence the detection of risk biomarkers at the genetic level. Specifically, the CADPGS was 

strongly associated with pre-medication median LDL values, but is not associated with combined 

pre- and post-medication median LDL values. This finding has important and complex 

implications for the clinical use of polygenic scores. For example, as preventative treatments for 

complex diseases are adopted (e.g., lipid-altering medications), the risk factors targeted by those 

treatments (e.g., lipids) are less likely to play a role in the development of disease (e.g., CAD) in 

future populations. This means that cases ascertained for GWAS of diseases with available 

preventative treatments, will be enriched for a different set of genetic (and environmental) risk 

factors because those individuals with risk factors that can be treated may no longer develop the 

disease. It is therefore important to keep in mind that polygenic scores, while incredibly 

valuable, are also a snapshot in time of the genetic profile of those with complex disease and thus 
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are highly susceptible to cohort effects in addition to other known sources of technical and 

experimental artifacts. Additionally, lab associations with CAD case/control status were much 

broader than the lab associations with CADPGS, revealing the difference between medical 

comorbidity and genetic pleiotropy. 

 We present a framework and tools for association studies using clinical lab data in the 

EHR. The QualityLab pipeline outlines a series of data filters to ensure clean EHR lab data 

across different patient groups, and while analyses presented herein are filtered for lab values 

within the range of common population variation, the QualityLab pipeline is easily adaptable. 

The LabWAS approach then takes these cleaned lab values and tests their association with a 

single exposure variable (genetic or otherwise). By using polygenic scores as the exposure 

variable, our LabWAS analyses focused on common population genetic variation, but the 

method could be used to test any risk factor for its consequences on EHR labs. For example, 

instead of focusing on central tendencies of the means using population-level data, a user could 

choose to retain only extreme lab values in pediatric patients to enrich for rare variants of large 

effect for sequencing studies. 

Though the results and approach presented provide an exciting path forward for genetic 

analysis of EHR-lab data, important limitations should be acknowledged. First, our analyses 

focused on associations in patients of European ancestry, a necessary constraint of using current 

GWAS summary statistics, which are almost all from studies of patients of European ancestry. 

Our BioVU sample, however, included over 10,000 individuals who self-identified as black or 

African American. As the number of ancestrally diverse GWAS increase, so too will our ability 

to identify novel biomarkers in different ancestral groups, and the QualityLab pipeline is poised 

to deliver on these analyses. The QualityLab pipeline could also have more immediate clinical 

impact on patients of diverse ethnic groups. Ethnicity strongly influences the distribution of lab 
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tests results in healthy people 31, but current reference ranges are developed for entire 

populations, irrespective of ethnic differences. This ignorance of ethnicity could result in under- 

or over-diagnosis in some patient groups, and developing ethnicity-informed lab reference ranges 

is low-hanging fruit for precision medicine. 

Second, high-throughput analysis of 481 lab traits in our LabWAS required us to 

prioritize statistical model performance over coefficient interpretability. In our primary analysis, 

we transformed lab values to fit the normal distribution to improve the performance of the linear 

regression models20. We applied the rank-based inverse normal quantile transformation to all 

labs, which ensured trait normality by replacing the value of each observation with its quantile 

from the standard normal distribution. The inverse normal quantile transformation thus preserved 

the rank ordering of observations, but not the values themselves, and model coefficients 

therefore are uninterpretable on the original scale. For example, based on our LabWAS results, 

we are unable to report the change in LDL levels in mg/dL per SD increase in the CADPGS. 

Multiple testing correction was another statistical challenge inherent to the high-throughput 

analysis of lab traits. We used the Bonferroni threshold for statistical significance, but this 

threshold is overly strict because it ignores the correlation between lab tests. Important 

associations therefore remain to be discovered below the Bonferroni threshold for statistical 

significance, and identifying correlations between lab traits is a focus of ongoing work. 

As EHR resources grow in size, standardized quality control and analysis pipelines will 

be necessary to compare results across samples. QualityLab and LabWAS provide a starting 

point for consistent analysis of lab results stored in various EHR systems. A possible limitation 

of using clinical data from a hospital population is ascertainment of a less healthy population, 

which could make conclusions less applicable to the general population. However, we 

demonstrated that EHR-derived lipids are similar to measurements ascertained in traditional 
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cohort studies, providing a basis for more analyses using EHR data 32. Overall, QualityLab and 

LabWAS are scalable programs that can be used to confirm clinical paradigms and discover new 

relationships between biomarkers and complex traits.  

 

Code Availability 

QualityLab: https://bitbucket.org/straubp_vandy/quality_labs/ 
 

LabWAS: https://bitbucket.org/juliasealock/labwas/ 
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Figure Legends 

 

Figure 1. Selection of BioVU patients and datasets for different analyses presented in this 

manuscript. (a) BioVU patients were selected in parallel for clinical laboratory (lab) test 

cleaning, and for genotyping. (b) Lab-specific quality control filters and subsetting were applied 

to the 481 lab tests in the 70,639 patients with clean lab data. Parallelograms denote input and 

output datasets. Options highlighted in green were selected for the proof-of-principle analyses of 

blood-based lipid lab values.  

 

Figure 2. Heritability and GWAS analyses of lipids. (a) Estimates of heritability computed by 

GCTA in BioVU patients were robust to excluding individuals with a diagnosis of CAD, and to 

removing post-medication observations. (b) Estimates of heritability computed using GWAS 

summary statistics and LDSC were comparable across BioVU and the Global Lipids Genetic 

Consortium (GLGC) samples. (c) Genetic correlations between lipid levels in BioVU and the 

Global Lipids Genetic Consortium (GLGC). Stars denote statistically significant correlations. 

 

Figure 3. LabWAS of PGSHDL (a), PGSLDL (b), and PGSTG (c). The canonical lab trait is most 

strongly associated with each PGS. The red line indicates the Bonferroni threshold for statistical 

significance (p-value of 1.80x10-4 ) and labs with p-values below this threshold labelled. The 

blue line indicates a p-value of 0.05. Upward triangles indicate that the PGS is associated with 

increased levels of the lab, while downward triangles indicate an association with reduced levels 

of the lab. 
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Figure 4. LabWAS of PGSCAD. Known lipid biomarkers of CAD are the most strongly associated 

lab traits (a), even after controlling for a CAD diagnosis (b). The red line indicates the 

Bonferroni threshold for statistical significance (p-value of 1.80x10-4 ) and labs with p-values 

below this threshold labelled. The blue line indicates a p-value of 0.05. Upward triangles indicate 

that the PGSCAD is associated with increased levels of the lab, while downward triangles indicate 

an association with reduced levels of the lab. 
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Figure 1. Selection of BioVU patients and datasets for different analyses presented in this manuscript. (a) BioVU patients were selected in parallel for clinical 

laboratory (lab) test cleaning, and for genotyping. (b) Lab-specific quality control filters and subsetting were applied to the 481 lab tests in the 70,639 patients with 

clean lab data. Parallelograms denote input and output datasets. Options highlighted in green were selected for the proof-of-principle analyses of blood-based 

lipid lab values. 
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4 ) and labs with p-values below this threshold labelled. The blue line indicates a p-value of 0.05. Upward 

triangles indicate that the PGS is associated with increased levels of the lab, while downward triangles 

indicate an association with reduced levels of the lab.
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Figure 4. LabWAS of PGSCAD. Known lipid biomarkers of CAD are the most strongly associated lab traits (a), 

even after controlling for a CAD diagnosis (b). The red line indicates the Bonferroni threshold for statistical 

significance (p-value of 1.80x10-4 ) and labs with p-values below this threshold labelled. The blue line 

indicates a p-value of 0.05. Upward triangles indicate that the PGSCAD is associated with increased levels of 

the lab, while downward triangles indicate an association with reduced levels of the lab.
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