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Abstract 

Gobel, F., J. Orestes Cerdeira and H.J. Veldman, Label-connected graphs and the gossip 

problem, Discrete Mathematics 87 (1991) 29-40. 

A graph with m edges is called label-connected if the edges can be labeled with real numbers 

in such a way that, for every pair (u, v) of vertices, there is a (u, v)-path with ascending labels. 

The minimum number of edges of a label-connected graph on n vertices equals the minimum 

number of calls in the gossip problem for n persons, which is known to be 2n - 4 for n z 4. A 

polynomial characterization of label-connected graphs with n vertices and 2n - 4 edges is 

obtained. For a graph G, let 4(G) denote the minimum number of edges that have to be added 

to E(G) in order to create a graph with two edge-disjoint spanning trees. It is shown that for a 

graph G to be label-connected, $(G) c 2 is necessary and @(G) & 1 is sufficient. For i = 1, 2, 

the condition #(G) c i can be checked in polynomial time. Yet recognizing label-connected 

graphs is an NP-complete problem. This is established by first showing that the following 

problem is NP-complete: Given a graph G and two vertices u and v of G, does there exist a 

(u, v)-path P in G such that G - E(P) is connected? 

1. Introduction 

All graphs considered are finite and undirected. They may have multiple edges, 

but no loops. We use [l] for basic graph theoretic terminology and notation. In 

describing problems and their complexity the terminology of [4] is applied. 

By a labeling of a graph G we will mean a function f : E(G)-, IR. A trail 

bOeiu1e2v2’ . . ekvk in a graph G with a given labeling f is ascending if 

f(ej+i) > f (eJ for i = 1, . . . , k - 1. A labeling of G is admissible if, for every pair 

(u, v) of vertices of G, there exists an ascending (u, v)-path. The graph G is 

label-connected if there exists an admissible labeling of G. Note that if there exists 

* On leave from Instituto Superior de Agronomia, Tapada da Ajuda, 1399 Lisboa Codex, Portugal. 

0012-365X/91/$03.50 0 1991- Elsevier Science Publishers B.V. (North-Holland) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiteit Twente Repository

https://core.ac.uk/display/11476452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


30 F. Giibel et al. 

an admissible labeling of G, then there also exists an admissible labeling which is 
injective. 

Clearly, if a spanning subgraph of G is label-connected, then so is G. The 
minimal label-connected graphs on at most three vertices are Kr, KS, K3 and the 
graph obtained from P3 by duplicating one edge. 

In Section 2 the problem of determining the minimum number of edges of a 
label-connected graph with a given number of vertices is solved by translating it 
into the so-called gossip problem. For later use, some known results around the 
gossip problem are also stated. In Section 3 a sufficient condition and a necessary 
condition for a graph to be label-connected are obtained in terms of the minimum 
number of edges that have to be added in order to create a graph with two 
edge-disjoint spanning trees. Although the two conditions are quite close and can 
be checked in polynomial time, recognizing label-connected graphs is an 
NP-complete problem, as proved in Section 7. In Section 4 the problem is shown 
to be well-solvable for a graph G if IE(G)( equals the minimum number of edges 
of a label-connected graph with IV(G)] vertices. In Section 5 label-connected 
graphs are characterized in terms of properties of their blocks. In Section 6 two 
ways of constructing new label-connected graphs out of known ones are 
exhibited. 

2. The gossip problem 

Let G be a label-connected graph with an admissible labeling. Interpret the 
vertices of G as persons each having a piece of information, and the edges of G as 
telephone calls, ordered in time according to the labeling of G. In each call, two 
persons exchange all the information they have. After all calls have been made, 
everybody knows all the information of everybody else, since there is an 
ascending path in G from each person to each other person. If follows that asking 
for the minimum number of edges of a label-connected graph on n vertices is 
equivalent to asking for the minimum number of calls that allows n persons to 
obtain each other’s information. The latter problem is known as the gossip 

problem and has been solved by several people. See, for example, [2] and its 
references. We state its solution, as well as the solution (in the affirmative) of the 
so-called 4-cycle conjecture [6], in the terminology of label-connected graphs. 

Theorem 1 ([2,7]). Let G be a label-connected graph on n vertices. Then 

jE(G)j 3 2n - 4. Furthermore, jE(G)( = 2n - 4 only if G contains a 4-cycle. 

Let T be a labeled tree and let u E V(T). Then T is called an ascending 

(descending) u-tree if, for each v E V(T) - {u}, the unique (u, v)-path ((v, u)- 
path) in T is ascending. It is easily seen that a label-connected graph G contains a 
spanning ascending u-tree and a spanning descending u-tree for each vertex u of 
G. A tree-pair is a forest with two components. 
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Suppose a graph G contains two edge-disjoint spanning trees 7i and & We 
show that G is label-connected. Choose an arbitrary vertex u of G and assign 
labels 1, . . . , n - 1 to the edges of T, in such a way that Tl becomes a descending 
u-tree. Assign labels n, . . . , 2n - 2 to the edges of & in such a way that T2 
becomes an ascending u-tree. Then in Tl U & there is an ascending (ui, v,)-trail 
containing 24 for all ui, u2 E V(G). Hence G is label-connected. A slight 
refinement of this argument yields the following results, stated in [5] within the 
context of the gossip problem. 

Theorem 2 ([5]). If a graph G contains a spanning tree T and a spanning tree-pair 
S with E(T) n E(S) = 0, then G is label-connected. 

Theorem 3 ([5]). Zf a graph G contains two edge-disjoint spanning tree-pairs S, 
and S2 such that there exists a 4-cycle uvwxu with uv, wx in distinct components of 
S, and VW, xu in distinct components of &, then G is label-connected. 

Note that if a graph G with n vertices satisfies the hypothesis of Theorem 2, 
then (E(G)1 a 2n - 3, whereas [E(G)1 may equal 2n - 4 if G satisfies the 
hypothesis of Theorem 3. If G satisfies the hypothesis of Theorem 3 and 
G = Si U S,, then G is called a Cd-graph. In particular, C4 is a Cd-graph. Theorem 
9 below states that the label-connected graphs with n vertices and 2n - 4 edges 
are exactly the Cd-graphs, thus improving the second part of Theorem 1. 

3. A sufficient condition and a necessary condition 

By #(G) we denote the minimum number of edges that have to be added to 
E(G) in order to create a graph with two edge-disjoint spanning trees. In 
particular, $(G) = 0 if and only if G has two edge-disjoint spanning trees. An 
immediate consequence of Theorem 2 is the following. 

Corollary 4. Zf G is a graph with #(G) c 1, then G is label-connected. 

On the other hand the following is true. 

Theorem 5. Zf G is a label-connected graph, then G(G) c 2. 

For our proof of Theorem 5 we need some preliminary definitions and results. 
Following [l], we say that an edge of a graph is contracted if it is deleted and its 

ends are identified. When an edge is contracted, multiple edges may arise; such 
edges are not identified. On the other hand, loops are deleted whenever they 
arise. If a graph H can be obtained from a graph G by a (possibly empty) 
sequence of edge-contractions, then we call H a contraction of G and write 
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H S G. We define 

Equivalently we have 

@‘(G) = F~;g, Mm(G - F) - 1) - IFI}, 

where o(H) denotes the number of components of a graph H. Taking F = 0 
shows that e’(G) 3 0 for every graph G. 

It is easily seen that if a graph G has two edge-disjoint spanning trees, then so 
has every contraction of G, implying that IE(H)( 2 2(lV(H)( - 1) for all H c G. 
Hence, if 4(G) = 0, then $‘(G) = 0. The converse was proved independently by 
Tutte [lo] and Nash-Williams [9]. More generally, the following holds. 

Theorem 6. @(G) = #‘(G) for every graph G. 

The nontrivial part of the proof of Theorem 6 follows immediately from a 
result of Catlin. 

Lemma 7 ([3]). Zf G . IS a connected graph, then G has edge-disjoint spanning 
forests T and U such that o(T) = 1 and w(U) = G’(G) + 1. 

Proof of Theorem 6. We only prove the theorem for connected graphs. The 
result is then easily extended to disconnected graphs. Let G be a connected graph 
and Ho a contraction of G such that @‘(G) = 2((V(H,)I - 1) - IE(H,& Then 
#(G) a @(Ho) 3 2(lV(H,,)I - 1) - IE(H,)I = e’(G). On the other hand Lemma 7 
immediately gives 4(G) c G’(G). Cl 

Lemma 8. Every contraction of a label-connected graph is label-connected. 

Proof. Let G be a label-connected graph, H a contraction of G and f an 
admissible labeling of G. Then the restriction of f to the edges of H is an 
admissible labeling of H. q 

Proof of Theorem 5. Let G be a label-connected graph. Combination of Lemma 
8 and Theorem 1 yields IE(H)( 32(V(H)I - 4 for all H c G, or equivalently, 
2((V(H)I - 1) - JE(H)I s 2. H ence +‘(G) < 2. Application of Theorem 6 com- 

pletes the proof. 0 

The maximum number of edge-disjoint spanning trees of a graph G can be 
computed in polynomial time by matroid partitioning algorithms [8]. Hence, in 
particular, it can be checked in polynomial time whether $(G) = 0. Since 
G(G) < i if and only if there is an edge set F with IFI = i such that F f~ E(G) = 0 
and $(G + F) = 0, the sufficient condition of Corollary 4 and the necessary 
condition of Theorem 5 can also be checked in polynomial time. Although the 
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two conditions are quite close, we prove in Section 7 that recognizing label- 
connected graphs is an NP-complete problem. Note that by Corollary 4 and 
Theorem 5 the problem is hard only for graphs G with 4(G) = 2. 

4. A well-solvable case 

A special case in which it can be decided in polynomial time whether a graph G 
on n vertices with G(G) = 2 is label-connected, occurs when (E(G)1 = 2n - 4. The 
proof of the following result uses Lemma 8 and relies heavily on assertions in the 
proof of [7, Theorem 21 and on [2, Theorem 31. 

Theorem 9. Let G be a graph with n vertices and 2n - 4 edges. Then G is 
label-connected if and only if G is a Cd-graph. 

Proof. Cd-graphs are label-connected by Theorem 3. 
Conversely, assume G is a label-connected graph with n vertices and 2n - 4 

edges. Then n Z= 4. For a partition {E,, I!&} of E(G) with ]Erl = I&) = n - 2, let 
G, = G[E,] and G2 = G[E,]. At least two components of Gi are trees (i = 1, 2). 
Let S1, S, be two tree components of Gr and T,, q two tree components of G2. 
By arguments in the proof of [7, Theorem 21, {E,, E2} can be chosen to have the 
following two properties: 

(1) G,= q U 7& 
(2) There exists a 4-cycle x1 y, y2x2x1 with x1x2 E E(S,), y, y2 E E(S2), x1 y1 E 

E(q) and ~2~2 E JWJ. 
By [2, Theorem 31, among the partitions {E,, E2} of E(G) satisfying (1) and (2) 
there is one that also has one of the following properties: 

(3) Gr = S, U S,. 
(3’) Apart from S, and S2 the graph G, contains exactly one component U, 

which is unicyclic. 
G is a Cd-graph if (and only if) there is a partition of E(G) satisfying (l), (2) and 
(3). Assume no partition of E(G) satisfies (l), (2) and (3) and {El, E2} is a 
partition satisfying (l), (2) and (3’) for which IV( U)l is minimum. 

Suppose G2W(u)I is connected. Then (E(G[V(U)])I = 2)V(U)I - 1. Obtain G’ 
from G by contracting G[V(U)] to a single vertex (i.e., by contracting all edges of 
a spanning tree of G[V(U)]). Then IV(G')l = JV(G)( - jV(U)l + 1 and IE(G’)I = 
(E(G)1 - IE(G[V(U)])I = IE(G)( - 2)V(U)( + 1. Since IE(G)( = 2(V(G)I - 4, it 
follows that JE(G’)( = 2lV(G’)( - 5. By Lemma 8, G’ is label-connected. This 
contradiction with Theorem 1 shows that, in fact, G,[V(U)] is disconnected. 

Let u1u2 be an edge of U such that u1 and u2 are in different components of 
G,[V(U)] and let F be the set of all edges of G with exactly one end in V(U). 
Note that F c E(G,). The proof is now completed by deriving contradictions in 
two cases. 
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Case 1: G2 + u,uZ is connected. 
Then G2 + ulu2 is a spanning tree of G. Let P be the unique (x1, x&path in 

G2 + uIu2, where x1, x2 are the vertices referred to in (2). Since x1 and x2 are in 
different components of G2, P contains uIu2 and hence at least two edges of F. 
The edge u1u2 does not belong to the unique cycle of U, otherwise the partition 
{(E, U {e}) - {uIu2}, (E2U {u1u2}) - {e}}, where e is an arbitrary edge in 
F fl E(P), satisfies (l), (2) and (3), contradicting our assumptions. Hence u1u2 is 
a cut edge of U. Let U, be the component of U - ulu2 containing the unique 
cycle of U, and U2 the other component (which is a tree). The set F rl E(P) 
contains an edge e, incident with a vertex of U,. Since IV(U,)l< IV(U)j, the 
partition {E;, E;} of E(G) with E; = (E, U {er}) - {uluZ} now contradicts the 
minimality of jV( U)l in the choice of {E,, E2}. 

Case 2: G2 + u1u2 is disconnected. 
Then G2+ u1u2 contains a unique cycle C. By the way ulu2 was chosen, C 

contains at least one vertex not in U and hence at least two edges of F. With P 
replaced by C, the rest of the argument can be copied from Case 1. q 

5. Characterization by properties of blocks 

The following result implies a characterization of label-connected graphs in 
terms of properties of their blocks. 

Theorem 10. Let Cl and G2 be connected graphs with I V(G,) n V(G2)) = 1 and 
E(G,) rl E(G,) = 8. Then Cl U G2 is label-connected if and only if there exists an 
integer i E (1, 2) such that Gi is label-connected and #(G3_J = 0. 

Proof. Let Gr and G2 be edge-disjoint connected graphs with V(G,) n V(G2) = 

{u>- 
To establish sufficiency, assume without loss of generality that G, is label- 

connected and +(Gz) ~0. Set nj = IV(Gi)l and mi = (E(Gi)I (i = 1, 2). Let Tr and 
G be two edge-disjoint spanning trees of G2. Choose an admissible labeling of G1 
with labels n2, . . . , n2 + ml - 1. Assign labels 1, . . . , n2 - 1 to E(T,) and labels 
n2+m,, . . . , 2n2 + ml - 1 to E(T2) in such a way that Tr becomes a descending 
u-tree and T2 an ascending u-tree. Having thus obtained an admissible labeling of 
a spanning subgraph of G, U G2, we conclude that G, U G2 is label-connected. 

Conversely, assume G1 U G2 is label-connected. Since Gr and G2 are contrac- 
tions of Gr U G2, Gr and G2 are label-connected by Lemma 8. If @(G,) = 
@(G2) = 0, then we are done. Hence assume, without loss of generality, that 
#(G2) > 0. Let f be an admissible labeling of Gr U G2. Since there exists an 
ascending (v, u)-path for all v E V(G,), Cl contains a spanning descending u-tree. 
Defining p(H) = max{ f (e) ( e E E(H)} for a subgraph H of Gr U G2, let Sr be a 
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spanning descending u-tree of Gr such that p(S,) is as small as possible. The 
choice of Sr implies that S, contains a vertex u1 such that every ascending 
(ur, u)-path contains an edge with label p(&). Since there is an ascending 
(u,, v)-path for all v E V(G,), G2 must contain a spanning ascending u-tree T2 
such that f(e) > ,Q(&) for all e E E(T,). Analogously, G2 contains a spanning 
descending u-tree S, and G1 a spanning ascending u-tree TI such that f(e) > p(SJ 
for all e E E(T,). Now since #(G2) > 0, S, and T2 have a common edge ea. Hence, 
whenever e, E I!?(&) and e2 E E(T,), we have f(eJ <f(eo) s u(sZ) <f(e2). It 
follows that S, and TI are edge-disjoint, so $(G,) = 0. Cl 

Corollary 11. For a connected graph G the following two statements are equivalent. 
(i) G ti label-connected. 

(ii) At most one block of G does not have two edge-disjoint spanning trees. Zf 
such a block exists, it is label-connected. 

Corollary 11 generalizes a result of Harary and Schwenk [6]. We call the graph 
obtained from a graph G by replacing all multiple edges by single edges the 
underlying simple graph of G. 

Corollary 12 ([6]). Let T be a nontrivial tree with n vertices. Zf a label-connected 
graph G has T as its underlying simple graph, then IE(G)( 3 2n - 3. There exist 
label-connected graphs with exactly 2n - 3 edges that have T as their underlying 
simple graph. 

6. Constructions 

The following results yield two ways of constructing new label-connected 
graphs out of known ones. 

Theorem W. Let vl and v2 be vertices of a label-connected graph G. Obtain the 
graph G’ from G by adding a new vertex u and the edges uv, and uv2. Then G’ is 
label-connected. 

Proof. Let f be an admissible labeling of G using the labels 1, . . . , m, where 
m = JE(G)I. Extend f to a labeling f’ of G’ by assigning label 0 to uvr and label 
m + 1 to uv2. Then f’ is an admissible labeling of G’. 0 

Theorem 14. Zf G and H are label-connected graphs, then the graph G x H is 
label-connected. 

Proof. Set m = IE(G)I and k = JE(H)I. Assign identical admissible labelings to 
all copies of G in G x H, using labels 1, . . . , m. Also assign identical admissible 
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labelings to all copies of H in G x H, now using labels m + 1, . . . , m + k. The 
resulting labeling of G x H is admissible. Cl 

7. NP-completeness 

In our proof that recognizing label-connected graphs is an NP-complete 
problem we use the NP-completeness of the Satisfiability problem (SAT). We 
start with a description of this problem. 

Let X = {x,, . . . , x,} be a set of boolean variables. Following [4], we call a 
function t :X+ {T, F} a truth assignment for X. If t(x) = T, we say that x is true 
under t; if t(x) = F, we say that x is false. If x is a variable in X, then x and 2 are 
liter& over X. The literal x is true under t if and only if the variable x is true 
under t; the literal f is true if and only if the variable x is false. A clause over X is 
a set of literals over X. It represents the disjunction of those literals and is 
satisfied by a truth assignment if and only if at least one of its members is true 
under that assignment. If A is a collection of clauses over X, then a truth 
assignment for X that simultaneously satisfies all clauses in A is called a satisfying 
truth ussignment for A. Hence a satisfying truth assignment can be viewed as a 
solution of a set of simultaneous boolean equations. 

We are now ready to state SAT. 

SAT 
Instance. Set X of variables, collection A of clauses over X. 
Question. Is there a satisfying truth assignment for A? 

We state three more problems. 

Instance. Graph G, vertices u and v of G. 
Question. Does G contain a (u, v)-path P such that G - E(P) is connected? 

Equivalent to PT is the question whether G contains a (u, v)-path P and a 
spanning tree T such that E(P) rl E(T) = 0. 

PIT 
Instance. Graph G, vertices u and v of G. 
Question. Does G contain a (u, v)-path P and two spanning trees T,, T2 such that 
P, TI and T2 are pairwise edge-disjoint? 

LC 
Instance. Graph G. 
Question. Is G label-connected? 
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Clearly, all three problems are in NP. We now show that they are NP-complete 
by transforming SAT to PT, PT to PTT, and PTT to LC. 

Theorem 15. PT is NP-complete. 

Proof. We transform SAT to PT. Let X = {x1, . . . , x,} be a set of boolean 
variables and A = {aI, . . . , a,} a collection of clauses over X. The NP- 
completeness of PT will be established by exhibiting a graph G with two vertices 
u and u such that G contains a (u, v)-path P for which G - E(P) is connected if 
and only if there is a satisfying truth assignment for A. The structure of G should 
be clear from the example in Fig. 1 and the partial description below. 

For each clause ui (i = 1, . . . , n) there is a subset Ai of V(G) (nonsolid 
vertices on the left in Fig. 1); there is a vertex aij in Ai when the variable xj occurs 
in ui. On the other hand, for each variable Xi (i = 1, . . . , m) there is a subset Xi 
of V(G) (nonsolid vertices in the middle of Fig. 1); the vertices of Xi occur in 

pairs (xiji, xijz)t one pair for each clause Uj containing the variable Xi. The vertices 
xii1 and xij2 of Xi are both adjacent to the vertex Uji of Aj; they are called 
T-vertices if Aj contains the literal fi, and F-vertices if Aj contains the literal xi. 
(In Fig. 1 T-vertices appear on the left side of u, F-vertices on the right.) 

Now there is a bijection between truth assignments for X and (u, v)-paths 
consisting of nonsolid vertices only; if t :X-+ {T, F} is a truth assignment, then 
the corresponding (u, v)-path contains the @,)-vertices of Xi (i = 1, . . . , m). 

Let t be a truth assignment for X and P the corresponding (u, v)-path. Due to 
the presence of the solid vertices, G - E(P) is disconnected if and only if there 
exists an integer i E (1, . . . , n} such that P contains all vertices of Ai. Now P 
contains all vertices of Ai if and only if every literal in ai is false under t. It follows 
that G - E(P) is disconnected if and only if t is not a satisfying truth assignment 
for A. 

Noting that G - E(Q) is disconnected for every (u, v)-path Q that contains a 
solid vertex, we conclude that there exists a satisfying truth assignment for A if 
and only if there exists a (u, v)-path P in G such that G - E(P) is connected. 
Given that the construction of the graph G can be carried out in polynomial time, 
the result follows. 0 

Theorem 16. PTI is NP-complete. 

Proof. We transform PT to PIT. Let G be a graph and u and u two vertices of 
G. Obtain the graph G’ from G by first subdividing each edge of G and then 
duplicating each edge of the resulting graph. See Fig. 2(a). (If one wishes to 
establish the NP-completeness of PIT within the class of simple graphs, then the 
transformation of Fig. 2(b) will do.) 

There is a natural correspondence between (u, u)-paths in G and (u, v)-paths 
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Fig. 1. The graph G in case X = {I,, x2, .x3}, A = (a,, a2, ad, a, = {x1, 22, -%I, a2= {XI, -% 
a3 = {a,, &}. 
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L---A* 

(a) 

Fig. 2. 

in G’ in the sense that every (u, v)-path in G’ is a subdivision of a (u, v)-path in 
G. Let P and P’ be corresponding (u, v)-paths in G and G’, respectively. Noting 
that G’ can be constructed from G in polynomial time we establish the 
NP-completeness of PIT by showing that G - E(P) is connected if and only if 
G’ - E(P’) has two edge-disjoint spanning trees. 

If G -E(P) is connected, then clearly G’ - E(P’) has two edge-disjoint 
spanning trees. 

Conversely, assume G - E(P) is disconnected. Let S be the set of vertices in 
G’ that subdivide the edges of P. Every vertex of S has degree 2 in G’ - E(P’). If 
F is any subset of E(G’) obtained by selecting, for each vertex of S, exactly one 
incident edge, then G’ - (E(P’) U F) is disconnected as G -E(P) is. An 
arbitrary spanning tree T of G’ - E(P’) contains such an edge set F, implying 
that G’ - (E(P’) U E(T)) is disconnected. It follows that G’ - E(P’) does not 
contain two edge-disjoint spanning trees. 0 

Theorem 17. LC is NP-complete. 

Proof. We transform PIT to LC. Let G be a graph and u and v two vertices of 
G. Obtain the graph G’ from G by adding three new vertices x1, x2, x3 and the 
edges uxr, x1x2, ~2x3, x3v. We establish the NP-completeness of LC by showing 
that G contains a (u, v)-path P with #(G-E(P)) =0 if and only if G’ is 
label-connected. 

Assume first that G contains a (u, v)-path P with @(G - E(P)) = 0. Let T and 
T2 be two edge-disjoint spanning trees of G - E(P). We describe an admissible 
labeling of a spanning subgraph of G’. Assign label 1 to uxr and ~2x3, label 2 to 
x,x2 and x3v. Label Tl as a descending u-tree using labels smaller than 1. Label T2 
as an ascending v-tree using labels greater than 2. Label P as an ascending path 
using labels greater than 1 and smaller than 2. It follows that G’ is label- 
connected. 

Conversely, assume G’ is label-connected and let f be an admissible labeling of 
G’. Set rl =f(ux,), r2 =f(x1x2), r3 =f(~2~3) and r4 =~(x~v). From the existence 
of an ascending (x, y)-path for all X, y E {u, x,, x2, x3, V} one easily deduces that 
either max{r,, r3} < min{r,, r4} or max{r,, r4} < min{r,, r3}. Assume without loss 
of generality that max{r,, r3} < min{r,, r4}. Then for all w E V(G) an ascending 
(w, x,)-path has w1 as its last edge. Hence G contains a descending u-tree T, with 
f(e) < r, for all e E E( Tl). Similarly, the existence of an ascending (x3, w)-path for 
all w E V(G) implies that G contains an ascending v-tree T2 with f(e) > r, for all 
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e E E(T,). An ascending (x1, x,)-path necessarily contains n,u and m3. Hence G 
contains an ascending (u, v)-path P with rl <f(e) < r, for all e E E(P). Since the 
sets of labels used for T,, T2 and P are pairwise disjoint, T,, T, and P are pairwise 
edge-disjoint. 0 
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