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Abstract. Many real world machine learning tasks suffer from the prob-
lem of scarce labeled data. In multi-label learning, each instance is asso-
ciated with more than one label as in semantic scene understanding, text
categorization and bio-informatics. Semi-supervised multi-label learning
has attracted recent interest as gathering labeled data is both expensive
and requires manual effort. Further, many of the labels have seman-
tic correlation which manifests as co-occurrence and this information
can be used to build effective classifiers in the multi-label scenario. In
this paper, we propose two different graph based transductive meth-
ods, namely, the label correlation propagation and the k -nearest neigh-
bors based label correlation propagation. Extensive experimentation on
real-world datasets demonstrates the efficacy of the proposed methods
and the importance of using the label correlation information in semi-
supervised multi-label learning.

Keywords: Semi-supervised learning · Multi-label learning · Graph
based learning

1 Introduction

In supervised learning based approaches to multi-class pattern classification, a
training example represented by a corresponding feature vector is related to
a distinct class (label) describing its semantics. However, for many real-world
objects, the single label assumption may not be appropriate. In the task of
image annotation, an image can have multiple labels, referred to as a relevant
label set. Likewise, in the text categorization task, a news article can be asso-
ciated with a number of topics like “military”, “business” and “international”.
Multi-label learning has been used for a number of applications like automatic
multimedia content annotation [1,2] and bioinformatics [3,4]. The multi-label
learning task involves building models which can predict the relevant label set
for a test example.

The existing techniques for multi-label learning are predominantly supervised
learning based approaches. These techniques require huge amount of labeled data
for building a classifier. As labeling the data is both time-consuming and costly,
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it is undesirable to use only labeled data. However, unlabeled data is easily
available and cheap, and the information from it can be used to build better
classifiers. In the recent times, semi-supervised learning techniques have been
found to be effective in building classifiers.

There have been a number of techniques for semi-supervised multi-label
learning (SSMLL) [5–7]. Most of these methods are transductive in nature and
they aim at predicting the label set for the existing unlabeled data. It is impor-
tant to exploit the inherent label correlation present among the labels to boost
the performance of the multi-label classifier. For example, it is common to have
the natural scene images that contain both “hill” and “tree”.

In [5], a graph-based learning framework that accounts for label consistency
in the graph and the correlation among labels is presented. After optimising an
objective function, a closed form solution for prediction of labels for the unlabeled
data is obtained. In [6], the TRAnsductive Multi-label classification (TRAM) is
formulated as an optimization problem of estimating label compositions and
a closed-form solution is obtained. This method is extended for estimation of
the cardinality of the predicted label set for the unlabeled examples based on
the estimated label compositions. In [8], the non-negative matrix factorization
algorithm is used to solve the problem where the basic hypothesis is that “two
examples which have high similarity in the input space should have similar label
memberships”. All the above methods build a graph with nodes representing
the labeled and unlabeled examples, and a similarity measure used as weight of
an edge between two nodes. Graph based methods form the majority of semi-
supervised learning [9] because of their effectiveness and efficacy.

The rest of the paper is organized as follows. We present the graph based
methods for semi-supervised learning from multi-label data in Sect. 2. In Sect. 3,
we propose two methods to propagate the label correlation in multi-label learn-
ing. Studies on benchmark datasets that demonstrate the effectiveness of the
proposed methods are presented in Sect. 4.

2 Graph Based Methods for Semi-supervised Learning
with Multi-label Data

In semi-supervised multi-label learning, the training set D = {(x1, Y1), . . . ,
(xi, Yi), . . . , (xL, YL),xL+1, . . . ,xL+j . . . ,xL+U} consists of L labeled examples
Dl = {(x1, Y1), . . . , (xi, Yi) . . . , (xL, YL)}, and U unlabeled examples Du =
{xL+1, . . . ,xL+j . . . ,xL+U}. The total number of examples is N = L + U . The
task involves learning a family of K functions, fk : X ×Y −→ R. Here, fk(xi, yk)
is measure of the confidence of the kth label yk ∈ Y being a label of xi. The
label vector yi = (yi1, . . . , yiK)T is represented as a K-dimensional vector with
yij ∈ {0, 1}, 0 indicating that the jth label is not associated with the example
xi and 1 indicating that the label yj belongs to the label set of the example xi.
Let W denote the N ×N weight matrix where wij represents similarity between
xi and xj . The matrix Δ = D − W is called the combinatorial graph Lapla-
cian matrix where D is a N × N diagonal matrix with entries dii =

∑N
j=1 wij .
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The normalized combinatorial Laplacian is L = D−1/2ΔD−1/2. We define Λ,
a N × N diagonal matrix with λii = ∞ for i ≤ L, and λii = 0 otherwise. The
vector f = [f1 f2 · · · fN ]T has the confidence scores for each of the N examples.
This setting is for a binary setting that can be extended to multi-label setting.

In [9], the objective function in the Gaussian Random Field (GRF) method
for graph based semi-supervised learning in the single label setting is formulated
as follows:

E(f) = El(f) + αEs(f) where (1)

El(f) = ∞
∑

i∈L
(fi − yi)2 = (f − y)TΛ(f − y) (2)

Es(f) =
1
2

∑

i,j∈L∪U
wij(fi − fj)2 = fTΔf (3)

Here, El(f) is the term that corresponds to deviation from the already assigned
labels (labeled data) and Es(f) is the penalty term that corresponds to smooth-
ness of labels over the graph. In the second term, if the two examples xi and xj

are similar, the predictions fi and fj should be close as well.
In [10], the authors propose the Local and Global Consistency (LGC) method

where the two terms are modified given below.

El(f) =
∑

i∈L∪U
(fi − yi)2 = (f − y)T (f − y) (4)

Es(f) =
1
2

∑

i,j∈L∪U
wij(

fi√
dii

− fj√
djj

)2 = fTLf (5)

In the multi-label setting, the matrix Y is an N × K matrix such that yik is
equal to 1 if a labeled example xi has label k associated with it, and 0 otherwise.
This corresponds to the given ground truth. Similarly, the predicted matrix F
is an N × K matrix where fik indicates the confidence of the example xi in the
label yk.

The approach in [5] introduces a term Ec(F) corresponding to regularizer
for the label correlation. In the K × K label correlation matrix C, the entry ckl
represents the correlation between label yk and label yl that can be estimated
using the label based co-occurrence. The term Ec(F) is defined as follows:

Ec(F) =
N∑

i=1

K∑

k,l=1

ckl(fik − fil)2 = −tr(FC
′
FT) (6)

where C
′

= C − Dc and Dc is a diagonal matrix with diagonal entries dc′
ii

=
∑K

j=1 cij . Here, tr(M) is the trace of the matrix M. The term Ec(F) quantifies
the smoothness in the label space rather than in the input space. If the correlation
between two labels yk and yl is high, the predictions fik and fil should be similar.
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In the multi-label case, the terms El(F), Es(F), and Ec(F) are computed as
follows:

El(F) = tr((F − Y)TΛ(F − Y)) (7)
Es(F) = tr(FTΔF) (8)

Ec(F) = −tr(FC
′
FT) (9)

E(F) = tr((F − Y)TΛ(F − Y)) + α.tr(FTΔF) − β.tr(FC
′
FT) (10)

where α and β are the trade-off parameters. The formulation in (10) is referred
to as Multi-Label Correlation Gaussian Random Field (MLC-GRF) and the
solution turns out to be the Sylvester Equation [11].

Similarly, the objective function in the Multi-Label Correlation Local and
Global Consistency (MLC-LGC) method is formulated in Eq. (11) where μ, ν
are hyper-parameters. The solution to the optimization problem in (11) is given
by Eq. (12)

E(F) = tr((F − Y)T(F − Y)) + μ.tr(FTLF) − ν.tr(FC
′
FT) (11)

(μL + I)F − νFC
′
= Y (12)

This equation also turns out to be a Sylvester equation similar to the solution
of the MLC-GRF method.

3 Proposed Methods for Semi-supervised Multi-label
Learning

3.1 Label Correlation Propagation-GRF (CP-GRF)

As discussed in previous sections, incorporating label correlation information can
help improve the performance of the classifier. Our fundamental hypothesis here
is that the predictions for a given example should be label correlation consistent
i.e., if two labels are correlated and the prediction score for one of the labels is
high, the score for the other label should also be high. Thus, the labels of one
example are propagated to the correlated labels of that example as follows:

f
(t+1)
ik = f initial

ik + α
K∑

l=1

f t
ilclk i = 1, 2...N k = 1, 2...K (13)

Here, f t represents the prediction for a given example at iteration t. The
prediction score of a label for a given example is obtained both from the initial
prediction (f initial) and the other labels based on the correlation between the
labels. The parameter α balances the two terms and is chosen by cross-validation.
This iterative update is repeated till convergence. The Eq. (13) in the matrix
form is given below.

F(t+1) = Finital + αFtC (14)
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The CP-GRF method is similar to the page rank approach [12] where the page
rank of a webpage is proportional to the page rank of its incoming neighbours.
The CP-GRF method takes the higher order label correlations into consider-
ation by iteratively propagating the second order correlations. This method
involves the propagation on label correlation graph for each example. The CP-
GRF method is expected to perform well when the number of labels is large and
the labels have significant correlations. The initial predictions can in principle be
obtained from any typical multi-label classifier. In order to validate our method,
Finitial is obtained from the GRF method.

3.2 Weighted Label Correlation Propagation-GRF (WCP-GRF)

The WCP-GRF method is an extension of the CP-GRF method. In this method,
the correlation is propagated not only from the other correlated labels but also
based on the examples close to the particular example. The hypothesis here is
that the label correlation is a local effect i.e., the predictions for a given label will
be influenced by the predictions for correlated labels of neighbors. Let kNN(xi)
represent the k -nearest neighbours of xi. The update equations in the proposed
WCP-GRF method are given by:

f t+1
ik = f initial

ik + α
∑

xj∈kNN(xi)

wijf
t
jlclk (15)

F(t+1) = Finital + αWFtC (16)

As seen in (15), in each iteration there is a contribution from the initial
prediction (any multi-label classifier) as well as from the correlated labels of the
k nearest neighbors in the feature space. Since the contribution is only from the
nearest neighbors, the WCP-GRF method uses the k -NN based weight matrix
W i.e., the weight entries are 0 if the two nodes are not in the k -nearest neighbors
of each other. The matrix update in WCP-GRF method is given by Eq. (16).
Here, the initial predictions Finitial are obtained from the GRF method and
therefore this is called WCP-GRF method. We use the iterative method and
terminate at convergence or after a sufficient number of iterations.

The rest of the proposed methods are the same as the previously discussed
methods but use the normalized graph Laplacian instead of the usual graph
Laplacian. The other two proposed methods use the LGC method for the initial
predictions. The Label Correlation Propagation-LGC (CP-LGC) is the same as
Section in 3.1 except for the fact the initial predictions come from the LGC
method. Similarly, the Weighted Label Correlation Propagation (WCP-LGC) is
the same as in Sect. 3.2 except for the fact that the initial predictions are taken
from the LGC method.

4 Experiments and Results

Details of benchmark datasets used for comparison of the various methods are
given in Table 1. The evaluation metrics used to compare the various methods
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are: One error, Coverage, Average precision, Hamming loss and Ranking loss [13].
The label correlation matrix C is calculated using the cosine similarity on the
labeled data. For most of the datasets, the label correlation for several pairs of
labels is low. However, there are a few pairs of labels with high correlation.

Table 1. Details of the datasets used for experimentation

Dataset Domain Examples Attributes Labels Cardinality

Yeast Biology 2417 103 14 4.237

Image Image 2000 135 5 1.24

Scene Image 2407 294 6 1.074

MSRC-v2 Image 591 630 21 2.394

Corel-5k Image 5000 499 374 3.522

The dataset has been divided into 10% labeled data, 70% unlabeled data
and the rest as test data. All hyper-parameters were selected by choosing the
maximum average-precision on the validation data over 5 runs. All the results
correspond to average of 5 runs and the standard deviation of each metric has also
been recorded. The weight matrix used is k -nearest neighbours with a Gaussian
function where the width parameter is chosen based on performance on the val-
idation data. The number of nearest neighbours (k) is fixed to 15 as it does not
affect the results much. For Hamming loss, the number of labels for a given exam-
ple is chosen based on the average cardinality of the dataset. All the techniques
have been implemented in MATLAB and run on 32 GB RAM 8-core machine.
The parameters β, μ and ν were chosen based on cross-validation. The perfor-
mance of different methods for multi-label classification on different datasets is
presented in Table 2. In Fig. 1, the average precision for different sizes of the
labeled dataset and for various datasets is plotted. The test ratio is fixed at 20%
and the labeled data size is varied. In all the datasets, it is seen that the average
precision increases with increase in size of labeled dataset.

(a) Corel5K Dataset (b) Scene Dataset (c) MSRCV-2 Dataset

Fig. 1. Variation of average precision with size of the labeled data for different datasets
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Table 2. Performance of the transductive methods for multi-label classification on
different datasets

Dataset Method HLoss ↓ RLoss ↓ OneEr ↓ Cover ↓ AvePrec ↑
Corel-5k GRF 0.0182 0.1705 0.8760 0.3571 0.1431

MLC-GRF 0.0175 0.1699 0.8534 0.3592 0.1675

CP-GRF 0.0179 0.1695 0.8423 0.3609 0.1715

WCP-GRF 0.0162 0.1782 0.7762 0.3606 0.2077

LGC 0.0161 0.1599 0.765 0.3498 0.2187

MLC-LGC 0.0165 0.1594 0.7687 0.3521 0.2147

CP-LGC 0.0162 0.1592 0.7697 0.3430 0.2168

WCP-LGC 0.0163 0.1554 0.7593 0.3455 0.2193

Yeast GRF 0.2217 0.1910 0.2526 0.4633 0.7304

MLC-GRF 0.2148 0.1842 0.2601 0.4571 0.7389

CP-GRF 0.2149 0.1819 0.2410 0.4605 0.7426

WCP-GRF 0.2082 0.1792 0.2373 0.4547 0.7467

LGC 0.2208 0.1933 0.2588 0.4639 0.7262

MLC-LGC 0.2247 0.1949 0.3052 0.4662 0.7290

CP-LGC 0.2096 0.1804 0.2422 0.4590 0.7421

WCP-LGC 0.2133 0.1846 0.2398 0.4615 0.7431

Scene GRF 0.1173 0.1066 0.3168 0.1017 0.8132

MLC-GRF 0.1104 0.1002 0.2906 0.0988 0.8267

CP-GRF 0.1078 0.0974 0.2865 0.0952 0.8310

WCP-GRF 0.1038 0.0958 0.2761 0.0932 0.8351

LGC 0.1107 0.1004 0.2919 0.0985 0.8274

MLC-LGC 0.1066 0.0952 0.2869 0.092 0.8306

CP-LGC 0.1058 0.0964 0.2798 0.0945 0.8326

WCP-LGC 0.1040 0.0916 0.2728 0.0910 0.8378

Image GRF 0.3336 0.2937 0.5275 0.2854 0.6628

MLC-GRF 0.3355 0.2836 0.4920 0.2795 0.6783

CP-GRF 0.3245 0.2664 0.4935 0.2656 0.6844

WCP-GRF 0.3215 0.2695 0.4795 0.2634 0.6898

LGC 0.3232 0.2699 0.4769 0.2678 0.6898

MLC-LGC 0.3224 0.2687 0.4775 0.2662 0.6901

CP-LGC 0.3188 0.2627 0.4761 0.2634 0.6945

WCP-LGC 0.3235 0.2626 0.4655 0.2622 0.6974

MSRCv-2 DATASET GRF 0.1085 0.1883 0.401 0.3227 0.6157

MLC-GRF 0.1111 0.1917 0.4227 0.3178 0.6225

CP-GRF 0.1090 0.1750 0.3672 0.3055 0.6468

WCP-GRF 0.1074 0.1585 0.3589 0.2810 0.6492

LGC 0.1316 0.1845 0.3728 0.3029 0.6464

MLC-LGC 0.1246 0.1543 0.3985 0.2679 0.6525

CP-LGC 0.1232 0.1609 0.3680 0.2786 0.6625

WCP-LGC 0.1239 0.1484 0.3611 0.2641 0.6732
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(a) Yeast Dataset (b) Image Dataset

Fig. 2. Variation of average precision with the size of the unlabeled dataset for different
datasets

In Fig. 2, the variation of average precision with size of unlabeled dataset
for two of the datasets is plotted. We keep the labeled ratio fixed at 5% and
test ratio at 20%. We vary the unlabeled dataset size and observe the effect on
average precision. Again, we observe that the average precision increases with
increase in the unlabeled data thus showing the importance of unlabeled data.

We observe the following for the transductive methods:

– In most of the cases, the weighted label correlation based method perform
better than the other methods.

– In general, the LGC based methods perform better than the GRF based
methods. This is expected as the normalized combinatorial Laplacian is a
better representative than the conventional combinatorial graph Laplacian.

– Increase in labeled and unlabeled (to a certain extent) data results in an
increase in performance

5 Summary and Conclusion

In this paper, we introduced the problem of semi-supervised multi-label learn-
ing and discussed some of the recent graph-based semi-supervised methods. We
proposed the label correlation based propagation methods to improve the pre-
dictions. The proposed methods outperform the state-of-art methods. Extensive
experiments validate our hypothesis of the importance of accounting for label
correlation and also show the importance of using labeled data and unlabeled
data. In our future work, we would like to incorporate higher order correlation
directly.
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