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Abstract— Open data analysis platforms are being 
adopted to support collaboration in science and business. 
Studies suggest that analytic work in an enterprise 
occurs in a complex ecosystem of people, data, and 
software working in a coordinated manner. These 
studies also point to friction between the elements of this 
ecosystem that reduces user productivity and quality of 
work. LabBook is an open, social, and collaborative data 
analysis platform designed explicitly to reduce this 
friction and accelerate discovery.  Its goal is to help 
users leverage each other’s knowledge and experience to 
find the data, tools and collaborators they need to 
integrate, visualize, and analyze data. The key insight is 
to collect and use more metadata about all elements of 
the analytic ecosystem by means of an architecture and 
user experience that reduce the cost of contributing such 
metadata. We demonstrate how metadata can be 
exploited to improve the collaborative user experience 
and facilitate collaborative data integration and 
recommendations. We describe a specific use case and 
discuss several design issues concerning the capture, 
representation, querying and use of metadata. 

Keywords- metadata; collaboration; data discovery; 
data analytics 

* Supported by NSERC and NSERC BIN. 

I.  INTRODUCTION 
Much of the current research on solving large-scale data-

intensive problems has focused on the development of 
algorithms and systems that facilitate the processing of very 
large data sets.  However, another important characteristic of 
these data-intensive problems, and one that has received far 
less attention, is that solving them typically requires the 
pooling of data, tools and expertise from multiple disciplines.  
In science and in business, therefore, demand is increasing 
for open platforms that support the sharing and collaborative 
exploration and analysis of data.  In the scientific 
community, open science initiatives aim to accelerate 
scientific discovery by making experimental data and lab 
notes accessible and re-usable by the broader community [1]. 
For example, in neuroscience [2] and in bioinformatics [3], 
open platforms are being built to understand 
neurodegenerative diseases and the bacterial diversity of 
cities, respectively. Likewise, within an enterprise, data is 
often re-used, re-combined and re-cycled by many different 

groups to answer a wide range of business questions. Studies 
of business intelligence specialists [4][5] suggest that 
analytic work in an enterprise occurs in a complex ecosystem 
of people, data, and analytic tools collectively working 
together. These studies point to sources of friction within this 
ecosystem, including data integration, expertise finding, 
reuse, and interoperability. 

In science and in business, supporting collaboration 
among a diverse set of users is not easy. Differences in 
information needs and goals make the utility and 
trustworthiness of data, tools, and people vary significantly 
from one community to another. Differences in language and 
terminology can also prevent effective collaboration and re-
use. Studies report that business analysts are needed to 
bridge the language gap between business and technical 
people, transforming business objectives to database queries 
[4]. There is also significant diversity in the structure, type, 
volume, velocity, and veracity of data. Inconsistencies in 
schema and formats may cause time to be spent on data 
wrangling before data can be integrated [6]. Likewise, there 
are many analytic tools and systems, requiring time to be 
spent orchestrating the flow of data from one tool to another 
to create a comprehensive and cohesive analysis. 
Furthermore, data, analysis techniques and people are 
constantly evolving. Schemas evolve, even for datasets 
released regularly such as census and labor statistics. New 
data supersedes old, hypotheses need to be revised, and past 
conclusions may be invalidated. New people join in, 
bringing different perspectives to projects, while the interests 
of experienced members change over time. Lastly, data 
privacy and sensitivity considerations necessitate data 
governance, and the scope of collaboration must be carefully 
controlled. Broadly, these challenges can be summarized as 
issues related to diversity of resources (i.e., people, data, 
analytic tools) in a dynamic evolving analytic ecosystem, 
requiring iterative, collaborative approaches with contextual, 
personal, and governed delivery of resources.  

In this paper, we argue that the key to addressing these 
problems is metadata. If we are able to collect more metadata 
about people, data, and tools, then we can put together the 
right data, people, and tools to solve complex analytic 
problems. Such metadata should include schematic metadata 
(i.e., how data is structured in files, tables, columns), as well 
as semantic metadata (e.g., the meaning of data attributes and 
values, relationships between datasets), collaborative 
metadata (e.g., who collaborates with whom, on which data, 
using which tools), and contextual metadata (e.g., thoughts, 
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hypotheses, decisions as people work). The metadata may be 
previously modeled metadata (for example, the schema of a 
structured or semi-structured dataset) or it may be inferred 
using a knowledge discovery process (for example, using a 
semantic annotation process to tag a dataset with concepts 
from an ontology or by extracting semantics from 
unstructured documents). The metadata must be 
complemented by a user experience design that facilitates 
seamless and silent capture of metadata as people interact 
with data, applications and each other, while also simplifying 
the dissemination of analytic output. The system should 
support people working with a multitude of tools, curating 
and enriching data over time, developing models, creating 
visualizations, leveraging each other’s work and making and 
revising data-driven decisions in an incremental fashion. The 
system must have an open architecture into which analytic 
tools and applications integrate easily, and provide a central 
repository from which the tools can consume data and 
metadata and to which they can contribute back new data 
and metadata in turn. Such a repository may constitute a 
knowledge resource in and of itself, leading to an improved 
understanding of how people work with data and make 
decisions. This knowledge resource can be exploited to 
provide a personalized user experience, make contextual 
recommendations of people and data, and identify and reuse 
best practices. 

The contributions of this paper are: (a) design and 
implementation of a metadata schema and repository for 
open analytics platforms as a queryable property graph, 
which represents schematic, semantic, collaborative, and 
contextual metadata; (b) design and implementation of a 
social collaborative user experience that exploits such 
metadata and reduces the cost of contributing metadata; (c) 
design and implementation of an open analytics architecture 
that serves metadata to analytic applications; and (d) 
demonstration of several uses of metadata in data integration 
and data recommendation. 

The rest of the paper is organized as follows. First, we 
present a real use case that informed the design of our work. 
We then describe LabBook, our implementation of an open 
social collaborative analytics platform, and describe its 
metadata repository, social collaborative user experience, 
and open architecture. Next, we describe how LabBook uses 
metadata to support analytic work including data integration 
and recommendations of data and people. We then briefly 
cover related work in the fields of metadata management, 
open science and data marketplaces.  We conclude by 
discussing several issues relating to the capture, 
representation, and querying of metadata.   

II. USE CASE: METAGENOMICS 
The recently-announced Consortium for Sequencing the 
Food Supply Chain (SFSC) will use metagenomics to study 
the genetic diversity of microbiomes in the food supply chain 
and create a corpus of data that reflects a metagenomic 
understanding of ingredients and their microbiomes [7]. 
LabBook is designed to serve as the collaborative analytics 
platform for members of the consortium. We interviewed 

several members of the consortium (three bioinformaticians 
and a computer scientist) to inform the design of LabBook.  

The consortium is made up of members with diverse 
backgrounds, skills, and expertise, including biologists, 
machine learning experts, computer scientists, factory 
workers, and executives (Figure 1). Technicians take 
samples and send them to biologists.  The samples are 
prepared and run through DNA sequencers, producing output 
files that contain sequence databases. These files are then 
shared with computer scientists, who implement algorithms 
developed by bioinformaticians.  The algorithms compare 
the sequences with known reference data to characterize the 
microbiome of the sample. All participants iteratively and 
collectively analyze the results with the aim of detecting 
anomalies that might indicate the presence of a contaminant.  

We note three important characteristics of this 
scenario.  First, other than a shared goal, the constituents do 
not share the same level of expertise or even a common set 
of tools. Second, the scale of the data and of the analytics is 
significant, thus rendering email quite ineffective as a means 
for collaboration. A single dataset may span 10 terabytes of 
data contained in over 40000 files, and each file may require 
different processing and analysis. Finally, because this is a 
scientific discovery process, both the process and the 
outcome of the collective analysis are undetermined a priori 
and, in fact, both represent goals of the consortium; only in 
hindsight will the collaborators understand that they have 
discovered something important, and therefore the 
provenance of that discovery is key to establishing the 
reference data and a reproducible process.   

Bioinformatics is a field rich with a variety of sub-
specializations. Such an environment breeds a ‘loose’ 
collaboration style, often starting face-to-face at a 
conference, with conversations like “this is what I can do for 
you, then we’ll reconvene in a month or so.” Another 
consortium member spoke of a pattern of recent projects, and 
described them as “hub and spoke”, where “collaboration is 
one to one, everybody is independently collaborating with 
the PI (Principal Investigator), who is sort of doing a 
crowdsourced analysis of his paper by sharing his data. He 
is a social networker, everybody has special takes on data 
and if lucky, it becomes a paper or a paragraph in the 
paper.” In such a collaboration style, the interaction typically 
follows a pattern like “I produce some analysis, generate a 
plot, attach it to an email, say, ‘Take a look at this’, He says, 

Figure 1. Metagenomics Use Case
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‘Oh, that is interesting’, I ask, ‘Do you have this data?’, He 
tells me to go to this ftp site...’ This is what a lot of science is 
like today...” Such loose collaboration is not supported very 
well by current collaboration tools, as one must spend a 
considerable amount of time to understand the context, 
datasets, and work done to respond appropriately. As one of 
the bioinformaticians put it: “Email is not good. I need to 
invest a lot of effort in reading the email and trying to 
understand sort of what the context of this plot is, what do I 
know about this data, … Often I say, I guess I will look at it 
later. There are something like 40,000 datasets!”  

Such complexity in the diversity and scale of the data is 
at the heart of bioinformatics: “Everything is a dataset. The 
thing you upload is a dataset, then if you process it and 
output something, that is a dataset. If you are looking at any 
particular dataset, you may want to know where it comes 
from.” The data represents a jigsaw puzzle, which is 
generated by a trial-and-error process that identifies and 
stitches together larger and larger genome fragments in order 
to create a complete bacterial genome. Besides data that is 
privately created and reused by bioinformaticians, there is 
also a large body of public data available. For example, the 
National Center for Biotechnology Information (NCBI), is 
an “ecosystem that defies understanding at first glance. It is 
the work of hundreds of people over two-decades or more.” 
At such scale, people “only understand a slice, kind of play 
with it, and experiment.” For areas like bacteria, this is a very 
dynamic ecosystem with new data arriving weekly. Privacy 
is important, even when data is de-identified, as it may still 
contain traits of illnesses, revealing clinical details.  

Bioinformaticians use a wide variety of tools for very 
specific tasks. They use wet labs to prepare samples and 
record metadata.  Machine learning experts use various 
programming tools and scripting languages to develop 
workflows that implement specific sets of analyses over the 
output of sequencing. As one of the bioinformaticians put it, 
“The community of bioinformatics is entirely built on 
software produced in academic labs, written by grad 
students. There are thousands of tools out there, and new 
tools come out all the time for the latest datasets.” In such a 
diverse tool space, people have their own favorite 10 specific 
tools, while a few tools have the “exalted status that 99% of 
people use.” Each part of the work entails use of special 
tools, and work is done by “putting different blocks together 
to come up with the process you want.” Work can sometimes 
be repetitive, and may require digging up old emails to find 
out about how work was previously performed. Recalling a 
recent project, one of the bioinformaticians said that: “They 
continuously get new data and update the references. 
Whenever they have a new reference we have to repeat all 
this mapping again.” Communication issues may also cause 
problems: “We didn’t understand from the start all their 
experimental setup. It was never communicated enough what 
data we should actually be comparing.” 

In summary, the metagenomics use-case exhibits many 
of the characteristics that argue for an open data analytics 
platform: it presents a dynamic living ecosystem with a 
continuous stream of datasets, people, and tools entering and 
exiting the collaboration. People have a variety of 

backgrounds, use a variety of tools, and have a variety of 
goals to achieve. Thus, there is no one authoritative source 
for data, no de facto standard for tools, and no well-
established processes for analysis. This not only necessitates 
an open data analytics platform, but also incremental 
solutions to challenges such as personalization, 
collaboration, provenance, and reuse. 

III. LABBOOK: GRAPH, USER EXPERIENCE, 
ARCHITECTURE 

LabBook is an open, social, collaborative data analysis 
platform designed explicitly to accelerate discovery by 
reducing friction in the analytic ecosystem, i.e., by helping 
users to quickly find relevant data, collaborate with others, 
and reuse analytic work within a community. In addition, 
LabBook provides a seamless and transparent provenance 
mechanism. A core element of LabBook is a metadata 
graph, which captures the interactions between data, people, 
and analytics and is used to facilitate, for example, 
recommendations of data and people related to a project. 
Additional metadata is silently contributed back to the 
metadata graph as people use the social collaborative user 
interface, in which events trigger the addition of new nodes 
and relationships to the graph. LabBook’s open extensible 
architecture allows integration with many different analytic 
applications, thus serving as a general knowledge resource 
that can be exploited to provide a contextual and 
personalized user experience, to help users keep up-to-date 
with current work in their community, and to recommend 
datasets, people, and visualizations. Below, we describe 
LabBook’s (1) metadata graph, (2) social collaborative user 
interface, and (3) open extensible architecture in more detail. 

A. Metadata Graph 
Broadly, the property graph contains entities and 

relationships that capture schematic, semantic, collaborative, 

Figure 2. LabBook graph brings together schematic, semantic, 
collaborative, and contextual metadata as a single resource 
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From their home page, a user can 
see recent activity from their social 
network, capture context and run 
apps in notebooks, track provenance, 
and view recommendations.  

and contextual metadata. Schematic metadata describes how 
data is structured, e.g., a zip file that may contain multiple 
CSV files, each containing multiple tables and sets of 
columns, is represented in the graph via entities such as 
dataset, data file, table, and column, and via containment and 
association relationships. Semantic metadata captures the 
meaning of data, e.g., that a table represents information 
abuot bacteria, or that a column represents a bacterial habitat, 
and also how data items are related, for example, the 
derivation relationship between tables. Collaborative 
metadata describes relationships between people, e.g., people 
following each other or collaborating in communities. 
Finally, contextual metadata captures the context of data use, 
e.g., scientists sharing their thoughts and hypotheses in 
notebooks where they can respond or contribute ideas. 

The current graph schema (Figure 2) includes various 
entity types. All entities have basic attributes such as 
preferredLabel, description, tags, etc. and relationships such 
as ownedBy and hasAttachment. Several subclasses of Agent 
represent users, the organizations they belong to and the 
relationships among them. The Asset class represents 
resources, with subclasses such as Dataset, Datafile, Table, 
and Column. The Application class represents executable 
tools and services and provides relationships such as 
consumes, and produces. A Visualization is a visual 
representation of a data asset and a Notebook represents a 
collection of notes authored by one or more people.  The 
Notes can be simple free-form text, or input for launching an 
app with parameters, and may themselves refer to other 
entities. A Response represents structured output from an 
application invocation represented by a Note.  Lastly, a 
SemanticType represents a reference to a semantic 
hierarchy, such as a bacterial taxonomy. 

Like entities, relationships can also have attributes. For 
example, the similarTo relationship between two assets (e.g. 
tables, columns, datafiles) has attributes such as strength, 
identifying the quality, and source, identifying the origin of 
the relationship (e.g., the name of a data service). The graph 
also supports custom user-defined attributes and 
relationships, which are important for external services that 
contribute to the graph. 

The metadata graph is implemented using the Titan graph 
database [8], with Apache Cassandra [9] as the backing 
store, and exposes a set of services via RESTful APIs.  These 
services are used to query, search, and monitor the metadata 
graph and also provide statistics over the graph. The query 
API supports graph traversal and update operations, 
facilitated by Gremlin [10], a functional graph language that 
allows complex queries to be constructed by chaining 
operators as path-expressions. The search API, implemented 
using Elasticsearch [11], supports keyword-based search 
with facets for type, date, and user-defined attributes. The 
search API also allows one to easily pull in entities related to 
those that match a search term. For example, a Person entity 
can be indexed not only in terms of its attributes, but also in 
terms of attributes of related entities such as communities, 
notebooks and datasets the person owns. Thus, a search for a 
dataset name also returns all users, notebooks, and other 
entities related to the matching datasets. The monitor API 

allows real-time tracking and searching of low-level graph 
events, including entity updates and relationship additions 
and removals. The activity API is built on top of the monitor 
API to support aggregation of all events related to a person, 
facilitating awareness and notifications. Finally, the statistics 
API provides statistics over the graph that are used, e.g., in 
recommenders that calculate the score of a dataset based on 
the number of notebooks that refer to it. 

In open systems, governance and access control are key 
requirements. Thus, the LabBook graph APIs include both 
access control and authorization services. The access control 
service governs access to individual entities in the graph, for 
example, restricting the visibility of a dataset, or restricting 
the invocation of an app to selected people. The 
authorization service tracks and enforces data licensing 
agreements. For example, when access to a particular dataset 
is requested (either directly as download, or indirectly as a 
visualization), the service verifies that the user has agreed to 
the relevant terms and conditions. 

The metadata graph is evolving and growing 
continuously, and can be populated in numerous ways. 
Information about assets such as datasets or applications is 
either provided by the user or extracted automatically. For 
example, when a dataset is imported from data.gov, basic 
metadata from the source is also imported. Applications can 
also populate the graph. For example, a metagenomics app 
publishes the dataset resulting from analysis as a new 
derived dataset. Most importantly, use of LabBook silently 
evolves the graph -- as individuals interact with entities, new 
entities and relationships are added to record that activity.  
B. Collaborative User Experience 

The LabBook user interface design delivers a social, 
conversational user experience, where each user has a 
homepage, can create communities, can follow entities such 
as people and datasets, and can explore data in an ad hoc and 
agile manner (Figure 3). A user’s homepage lists her 
communities, recent notebooks, frequently used apps, 
datasets, and documents, as well as recommendations of 
people, data, notebooks, and applications based on her 

Figure 3 LabBook Social Collaborative User Experience 
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activity. At the center of the homepage, other activities 
relevant to the user are summarized, including notes 
mentioning the user, updates to notebooks of which she is an 
author, new notebooks added to her communities, and new 
releases of datasets she is following. The activity stream 
gives a quick overview of recent activity, but also provides 
an opportunity to make quick responses to urgent notes. 

While the activity stream allows the user to respond to 
multiple ongoing activities quickly, the user can also switch 
to a specific community page or a notebook to do focused 
work. Any entity in the UI is clickable, allowing the user to 
switch to a page designed specifically to show an entity and 
its related information. For example, a dataset page shows 
lists of data files and tables, visualizations, users, and 
comments, along with schematic metadata such as data 
sources and publishing organizations.  A community page 
contains people and notebooks, along with apps and datasets 
relevant to that community. For example, the page for a 
community of genomics researchers might include biologists 
and machine learning experts, DNA sequence datasets, 
specific genomics apps, and notebooks for discussing the 
metagenomic content of a sample. 

 Notebooks act as a digital version of a scientist’s lab 
notebook. They contain free-form notes about work being 
conducted, such as thoughts regarding analysis of a 
particular dataset, and artifacts that would facilitate such 
analysis, such as visualizations and models. Notebooks can 
be public, private or shared, allowing information to be 
compartmentalized if necessary. By capturing the exchange 
of ideas, knowledge and expertise in notebooks, LabBook 
facilitates collaboration among a community of individuals 
Apps can also be invoked from notes in the context of a 
notebook, capturing the input, output, and status of 
execution. For example, in Figure 4, Eser starts by uploading 
a zip file (ARB Dataset) that contains air quality measures 
for California, using a curation app to analyze the zip file and 
create three tables as a result. In the next step, Mary invokes 
a visualization app to explore the locations of sensors 
collecting the air data, passing a particular table as a 
reference. The visualizer app responds back by presenting a 
dialogue to let Mary select the specific columns to include in 
the visualization. It then renders the visualization back into 
the notebook, making it available to all notebook users. Mary 
adds a comment, indicating she was expecting the results to 
be displayed on a map. Next, Eser uses another app to 
associate the Latitude and Longitude columns with semantic 
tags.  This information is captured in the graph, so when he 
reruns the visualizer, it can leverage the new information to 
choose a map as a more suitable rendering of the data. 

Notebooks enable a key feature of LabBook by allowing 
collaboration to co-occur within the same context as the 
actual analytic work. This is in contrast to standalone 
collaboration applications, where users need to actively 
integrate work artifacts to support their collaborative use. 
Notebooks give users a complete and comprehensive log of 
their collaborative work, for both their benefit and for the 
benefit of their colleagues, for example, to examine and 
discuss how a particular analysis was conducted. Notebooks 
are a natural and seamless way to capture the context of how 
a particular result was derived, enabling governance and 
provenance of data assets. Connections in the metadata graph 
facilitate collaboration indirectly, by enabling reutilization of 
artifacts created by others (e.g., previously curated or 
analyzed datasets, visualizations) and directly, by connecting 
users with identified experts. For example, when a dataset is 
referenced in a notebook, another user can traverse from the 
dataset page to any notebook in which this dataset is used 
and also traverse to related individuals and communities. 
Such browsing capability allows the user to see the context 
in which the dataset was used, where it can be assessed for 
its trustworthiness. 

Collaboration is also implicitly supported through people 
recommendations (see Section IV.B). These can be general, 
based on all of a user’s interactions, but may also have a 
specific search as their context, in which case the 
recommenders are used to rank and personalize the search 
results. For example, when users are searching in a particular 
notebook, matching datasets owned by the notebook’s 
authors will be ranked higher than others. 

The graph API allows overlaying of connections from 
external social networks (e.g., FacebookTM) on to the 

Figure 4. In a series of notes, user (a) curates and adds tables, 
(b) creates an initial visualization, (c) enriches data by assigning 

columns to ontological references, (d) produces a map visualization 
that leverages such semantic metadata, and (e) and is about to 

launch the visualizer app to examine correlations. 
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Figure 5. Apps Architecture and API 

LabBook graph. As an example, we currently pull such data 
from our corporate social network, IBM Connections [12].  
Relationships among individuals are discovered by the 
Social Networks and Discovery (SAND) service [13], which 
looks for evidence of strong social connections based on co-
authorship and other factors, and populates these 
relationships in the graph along with a score and date. 

C. Architecture: Analytics Integration Hub 

An extensible apps architecture is critical to achieving an 
open analytics platform, and especially so for the 
metagenomics use case, as bioinformaticians uuse a large set 
of analytic tools. LabBook’s web-based apps architecture 
allows users to dynamically upload and register apps, and its 
app framework provides APIs that allow anyone to develop 
apps and integrate them. LabBook comes with several 
default apps for visualizing data, browsing catalogs, 
recommending data and people, etc.  

A contributed app is packaged as set of source (e.g., 
JavaScript) and support files (e.g., images, UI templates, or 
internal data), along with a descriptor that lists package 
contents and app metadata (e.g., name, description, icons, 
applicable roles, etc.). Typically, contributed apps have 
frontend and backend components. The backend 
components, often deployed on another server as a web-
service, do the heavy lifting in terms of computation and 
input/output, while the frontend components support basic 
user interaction and integration with the LabBook UI. Apps 
can leverage the services provided by the metadata graph’s 
RESTful APIs, and can expose their functionality from 
different parts of the collaborative platform (e.g., in 
notebooks, and in context-menus) (Figure 5).  The essential 
app-related APIs are: (1) the app store API, providing 
registry and catalog services for apps; (2) the query API, 
supporting queries over the metadata graph; (3) the monitor 
API, tracking graph events; and (4) the statistics API, for 
periodically computing general statistics over the graph. 
Additional APIS include a data API for retrieving content 
and an authorization API that allows apps to verify user 
access to data content. Using these services, apps can 
perform computation over the graph and put computed 

output (e.g., a model, visualization, or derived data) as a 
response into the graph and render it into a notebook. 

Integration with the LabBook user interface is typically 
handled in the app frontend by extending the JavaScript 
Apps API, which facilitates the flow of interaction between 
the app and the user interface. When LabBook is loaded in 
the browser, JavaScript app code specified in the app 
descriptor is dynamically loaded and initialized. When an 
app is launched in the context of a notebook, the app receives 
the content of the note and parameters. It may then display 
UI dialogs to gather more information, or call backend APIs. 
The app may use the various data and graph services to fetch 
more data and continue performing the computation. Once 
the computation is done, the app creates a response, which is 
then linked to the originating note in the notebook. Upon 
receiving the response event, the LabBook UI calls the app 
to see if further interaction is needed to render output (based 
on the response) into the note. If the backend computation is 
a long-running process, the backend can occasionally update 
the response entity with the status of the computation, which 
may also be rendered into the notebook.  

A key aspect of this architecture is that the graph serves 
as an integration hub. It is available to be used not only by 
the LabBook UI, but also by all the analytic apps. Thus, one 
can capture the context of all interactions between people 
and data as revealed through their invocation of various 
applications. As such, the graph serves as a general 
repository of how data is used, and how data is transformed 
from one analytics app to another, while capturing 
provenance information all along the way.  

IV. LABBOOK: EXPLOITING METADATA 
In this section, we illustrate how a unified metadata 

graph, which represents schematic, semantic, collaborative, 
and contextual metadata about people, data, and tools, can 
improve data integration and recommendations, and we 
argue that the combination provides a richer fabric for 
discovery than the sum of the individual metadata types. 

A. Data Integration 
An open analytics platform contains data on a wide range of 
topics, from a variety of publishers that is owned and curated 
by numerous users, thus providing a springboard for data 
integration [1].  Metadata management for data integration 
has historically focused on schema-based techniques to 
discover mappings or referential integrity constraints 
between datasets [14], content-based techniques to identify 
columns that contain overlapping data values [16], and 
semantics-based techniques [17] to discover data with 
similar meanings. 

However, a challenge with such discovery techniques is 
that they run independently, making it difficult to derive real 
value. For example, knowing that two datasets contain 
columns whose values are formatted the same way and are in 
similar ranges offers a clue that the datasets may be 
combined. But, do the columns represent the same semantic 
concept, such as temperature?  Do they contain the 
temperature of the same sample at the same time?   Who 
created these datasets and for what purpose? All these factors 
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would need to be considered to decide whether it makes 
sense to actually integrate these tables. The value proposition 
of LabBook’s metadata graph is that it serves as an 
integration hub where disparate metadata can come together 
and facilitate an iterative and collaborative approach to 
integration. 

The LabBook metadata graph has several entities, 
attributes, and relationships intended to capture metadata for 
integration. While relationships such as foreignKeyTo 
represent data schema constraints, another relationship, 
relatedTo, can be used to indicate a content-based 
relationship.  These attributes and relationships can be 
entered by the user, populated from a standard metadata 
repository or derived by an app. LabBook’s curation app 
derives schematic and semantic metadata by analyzing the 
structure and content of files. If data is imported from an 
open-data site, additional available metadata, including a 
description, the source, the publisher, the number of 
downloads, etc., is captured by the app as attributes and 
relationships. Thereafter, social and collaborative metadata is 
collected over time through the LabBook UI and APIs, 
including end-user tags on columns and tables, taxonomic 
terms assigned to columns, tables, and datasets, or even 
schema mappings between tables.  While at the onset a 
dataset might have a limited amount of metadata, additional 
entities and relationships may be created by schema mapping 
tools, linked data discovery services, and automatic 
techniques that use ontology resources. The graph provides a 
holistic ecosystem for data integration, capturing a temporal 
history that records all of a user’s activities, including for 
example, explicitly combining datasets to create a 
visualization.  
B. Recommendations 
Presenting tailored content to the user can make for a more 
productive user experience. To facilitate collaboration 
among researchers, LabBook provides its users with 
recommendations for various types of assets, including data, 
apps, other users, communities and notebooks. The rich 
structure of the LabBook metadata graph makes it a good 
source of information for making these recommendations.  

LabBook generates several kinds of context-aware 
recommendations, from general-purpose recommendations 
on a user’s homepage to personalized content on specific 
asset pages and personalized ranking of search results.  For 
example, on the user’s homepage, recommendations target 
the user’s complete profile, using all related entities from the 
property graph as context (including the user’s social 
network, datasets she has used, notebooks she has authored, 
etc.)  However, when performing a search in a notebook, 
browsing another user’s profile, or visualizing a dataset, that 
particular context, as well as the identity of the user, is used 
to generate recommendations. A search such as “sensors in 
CA”, as illustrated in Figure 6, can leverage relationships 
between potential dataset candidates and entities in the 
context (e.g., the issuer, Mary, the search note, “sensors in 
CA”, and the notebook containing it, “Ozone”). For 
example, the ESRL2 dataset might be preferred over the CA-
ARB dataset because Peter is a colleague who has 

collaborated with Mary while John has not, making Peter’s 
relationship to Mary weigh more than John’s. 

As illustrated above several factors come into play when 
making recommendations. These factors can be broadly 
classified as semantic, temporal, and network (social and 
otherwise) factors, each leveraging different entities and 
relationships, and their statistics from the graph. Semantic 
factors entail features of the graph that represent semantic 
associations between entities, such as related tables or 
foreign key relationships. Temporal factors incorporate the 
time dimension, such as freshness of datasets or recent uses 
of datasets. Network factors include social connections 
between people (e.g., followers or co-membership in 
communities) and distance/paths between entities both in 
structure (e.g., graph distance) and in semantics (e.g., 
datasets used in same notebooks or datasets used by a person 
who is following a community member). For all these 
factors, statistics are key to understanding the popularity and 
frequency of access to assets.  

While an in-depth description of LabBook’s 
recommenders is beyond the scope of this paper, let’s discuss 
how the recommender system utilizes the metadata graph. 
LabBook’s recommender manager governs a number of 
entity-specific recommenders, each utilizing a set of features. 
Features represent some input to the recommender, such as 
popularity of a dataset, semantic relevance to keywords, etc. 
Naturally, a dataset recommender considers a different set of 
features than a person recommender, but some common 
features might be shared. Each feature is backed by both an 
offline and an online computation. The offline part performs 
compute-intensive tasks, such as computing graph statistics 
and populating the statistics database with information like 
numbers of followers, numbers of shared notebooks, etc. The 
online part computes a score, given a specific instance of a 
potential recommendation, leveraging the graph, statistics, 
and various indices. The entity recommenders then combine 
the individual feature scores by applying an entity-specific 
model that weights each feature to compute an aggregate 
score.  

Recommendations must come with explanations, so that 
users can understand the rationale behind them and 
determine whether they are appropriate. Recommenders in 
LabBook collect explanatory information (such as 
communities shared between a recommended person and the 

Figure 6. Contextual search leverages recommenders to re-rank 
results according current context (i.e., person, note, and notebook)
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user requesting the recommendation) in their offline 
processing, and include it as part of the recommended entity 
during online processing. When recommendations are 
presented to the user, each recommended entity comes with 
individual scores for each feature, along with information on 
how this score differs from the scores of other recommended 
entities. Icons are placed next to each recommended entity 
when a particular feature contributed to the entity’s score 
significantly more than others. On demand, users can request 
further information and see a detailed listing of all associated 
entities and relationships that contributed to the 
recommendation. The LabBook recommender manager is 
extensible in that new features and new entity-recommenders 
that utilize the graph’s monitor, query, and statistics APIs 
can easily be added to the system.  

V. RELATED WORK 

A. Metadata Management 
As noted in Section IV.A, research in the data 

management field has historically focused on schematic 
metadata. In a good database design, metadata is created that 
is both prescriptive (e.g., constraints that ensure the data 
remains consistent) and descriptive (e.g., unenforced 
business rules describing an intended semantics and human 
readable descriptions of column names and values). The 
main challenge in data integration is to create metadata that 
relates data from different sources, thus illuminating how 
they can be combined. Schema mappings, one of the main 
metadata abstractions used in data integration, are a form of 
referential constraint that specify how data in one source 
may be transformed to fit into the structure of another 
source[15]. When the goal is not integration (representing all 
data under one structure), but rather alignment (being able to 
use many data sources collectively), link discovery 
techniques are often used to identify data in multiple sources 
that refer to the same real-world entity (entity-resolution 
problem) [16].  

In recent years, more emphasis has been placed on 
linking schematic metadata to semantic knowledge. 
Semantic approaches [18] leverage known ontologies to map 
data attributes to ontological references that serve as the 
basis for integration. Systems such as DBNotes [19] allow 
one to attach annotations to data that describe the data or its 
relationship to external entities, such as people and 
visualizations.  There has been some work on formalizing 
annotations that record the provenance of data (for example, 
who created or verified the data). 

In general, metadata that records or facilitates 
collaboration has received less investigation than schematic 
metadata. Recent work in the data management community 
aims to close this gap by leveraging people more, from 
reasoning about provenance, responsibility, and trust [20], to 
supporting integration incrementally in a pay-as-you-go 
approach [21], to using crowd-sourcing techniques for 
querying [22]. Metadata such as data source, context of use, 
and domain are under-explored, as such information has 
typically not been captured or represented conveniently in 
previous work.  

Several visual analytic systems have started capturing 
and using different types of metadata. Provenance is a key 
aspect of the system design in VisTrails [23].  During 
exploratory tasks, VisTrails records detailed provenance 
information, such as input datasets, parameters, and data 
flow configurations, in a relational database. This 
information is used for sharing and for simplifying the 
visualization process, by recommending related 
visualizations and guiding semi-automated changes to the 
visualization [24]. While similar in its goals, LabBook is an 
open web-based data analytics platform, with a diverse set of 
users, datasets, and analytic tools. It goes beyond VisTrails 
in capturing and reusing more metadata, particularly 
collaborative metadata (via social connections between 
communities of users), contextual metadata (via free-form 
notes in notebooks and attached resources), and semantic and 
schematic metadata (via references to ontologies that capture 
semantics). Such metadata can be helpful to gain a deeper 
understanding of users’ activities. 
B.  Open Analytics Platforms 

Driven by the open science initiatives mentioned in the 
introduction, a team at the University of Virginia created the 
Open Science Framework [25], an open platform that 
enables scientists to manage and share research materials 
among collaborators, and also increases transparency by 
making much of the scientific workflow public. OSF is 
designed partly as a network of research materials, partly as 
a version control system and partly as collaboration software. 
It provides a project management system similar to GitHub, 
but is tailored to support the scientific workflow and 
management of research materials. It therefore provides 
specialized features like recording of individual research 
contributions and project registration for material 
certification at particular points-in-time (e.g., preregistration 
for confirmatory analysis). It also provides a flexible add-on 
system that allows others to contribute to the platform. 

Other open analytics platforms include Jupyter [26] and 
Apache Zeppelin [27], which are collaborative notebook-
based interpreters that enable collaborative analysis and 
visualization for data scientists. These platforms are 
centralized repositories for researchers to collaborate and 
track their activities. However, most of the metadata 
captured is descriptive and individual research materials are 
not linked to people and tools that could provide context and 
thereby enable recommendations and further discovery, as is 
done in LabBook. 

C. Open Data and Data Marketplaces 
Data is becoming an important commodity. Consumers 

range from individuals or small organizations to large 
enterprises, organizations and governments. Multiple sources 
are curating, publishing, and hosting data. These sources 
include open data platforms [28][29][30][31], data 
marketplaces [32], and new emerging platforms such as 
DataHub [33] and dat-data.com. Open data platforms 
typically host data of small volume but large variety. The 
data hosted there is often data published by public or private 
organizations to fulfill transparency mandates or in support 
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of citizen engagement. The data is often poorly curated and 
difficult to use, requiring considerable refinement before it 
can be of significant value. Data found in data marketplaces 
is generally of larger volume but lesser variety, and has been 
curated to a higher degree, as it is for sale. In both cases, 
however, the discovery process is painful. Users must sift 
through data catalogs or search for data using specific search 
terms. To find data that is valuable to them, users must 
expend considerable effort in a trial and error process, and 
then figure out how to use it once they have found it. These 
sources seldom integrate with downstream analytic solutions, 
and the metadata with which they are annotated is often only 
skin deep.  

More modern alternatives to open data platforms and 
data marketplaces try to offer a more robust solution, 
presenting data in a more consumer friendly manner. 
DataHub for example is a hosted platform for preparing,   
storing and analyzing datasets, enabling sharing and data 
reuse. LabBook enables data discovery in a user-friendly 
manner, by gathering rich collaborative metadata about 
platform users, the data they interact with and the analytic 
work they do with that data. Data discovery becomes easier 
as datasets are recommended to users in a manner that 
reflects their work, needs, and context.  

VI. DISCUSSION 
We have argued that open data analysis platforms need to 

support diverse and evolving analytic ecosystems. Let’s 
revisit the key challenges of such ecosystems: (1) diversity of 
people, data, and analytic apps that make up the ecosystem; 
and (2) the dynamic evolving nature of the ecosystem, where 
people data and apps and interactions among them change. 
We discuss how our approach addresses these challenges. 

A. Capturing Diverse and Evolving Metadata  
Let’s first discuss how the metadata graph represents 

diverse and evolving ecosystems. Here, an important 
question is whether the property graph is expressive enough 
to represent such diversity in metadata. Furthermore, what is 
the right level of granularity for metadata?  

Property graphs are attributed, directed, multi-relational 
graphs.  Both nodes and links have an arbitrary number of 
simple key/value based attributes. As multi-relational graphs, 
property graphs can have many types of links between 
nodes. All these features make property graphs powerful for 
representing general-purpose knowledge, as evidenced by 
their use in search engines, social networks, intelligent 
systems, and sciences in general. Property graphs support a 
flexible schema that can grow easily and be modified on-
demand, making them compelling for evolving open data 
analytics platforms. 

We believe property graphs also offer a natural way to 
represent metadata in open data analytics platforms. In our 
current implementation we have 10+ entity types and 40+ 
relationships that represent entities and their corresponding 
relationships. Naturally, in implementing LabBook we made 
our own choices regarding the granularity and types of 
entities and relationships needed to support current use-
cases. For example, we don’t capture low-level events within 

apps. We only capture interaction between LabBook and 
apps as input and output of the applications. However, 
capturing intra-app, task-level interactions (such as sorting, 
filtering, and comparing) could open new and interesting 
directions. For example, we could learn about typical data 
transformations and could recommend such operations, 
perhaps even enabling automatic data wrangling, particularly 
if we correlate such operations with semantic and 
collaborative metadata. 

B. Diversity and Evolution of People, Data, Apps 
People come to an open data analysis platform with a 

wide variety of backgrounds. This makes collaboration 
challenging because people’s information needs and goals 
vary and so does the trustworthiness of individuals, data, and 
apps. Simply, different people use different tools and trust in 
different datasets. Yet, we still would like to be able to help 
people learn from each other and collaborate with each other.  
Contextualization is key to supporting such diverse 
information needs. In LabBook, search results are 
contextualized, i.e., the person who issued the search and the 
notebook from where it was issued are important factors in 
how search results are ranked and presented. We do this as a 
post-processing step, relating the results to the person and 
notebook and re-ranking accordingly, weighing different 
relationships (i.e., paths between the search result entity and 
the person/notebook) differently. A similar approach is used 
in recommenders, which employ a number of features that 
examine the semantic, temporal, and network connectivity 
between entities to make recommendations of people, 
datasets, and more. Input to the system is usage, e.g., who 
used what datasets. As such, if a particular dataset is heavily 
used in some community, this would be reflected in the 
ranking of search results for people in that community. 

In any meaningful analysis, data from multiple datasets 
needs to be integrated. For example, in analyzing election 
data one needs to integrate it with demographic data. In 
LabBook, we pursued an incremental collaborative approach 
to developing semantic metadata in support of data 
integration. For example, tags on a dataset created by one 
person could be indirectly leveraged by others. More 
directly, derivedFrom relationships capture provenance of 
past of integrations and could help others find datasets to 
integrate with. Another aspect of data integration is the 
multitude of datasets with similar data. This is particularly 
severe in open systems, where new data is derived and 
contributed back to the system. While one issue is trust, as 
we discussed earlier, another is versioning, particularly in 
evolving open platforms. In LabBook, the metadata graph is 
flexible enough to allow versioning. For example, references 
to a dataset could point to the latest release, while records of 
past uses could point to the version that existed at the time 
the use occurred.  

Lastly, there is also significant variety in the analytic 
software available. For example, in our metagenomics use 
case we have nearly 100 analytic apps, which implement 
various genetic data mining algorithms. Individual 
bioinformaticians have their own favorite tools for doing 
analysis, but two critical issues here are interoperability and 
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provenance. Often work is conducted by using output 
produced from another app. Using the metadata graph as the 
central repository and integration point helps in that the 
graph serves as both a “blackboard system”, where apps take 
in data and put it back and as a “repository system” to 
capture provenance of actions. While the former helps in 
composability and abstraction to higher-level tasks, the latter 
helps people learn from each other, and collectively defines 
best practices, thus supporting communities of practice. 

In the end, the success of open data analytics platforms 
will be determined by the willingness of the participating 
communities to openly share data, ideas, processes, and 
methodologies. Several new efforts are underway to create 
open science platforms for academic research. Likewise, 
within large corporations, data scientists are encouraged or 
even expected to be transparent about their analysis, share 
knowledge, and collaborate.  

VII. CONCLUSION 
In this paper, we described a unified metadata repository 

that captures information about people, data, tools and their 
interactions in an open data analytics platform. We argued 
that such a repository should bring together disparate kinds 
of metadata, each adding a different perspective, collectively 
yielding a more accurate representation of how people use 
data and perform analytic work. Through a specific 
implementation of such a repository as a property graph in 
LabBook, we demonstrated several uses of such metadata 
that could improve the quality of collaboration. We argued 
that such metadata can be utilized and easily enriched by 
means of a social user interface with a flexible apps 
architecture that lowers the cost of contributing metadata, 
often collecting it as a side-effect of performing analytic 
work. By applying LabBook in a real-world use-case, we are 
gaining useful insight on how such metadata could serve a 
diverse community of users. We believe the rich metadata in 
LabBook, with a social user experience accelerates discovery 
through collaboration.  
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