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Abstract

For the multi-label image retrieval, the existing
hashing algorithms neglect the dependency be-
tween objects and thus fail to capture the attention
information in the feature extraction, which affects
the precision of hash codes. To address this prob-
lem, we explore the inter-dependency between ob-
jects through their co-occurrence correlation from
the label set and adopt Multi-modal Factorized Bi-
linear (MFB) pooling component so that the im-
age representation learning can capture this atten-
tion information. We propose a Label-Attended
Hashing (LAH) algorithm which enables an end-to-
end hash model with inter-dependency feature ex-
traction. LAH first combines Convolutional Neu-
ral Network (CNN) and Graph Convolution Net-
work (GCN) to separately generate the image rep-
resentations and label co-occurrence embeddings,
then adopts MFB to fuse these two modal vec-
tors, finally learns the hash function with a Cauchy
distribution based loss function via backpropaga-
tion. Extensive experiments on public multi-label
datasets demonstrate that (1) LAH can achieve the
state-of-the-art retrieval results and (2) the usage of
co-occurrence relationship and MFB not only pro-
motes the precision of hash codes but also accel-
erates the hash learning. GitHub address: https:
//github.com/IDSM-AI/LAH

1 Introduction

Similarity hash code has been widely used in large-scale im-
age retrieval owing to its lightweight storage (compact bi-
nary code) and efficient comparison (exclusive-OR) [Liu et
al., 2019; 2020]. For classic image hashing, correctly rec-
ognizing the object from an image is an important factor to
promote the retrieval precision. However, it becomes more
challenging for multi-label image retrieval where each im-
age contains more objects. Several studies [Lai et al., 2016;
Song et al., 2017; Huang et al., 2018] specifically designed
for multi-label image retrieval recognize each object in isola-
tion and then fuse these features to learn a hash model, which
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Figure 1: We first collect the times of objects that appear in the
dataset according to the labels, then determine the co-occurrence
probabilities based on the co-occurrence times of the appeared ob-
jects. We model inter-dependency by a directed graph in the lower
left frame and express co-occurrence probabilities on edges in the
lower right frame. Note that the mutual conditional probabilities be-
tween two objects are asymmetrical. As shown in the lower right
frame, person appears three times, book appears only once and they
co-occur once, so the co-occurrence conditional probabilities be-
tween these two objects are respectively 1/3 and 1.

is essentially limited by ignoring the complex topology struc-
ture between objects and thus fails to further improve the pre-
cision of retrieval. For example, a basketball will appear in a
court with a higher probability than a football. The existing
hashing methods have not benefited from this prior informa-
tion.

To address this problem, there are two key challenges: (1)
how to construct an ideal topology structure and what kind of
dependency should be expressed, (2) how to use the topology
information to learn image representations in the hash task
via an end-to-end manner.

Based on this, we first explore the correlation between ob-
jects according to their co-occurrence probability [Wang et
al., 2017] which is collected from labels via attention mech-
anism. As shown in Figure 1, we leverage the directed graph
structure to capture and explore the label dependency be-
tween objects. The reason why we model a directed graph is
that the mutual conditional probabilities between two objects
(labels) are asymmetrical. Take the three images in Figure 1
as example, when person appears in the image, book will oc-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

955



... ... ... ......

conv5_x

ResNet-101

...

global 
max-pooling

x

Image Representation Learning

soccer
Label

Label Co-occurrence Embedding Learning

person

field
goal...

Co-occurrence
Correlation ...

...

...

...

...

...

Word 

GCN

...

Co-occurrence
Embeddings

MFB

R

R×R
...

...

fc

fc
...

M1

...

Hash Learning

fc

... ...

fch

1

0

...

Cauchy 
cross-entropy 

loss

Cauchy 
quantization

loss

soccerperson field goal

x

M2

。M1 M2

~

Vector

Input

group
sum-pooling

×R

×R

...
...

...
...

VR

ER

Image
Representation

×R

Figure 2: The architecture of the proposed Label-Attended Hashing (LAH), which is comprised of four key components: (1) a CNN, i.e.,
ResNet-101, for learning deep representation of each image, (2) a GCN for learning label co-occurrence embedding, where R denotes
the number of labels, VR denotes the set of label vectors and ER denotes the set of co-occurrence embeddings, (3) a MFB for efficiently
fusing image representation and label co-occurrence embeddings, where M1 denotes a transformation of an image representation and M2

denotes the transformation of a co-occurrence embedding (there are R different M2 corresponding to R labels) and (4) cross-entropy loss
and quantization loss based on the Cauchy distribution which respectively aim at similarity hash learning and hash codes quality controlling.

cur with probability 33.33%. However, in the condition of
book appearing, person will certainly occur with probability
100%.

For the second challenge, we first combine Graph Convolu-
tional Network (GCN) [Zhou et al., 2018] and Word2Vector
method [Pennington et al., 2014] to learn the label co-
occurrence embeddings, where these embeddings can well
express the features of co-occurrence correlation. Although
these features come from the label word vectors, they func-
tion as the classifiers in the fusion of image features and help
learn the image features that embody the co-occurrence cor-
relation. ML-GCN [Chen et al., 2019] adopts a dot product
(DP) in this fusion process, which achieves good results in
terms of image classification. For the feature extraction of
hash tasks that require more effective and more attention in-
formation, we use our improved MFB instead of DP. On the
one hand, the MFB component improves fusion efficiency by
adding fully connected (fc) layers with more flexible fitting
space. On the other hand, it generates more fusion parame-
ters by group sum-pooling to both promote the fusion preci-
sion and extend the attention representations.

Based on the above work, we propose a label-attended hash
(LAH) model which can capture multi-label image features
and fast achieve hash mapping according to the label depen-
dency in the end-to-end pipeline. For the label co-occurrence
embedding, we take both the word vectors and co-occurrence
correlation as input, then use GCN to calculate the label em-
beddings which implicitly represent the co-occurrence rela-
tionship. Meanwhile, we use ResNet-101 [He et al., 2016]

to generate an image representation by means of global max-
pooling. In the following, we fuse co-occurrence embeddings
and the image representation via MFB to learn an end-to-end
hash model. As for the hash function, we introduce the state-

of-the-art hash function consisting of a quantization loss and a
pairwise cross-entropy loss based on the Cauchy distribution
to obtain the optimal result, both of which conduce to con-
centrate relevant images to be within a small Hamming ball.
The overall deep architecture is shown in Figure 2. The pro-
posed LAH model can be trained end-to-end along red line
by backpropagation. Extensive experiments on public multi-
label datasets demonstrate LAH can generate highly concen-
trated and compact hash codes and achieve the state-of-the-art
retrieval results. LAH also has higher representation learning
efficiency compared with ML-GCN.

2 Label-Attended Hashing

In the implementation, we assume that there are N samples
{xi|i = 1, 2, · · · , N} in the training set, where L(xi) de-
notes the label set of the i-th sample and sij denotes the
similarity between xi and xj (sij=1 if xi is similar to xj

while sij=0 if they are dissimilar). Specifically, in the multi-
label scenario, we stipulate sij = 1 if L(xi) ∩ L(xj) 6= ∅,
otherwise sij = 0. In addition, we assume that there are
R objects {rg|g = 1, 2, · · · , R} in the whole label set and
ER= {E(rg)|g = 1, 2, · · · , R} where E(rg) denotes the co-
occurrence embedding of the g-th object. The architecture for
LAH is shown in Figure 2, where the pipeline along the red
arrow is the backbone of our algorithm which can be trained
by backpropagation. When training our model in this back-
bone, we input pairs of {(xi, xj , sij)} and ER, where D(x)
and D(E(r))×R respectively denote the dimension of x and
ER. After the image representation learning stage, x is trans-
formed into a vector x̃ with D(x̃) dimension which will be
sent to MFB along with E(rg) to generate a 1 × R vector
Z after completing R times fusion. In the last hash learn-
ing stage, LAH transforms Z into K-dimensional continu-
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ous code Z̃ ∈ R
K for each image x, and then transforms

Z̃ into K-dimensional hash code by h = sgn(tanh(Z̃)) ∈
{−1, 1}K in the fc hash (fch) layer. Finally, with Cauchy
cross-entropy loss and Cauchy quantization loss, LAH learns
a non-linear hash function F(x) : x → h ∈ {−1, 1}K , which
encodes each sample x into compact K-bit hash code. The
details of each component are described below.

2.1 Image Representation Learning

Any CNN based models can complete the feature extraction
of an image in our architecture. In our experiments, following
ML-GCN, we choose ResNet-101 as the model. Based on
this, for an image x with the resolution D(x) = 448×448, we
can obtain a 2048× 14× 14-dimensional feature vector from
the “conv5_x" layer. At last, we adopt global max-pooling
Fgmp to generate the image-level feature x̃:

x̃ = Fgmp(Fcnn(x; θ))

where θ denotes the CNN parameters and D(x̃) = 2048.

2.2 GCN for Label Co-occurrence Embedding
Learning

The motivation of introducing GCN is that it can learn the
relationship representation from the feature descriptions ac-
cording to the input of the relationship. Essentially, it learns a
propagation function Fgcn on the graph via weight propaga-
tion to complete feature extraction. We use the GloVe [Pen-
nington et al., 2014] model to convert the object (word de-
scription in the label set) into vector V (r), where V c ∈
R

R×D(V (r)) represents the input in c-th layer and D(V (r))
represents the dimension of V (r). The input of relationship
is the correlation matrix A ∈ R

R×R, and the updated node

features are denoted as V c+1 ∈ R
R×D(V (r))′ . Each GCN

layer propagation function is described as:

V c+1 = Fgcn(ÂV
cW c)

where Â = D̃−
1

2 (A + IR)D̃
−

1

2 with D̃ii =
∑

j Ãij and

Ã = A+ IR.

In our experiments, we use two GCN layers, i.e., E(r) =
V c+2. Referring to ML-GCN, we adopt the data-driven
method to construct matrix A which is the key of co-
occurrence learning. Specifically, in order to determine each
element of matrix A, we have to first collect the occurrence
times as well as co-occurrence times of each object according
to the label set. Let Ti, Tj respectively denote the occurrence
times of ri, rj in the label set and Tij (which equals Tji) de-
note the co-occurrence times of these two objects. Then, we
model the label correlation dependency in the form of condi-
tional probability, i.e.,

Pij = P (ri|rj) =
Tij

Tj

which denotes the probability of occurrence of ri when rj
appears. Note that, as shown in Figure 1, Ti 6= Tj , Pij 6= Pji.
Based on this, Aij = Pji where Aij denotes the i-th row and
j-th column element of A.

However, in the implementation, we find if directly using
this simple correlation, the overall data distribution may ex-
hibit a long-tail effect owing to the rare co-occurrence objects
which become noise and affect the model convergence. To
promote the efficiency and prevent over-fitting, we use the
threshold τ to binarize the matrix A, the operation can be
written as:

Āij =

{

0, if Pji ≤ τ

1, otherwise

where Ā is the binary correlation matrix. In addition, there
exactly exists the over-smoothing problem [Chen et al., 2019]

when using the above binary correlation matrix to train the
GCN model, which may result in that the generated hash
codes become indistinguishable. Therefore, similar to ML-
GCN, we adopt the weighted scheme and draw the final cor-
relation matrix A as:

Aij =

{

q
∑

R
j=1∩i 6=j

Āij , if i 6= j

1− q, otherwise

where q ∈ (0, 1). In this way, we can update a node feature
by choosing a fixed weight q. For example, a node feature
will rely more on itself if using a smaller q. Otherwise, its
feature will be determined by other neighbor nodes.

2.3 MFB for Fusion

The MFB is one of the keys to achieve high precision with
fast learning efficiency for LAH. The motivation of improv-
ing this component to build the LAH fusion mechanism lies
in that both the multi-label image representation learning and
the label co-occurrence embedding learning implicitly adopt
the attention mechanism, while MFB can achieve the high-
est efficiency and best performance when conducting multi-
modal co-attention fusion. Specifically, on the one hand, we
utilize Hadmard product and group sum-pooling instead of
the DP to increase the interaction of vector elements among
different modalities, which promotes the precision. On the
other hand, by means of sum-pooling, it reduces over-fitting
and parameter explosion caused by the increasing interaction
and thus accelerates the model convergence.

Given two feature vectors in different modalities, i.e., im-
age representation x̃ ∈ R

D(x̃) and co-occurrence embedding

E(r) ∈ R
D(E(r)), we also draw lessons from tricks for uni-

modal data [Li et al., 2017] to reduce high computational cost
and a risk of over-fitting. For the feature of the i-th object, the
multi-modal bilinear model with two low-rank matrices is de-
fined as follows:

zi = x̃TUiV
T
i E(r) =

k
∑

d=1

x̃Tudv
T
d E(r)

= 1
T (UT

i x̃ ◦ V T
i E(r))

(1)

where k is the latent dimensionality of the factorized matri-

ces U = [u1, · · · , uk] ∈ R
D(x̃)×k and V = [v1, · · · , vk] ∈

R
D(E(r))×k, ◦ is the Hadmard product, i.e., the element-wise

multiplication of two vectors, 1 ∈ R
k is an all-one vector.
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In practice, as shown in Figure 2, we adopt two parallel k-
dimensional fc layers (red and blue fc layers shown in MFB
framework) to complete this transform respectively, where
M1 = UT

i x̃ and M2 = V T
i E(r).

According to the total number of object categories, we
need to get R vector z as input to match the subsequent hash
mapping. Another purpose of this design is to provide bet-
ter explanation for the representation of each object. There-
fore, to obtain the output Z = [z1, · · · , zR], the weights to

be learned are two three-order tensors Ũ = [U1, · · · , UR] ∈
R

D(x̃)×k×R and Ṽ = [V1, · · · , VR] ∈ R
D(E(r))×k×R. With-

out loss of generality, we can reformulate Ũ and Ṽ as 2-D

matrices Ũ ∈ R
D(x̃)×(k×R) and Ṽ ∈ R

D(E(r))×(k×R) re-
spectively. At last, we obtain the result of group sum-pooling
as below:

Z = FG
sum−pooling(Ũ

T x̃ ◦ Ṽ TE(r), k)

where k
G

∈ [1, k]Z+ and the function FG
sum−pooling(∗, k)

means using a one-dimensional non-overlapped window with
the size k

G
to perform sum-pooling over ∗. Different from [Yu

et al., 2017], we improve this work where all the R identical

vectors in Ũ are generated from x̃ while the vectors in Ṽ cor-
respond to the elements of ER transformed by fc layer.

2.4 Cauchy Distribution for Hash Learning

Due to the diversity of retrieval target for the multi-label im-
age, it becomes a tricky task to generate hash codes with small
distance between similar data and large distance between dis-
similar data in the Hamming space. Luckily, Cauchy distri-
bution can adjust the location of data peak to embody the fo-
cus of attention. According to the verification of DCH [Cao
et al., 2018], the hash function based on Cauchy distribu-
tion can solve the problem that the conventional sigmoid
function brings low aggregation degree of similar samples
within short Hamming distance, and it can achieve better
results when Hamming radius ≤ 2 in terms of Mean Aver-
age Precision (MAP), Precision and Recall. Therefore, we
adopt Cauchy distribution based function as our LAH hash
function to promote the aggregation degree of similar data
within small Hamming radius by jointly preserving similarity
of pairwise images and controlling the quantization error.

Assume that hi, hj ∈ {−1, 1}K respectively denote the
output of xi and xj after the fch layer while {(xi, xj , sij) :
sij ∈ S} denotes the input. Based on the Cauchy distribution,
we design the probability function:

σ(δ(hi, hj)) =
γ

γ + δ(hi, hj)
(2)

where σ(∗) is well-defined probability function, δ(hi, hj) de-
notes the Hamming distance between hi and hj , γ is the
scale parameter of the Cauchy distribution. Note that the
smaller γ, the higher aggregation degree within short Ham-
ming radius. We repeatedly conduct extensive experiments
and choose γ = 0.15.

To learn high-quality hash codes and control the quantiza-
tion error ‖ hi − sgn(hi) ‖ resulting from continuous relax-
ation, we combine parameter γ (Equation (2)) and Cauchy

distribution to design prior for each hash code as follows:

Phi
=

γ

γ + δ(|hi|,1)
(3)

where 1 ∈ R
K . In order to cooperate with the continuous re-

laxation based on Cauchy distribution, we adopt δ(hi, hj) =
K
2 (1 − cos(hi, hj)) to normalize Euclidean distance as the

approximation of Hamming distance to ease the optimiza-
tion. The normalized Euclidean distance compares each pair
of continuous codes on a unit sphere, while the Hamming dis-
tance compares each pair of hash codes on a unit hyper-cube.

According to the deduction of Bayesian learning in DCH
and Equation (2), the Cauchy cross-entropy loss Lcce is de-
rived as:

Lcce =
∑

sij

ωij(sij log
δ(hi, hj)

γ
+ log(1 +

γ

δ(hi, hj)
)) (4)

where

ωij =

{

|S|/|Ss|, sij = 1

|S|/|Sd|, sij = 0

where Ss = {sij ∈ S : sij = 1} is the set of similar pairs
and Sd = {sij ∈ S : sij = 0} is the set of dissimilar pairs.

In addition, according to equation (3), the Cauchy quanti-
zation loss Lcq is

Lcq =
N
∑

i=1

log(1 +
δ(|hi,1|)

γ
) (5)

Based on above equations, the completed hash function

L = λLcce + (1− λ)Lcq

where λ is a hyper-parameter to trade-off two loss functions.
Note that our sign function is designed as

sgn(hi) =

{

1, hi > 0,

−1, otherwise.

where hi is a element in vector h ∈ R
K . This binariza-

tion will not severely affect the retrieval result because it have
been adjusted by the quantization loss.

3 Experiments

3.1 Datasets

VOC2007. [Everingham et al., 2010] consists of 9,963
multi-label images and 20 object classes. On average, each
image is annotated with 1.5 labels. Note that we transform 0
to 1 in label dataset.

MS-COCO. [Lin et al., 2014] is a popular multiple object
dataset for image recognition, segmentation and captioning,
which contains 118,287 training images, 40,504 validation
images and 40,775 test images, where each image is labeled
by some of the 80 semantic concepts.

FLICKR25K. [Huiskes and Lew, 2008] is a collection of
25,000 multi-label images belonging to 24 unique provided
labels, and each image is annotated by 4.7 labels on aver-
age. We randomly select 2,000 images as the test set. The
remaining images are used as the retrieval images, where we
randomly select 10,000 images as the training set.
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(a) VOC2007 (b) MS-COCO

Figure 3: MAP on test set with epoch increasing on training set.

Method
VOC2007 MS-COCO FLICKR25K

16 bits 32 bits 48 bits 64bits 128bits 16 bits 32 bits 48 bits 64bits 128bits 16 bits 32 bits 48 bits 64bits 128bits

DSRH 0.5741 0.6194 0.6608 0.6907 0.6956 0.6185 0.6707 0.6992 0.7266 0.7184 0.6691 0.6849 0.7044 0.7339 0.7330
IAH 0.5997 0.6618 0.6884 0.7830 0.8727 0.7374 0.7676 0.7903 0.8393 0.8414 0.7994 0.8317 0.8366 0.8361 0.8381

OLAH 0.6109 0.6699 0.7174 0.7890 0.8852 0.7830 0.8229 0.8512 0.8848 0.8935 0.8016 0.8662 0.8890 0.8905 0.8918
RCDH 0.6177 0.6739 0.7206 0.7979 0.8863 0.7839 0.8381 0.8616 0.8911 0.8940 0.7983 0.8491 0.8812 0.8909 0.8924

T-MLZSH 0.5812 0.6473 0.7099 0.7710 0.7697 0.6074 0.6376 0.6779 0.6902 0.6730 0.6484 0.6695 0.6805 0.6816 0.6806

DCH 0.5779 0.6556 0.7576 0.7326 0.7033 0.8010 0.8576 0.8521 0.8299 0.7836 0.7837 0.8681 0.8694 0.8407 0.7911
GCNH 0.6001 0.6637 0.7375 0.7996 0.8559 0.7889 0.8494 0.8662 0.8777 0.8811 0.7621 0.8493 0.8727 0.8766 0.8813

DistillHash 0.5716 0.6583 0.7459 0.7861 0.7780 0.6279 0.6432 0.6612 0.6837 0.6756 0.6964 0.7056 0.7259 0.7241 0.7226

LAH 0.5984 0.6745 0.7797 0.8318 0.9191 0.8101 0.8628 0.8730 0.9006 0.9019 0.7834 0.8782 0.9043 0.9107 0.9260

Table 1: Mean Average Precision within Hamming Radius 2 (MAP@H≤2) at Different Bits on Three Benchmark Datasets.

3.2 Evaluation Metrics

Following classic settings [Cao et al., 2018], we report the
three standard evaluation metrics to measure the quality of
hash codes within Hamming radius 2: Mean Average Pre-
cision within Hamming Radius 2 (MAP@H≤2), Precision
curves within Hamming Radius 2 (P@H≤2), and Recall
curves within Hamming Radius 2 (R@H≤2).

3.3 Implementation Details

For label co-occurrence embedding learning, our LAH con-
sists of two GCN layers with output dimensionality of 1024
and 2048 (D(E(r)) = 2048), where the initial label vec-
tor (D(V (r)) = 300) is generated by GloVe trained on the
Wikipedia dataset. For the label expressed by multiple words,
we adopt the average of embeddings for all words to present
the initial label vector. As for the correlation matrix, we
set τ = 0.4 and q = 0.2. In the part of image represen-
tation learning, we adopt ResNet-101 pre-trained on Ima-
geNet [Deng et al., 2009] to function as the backbone be-
fore MFB component, where mini-batch size is fixed as 256
and the raw images (input) are random resized into 448×448
using random horizontal flips. In the part of MFB, without
otherwise stated, we set k = 350 for all datasets. For fair
comparisons with other algorithms, we set G = 350.

In the part of fch, we set the model parameters (γ = 1
and λ = 0.55) of LAH by cross-validation. We fine-tune
ResNet-101 as well as train GCN, MFB and fch all through
backpropagation. The processing is implemented using Py-
Torch1. For network optimization, Stochastic Gradient De-
scent (SGD) [Amari, 1993] is used as the optimizer with 0.9
momentum and 10−4 weight decay. Note that all the results
are obtained within 20 epochs.

3.4 Results

Learning Efficiency

To show the efficiency of MFB, we compare the classification
precision of LAH (using the improved feature extraction part
based on ML-GCN) with that of ML-GCN in each epoch.
For fair comparisons, we use the same training parameters,
loss function and datasets (i.e., VOC2007 and MS-COCO) as
ML-GCN. As shown in Figure 3, LAH has already converged
on the 15-th and 17-th epoch, and obtained the best MAP
of 93.43% and 82.40% respectively. However, at the same
epoch, ML-GCN never converges and its MAP scores are re-
spectively 72.91% and 38.39% lower than LAH on VOC2007
and MS-COCO.

1https://pytorch.org/
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(a) P@H≤2 on VOC2007 (b) P@H≤2 on MS-COCO (c) P@H≤2 on FLICKR25K

(d) R@H≤2 on VOC2007 (e) R@H≤2 on MS-COCO (f) R@H≤2 on FLICKR25K

Figure 4: P@H≤2 and R@H≤2 with different code lengths on VOC2007, MS-COCO and FLICKR25K.

Comparisons with State-of-the-Arts

We compare the retrieval performance of LAH with existing
multi-label hashing methods including DSRH [Zhao et al.,
2015], IAH [Lai et al., 2016], OLAH [Huang et al., 2018],
RCDH [Ma et al., 2018], T-MLZSH [Zou et al., 2019], and
the state-of-the-art hashing methods including DCH [Cao et
al., 2018], GCNH [Zhou et al., 2018] and DistillHash [Yang
et al., 2019].

The Mean Average Precision within Hamming Radius 2
(MAP@H≤2) of all comparison methods are listed in Ta-
ble 1. Experimental results show LAH has stable advan-
tages over other algorithms at different code lengths and
averagely outperforms the runner-up by 1.37%, 0.77% and
1.21% in terms of MAP@H≤2 on VOC2007, MS-COCO and
FLICKR25K respectively.

Note that, we find both the MAP@H≤2 values of DCH and
DistillHash will greatly decline at 64 bits and 128 bits, but this
phenomenon becomes not obvious on those hash algorithms
specially designed for multi-label datasets. This shows that
the well-designed multi-label hash algorithms can carry more
semantic information with longer hash codes. Fortunately,
our proposed LAH owns this ability. At the same time, it can
be seen that GCNH, whose difference from others is to use
GCN to complete the image feature extraction, also owns this
ability. We believe GCN has played a vital role in this pro-
cess and our LAH also benefits from it. In addition, LAH out-
performs GCNH owing that we introduce the co-occurrence
relationship into GCN.

The performance of Precision within Hamming Radius 2
(P@H≤2) reflects the proportion of retrieved images related

to the query image. As shown in Figure 4(a), (b) and (c), LAH
achieves the highest P@H≤2 results on all the three bench-
mark datasets at different code lengths, and averagely exceeds
the runner-up by 1.12%, 0.94% and 0.22% on VOC2007,
MS-COCO and FLICKR25K respectively. This result veri-
fies the superiority of LAH in feature extraction, because pre-
ciser classification features can bring preciser hash codes.

Note that R@H≤2 reflects the aggregation degree of sim-
ilar images in the Hamming space. As shown in Figure 4(d),
(e) and (f), LAH also achieves the highest R@H≤2 results on
all the three datasets, and averagely exceeds the runner-up by
6.45%, 4.16% and 1.36% respectively. This result verifies the
superiority of LAH in aggregating similar data, which bene-
fits from the design of hash function. The visualization results
are displayed in Section 3.6.

3.5 Ablation Study

We present the influence on the performance of LAH using
different components. Word embedding method (WEM) is
a LAH component used to acquire initial word vectors for
labels. We compare the performance under GloVe [Penning-
ton et al., 2014] with other popular counterparts including
GoogleNews [Mikolov et al., 2013] and FastText [Joulin et
al., 2016]. Fusion method (FM) is a LAH component used
to fuse the label information and image feature. We compare
the performance under MFB and DP which is used in ML-
GCN. As shown in Table 2, the precision results under MFB
at different code lengths are respectively 12.03%, 2.40% and
6.32% higher than that under DP on VOC2007, MS-COCO
and FLICKR25K. In addition, LAH produces better perfor-
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WEM FM
VOC2007 MS-COCO FLICKR25K

16 bits 32 bits 48 bits 64bits 128bits 16 bits 32 bits 48 bits 64bits 128bits 16 bits 32 bits 48 bits 64bits 128bits

GloVe
MFB 0.5984 0.6745 0.7797 0.8318 0.9191 0.8101 0.8628 0.8730 0.9006 0.9019 0.7834 0.8782 0.9043 0.9107 0.9260
DP 0.6098 0.6713 0.7476 0.8010 0.9015 0.7984 0.8118 0.8502 0.8841 0.9001 0.7553 0.7804 0.8889 0.8971 0.9017

GoogleNew
MFB 0.5906 0.6339 0.6917 0.8073 0.8553 0.8007 0.8386 0.8620 0.8990 0.9009 0.7470 0.7366 0.8593 0.8783 0.9002
DP 0.5014 0.6341 0.6125 0.6523 0.7986 0.8026 0.8511 0.8371 0.8985 0.9007 0.7024 0.7887 0.8307 0.8632 0.8982

FastText
MFB 0.6133 0.6726 0.6986 0.7547 0.8265 0.8010 0.8381 0.8645 0.8852 0.9007 0.7486 0.7264 0.8513 0.8661 0.8983
DP 0.6018 0.6249 0.6704 0.7053 0.8141 0.7998 0.8376 0.8891 0.8666 0.8913 0.7374 0.7490 0.8066 0.8223 0.8768

Neither WEM nor FM 0.5779 0.6556 0.7576 0.7326 0.7033 0.8010 0.8576 0.8521 0.8299 0.7836 0.7837 0.8681 0.8694 0.8407 0.7911

Table 2: Mean Average Precision within Hamming Radius 2 (MAP@H≤2) of LAH and Its Variants on Three Benchmark Datasets. WEM is
Word Embedding Method. FM is Fusion Method. MFB is Multi-modal Factorized Bilinear Pooling. DP is Dot Product.

(a) LAH (b) RCDH

Figure 5: The t-SNE visualization of hash codes on VOC2007.

mance using GloVe than other WEMs, and respectively out-
performs them by 3.69% and 4.06% over GoogleNew and
FastText. In addition, LAH averagely outperforms the ap-
proach that uses neither WEM nor FM by 5.67% in all cases.
From these results, it can been seen that the combination of
components we designed is effective and optimal.

3.6 Visualization Study

Figure 5 shows the t-SNE visualization of the hash codes
learnt by LAH and our baseline RCDH on VOC2007 dataset.
LAH can not only better distinguish different categories but
also gather the same categories more compactly. Although
RCDH is equally excellent, its effect is not as good as LAH.

4 Conclusion

In this paper, we propose LAH, a label-attended hashing al-
gorithm for multi-label image retrieval. LAH adopts co-
occurrence probability over the label set to explore the inter-
dependency between objects and uses GCN to learn the co-
occurrence embeddings. In the following, LAH utilizes MFB
to fuse the image representations and label co-occurrence
embeddings in an end-to-end manner, which integrates the

multi-modal co-attention as well as promotes the learning ef-
ficiency. Extensive experiments on VOC2007, MS-COCO
and FLICKR25K demonstrate LAH has a high convergence
rate and can generate high-quality hash codes and achieve
better retrieval results than the state-of-the-art hashing meth-
ods.
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